Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Nat Immunol ; 25(6): 1020-1032, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831106

RESUMO

The efficacy of T cell-based immunotherapies is limited by immunosuppressive pressures in the tumor microenvironment. Here we show a predominant role for the interaction between BTLA on effector T cells and HVEM (TNFRSF14) on immunosuppressive tumor microenvironment cells, namely regulatory T cells. High BTLA expression in chimeric antigen receptor (CAR) T cells correlated with poor clinical response to treatment. Therefore, we deleted BTLA in CAR T cells and show improved tumor control and persistence in models of lymphoma and solid malignancies. Mechanistically, BTLA inhibits CAR T cells via recruitment of tyrosine phosphatases SHP-1 and SHP-2, upon trans engagement with HVEM. BTLA knockout thus promotes CAR signaling and subsequently enhances effector function. Overall, these data indicate that the BTLA-HVEM axis is a crucial immune checkpoint in CAR T cell immunotherapy and warrants the use of strategies to overcome this barrier.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Receptores Imunológicos , Membro 14 de Receptores do Fator de Necrose Tumoral , Microambiente Tumoral , Animais , Humanos , Imunoterapia Adotiva/métodos , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Camundongos , Microambiente Tumoral/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Linfócitos T Reguladores/imunologia , Transdução de Sinais , Linhagem Celular Tumoral , Neoplasias/imunologia , Neoplasias/terapia , Camundongos Knockout
2.
Annu Rev Immunol ; 28: 389-411, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20307212

RESUMO

B and T lymphocyte associated (BTLA) is an Ig domain superfamily protein with cytoplasmic immunoreceptor tyrosine-based inhibitory motifs. Its ligand, herpesvirus entry mediator (HVEM), is a tumor necrosis factor receptor superfamily member. The unique interaction between BTLA and HVEM allows for a system of bidirectional signaling that must be appropriately regulated to balance the outcome of the immune response. HVEM engagement of BTLA produces inhibitory signals through SH2 domain-containing protein tyrosine phosphatase 1 (Shp-1) and Shp-2 association, whereas BTLA engagement of HVEM produces proinflammatory signals via activation of NF-kappaB. The BTLA-HVEM interaction is intriguing and quite complex given that HVEM has four other ligands that also influence immune responses, the conventional TNF ligand LIGHT and lymphotoxin alpha, as well as herpes simplex virus glycoprotein D and the glycosylphosphatidylinositol-linked Ig domain protein CD160. BTLA-HVEM interactions have been shown to regulate responses in several pathogen and autoimmune settings, but our understanding of this complex system of interactions is certainly incomplete. Recent findings of spontaneous inflammation in BTLA-deficient mice may provide an important clue.


Assuntos
Glicoproteínas/imunologia , Receptores Imunológicos/imunologia , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Animais , Glicoproteínas/metabolismo , Humanos , Imunoglobulinas/imunologia , Ligantes , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais
3.
Cell ; 167(2): 405-418.e13, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27693350

RESUMO

The HVEM (TNFRSF14) receptor gene is among the most frequently mutated genes in germinal center lymphomas. We report that loss of HVEM leads to cell-autonomous activation of B cell proliferation and drives the development of GC lymphomas in vivo. HVEM-deficient lymphoma B cells also induce a tumor-supportive microenvironment marked by exacerbated lymphoid stroma activation and increased recruitment of T follicular helper (TFH) cells. These changes result from the disruption of inhibitory cell-cell interactions between the HVEM and BTLA (B and T lymphocyte attenuator) receptors. Accordingly, administration of the HVEM ectodomain protein (solHVEM(P37-V202)) binds BTLA and restores tumor suppression. To deliver solHVEM to lymphomas in vivo, we engineered CD19-targeted chimeric antigen receptor (CAR) T cells that produce solHVEM locally and continuously. These modified CAR-T cells show enhanced therapeutic activity against xenografted lymphomas. Hence, the HVEM-BTLA axis opposes lymphoma development, and our study illustrates the use of CAR-T cells as "micro-pharmacies" able to deliver an anti-cancer protein.


Assuntos
Transferência Adotiva/métodos , Linfoma Folicular/terapia , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Linfócitos T/imunologia , Proteínas Supressoras de Tumor/genética , Animais , Antígenos CD19/imunologia , Linfócitos B/imunologia , Proliferação de Células , Humanos , Ativação Linfocitária , Linfoma Folicular/genética , Camundongos , Neoplasias Experimentais/genética , Neoplasias Experimentais/terapia , Domínios Proteicos , Engenharia de Proteínas , Membro 14 de Receptores do Fator de Necrose Tumoral/química , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Microambiente Tumoral , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Immunity ; 51(2): 310-323.e7, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31204070

RESUMO

The tumor necrosis factor receptor superfamily member HVEM is one of the most frequently mutated surface proteins in germinal center (GC)-derived B cell lymphomas. We found that HVEM deficiency increased B cell competitiveness during pre-GC and GC responses. The immunoglobulin (Ig) superfamily protein BTLA regulated HVEM-expressing B cell responses independently of B-cell-intrinsic signaling via HVEM or BTLA. BTLA signaling into T cells through the phosphatase SHP1 reduced T cell receptor (TCR) signaling and preformed CD40 ligand mobilization to the immunological synapse, thus diminishing the help delivered to B cells. Moreover, T cell deficiency in BTLA cooperated with B cell Bcl-2 overexpression, leading to GC B cell outgrowth. These results establish that HVEM restrains the T helper signals delivered to B cells to influence GC selection outcomes, and they suggest that BTLA functions as a cell-extrinsic suppressor of GC B cell lymphomagenesis.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Proliferação de Células , Sinapses Imunológicas , Ativação Linfocitária , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Comunicação Parácrina , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores Imunológicos/genética , Transdução de Sinais
5.
PLoS Pathog ; 19(9): e1011693, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37738264

RESUMO

Previously we reported that the HSV-1 latency associated transcript (LAT) specifically upregulates the cellular herpesvirus entry mediator (HVEM) but no other known HSV-1 receptors. HSV-1 glycoprotein D (gD) binds to HVEM but the effect of this interaction on latency-reactivation is not known. We found that the levels of latent viral genomes were not affected by the absence of gD binding to HVEM. However, reactivation of latent virus in trigeminal ganglia explant cultures was blocked in the absence of gD binding to HVEM. Neither differential HSV-1 replication and spread in the eye nor levels of latency influenced reactivation. Despite similar levels of latency, reactivation in the absence of gD binding to HVEM correlated with reduced T cell exhaustion. Our results indicate that HVEM-gD signaling plays a significant role in HSV-1 reactivation but not in ocular virus replication or levels of latency. The results presented here identify gD binding to HVEM as an important target that influences reactivation and survival of ganglion resident T cells but not levels of latency. This concept may also apply to other herpesviruses that engages HVEM.


Assuntos
Herpesvirus Humano 1 , Herpesvirus Humano 1/fisiologia , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Olho , Replicação Viral , Latência Viral/fisiologia
6.
J Immunol ; 210(10): 1482-1493, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37000475

RESUMO

Thymocytes having diverse Ag specificities are selected in response to self-MHC-peptide expressed in thymic epithelial cells, which contributes to the formation of a T cell repertoire. However, it is not well understood whether additional signals from epithelial cells are required to drive positive selection. In this study, we found that one of the TNFR superfamily members, herpes virus entry mediator (HVEM), when expressed on thymocytes provides signals for positive selection. HVEM deficiency in double-positive (DP) thymocytes impaired positive selection of CD8 thymocytes. HVEM-deficient thymocytes in OT-1 TCR transgenic mice exhibited significant defects in positive selection and impaired CD69 upregulation of selected thymocytes. HVEM ligands (lymphotoxin-like, exhibits inducible expression, and competes with HSV glycoprotein D for HVEM, a receptor expressed by T lymphocytes, and B and T lymphocyte attenuator) were expressed in cortical thymic epithelial cells. Weak TCR ligation combined with HVEM signals enhanced ERK activation in DP thymocytes developed in vitro. Insufficient signals for positive selection in HVEM-deficient DP thymocytes led to the development of innate memory-like CD8 T cells expressing high levels of CD122, along with the increased development of PLZF+ NKT cells. These results suggest that thymocytes receive activation signals through HVEM during positive selection. Thus, our findings provide evidence that the threshold of thymocyte positive selection is set by signals from TCR in association with HVEM.


Assuntos
Membro 14 de Receptores do Fator de Necrose Tumoral , Timócitos , Animais , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/metabolismo , Timo , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo
7.
J Autoimmun ; 144: 103177, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38368767

RESUMO

Psoriasis (PS) and atopic dermatitis (AD) are common skin inflammatory diseases characterized by hyper-responsive keratinocytes. Although, some cytokines have been suggested to be specific for each disease, other cytokines might be central to both diseases. Here, we show that Tumor necrosis factor superfamily member 14 (TNFSF14), known as LIGHT, is required for experimental PS, similar to its requirement in experimental AD. Mice devoid of LIGHT, or deletion of either of its receptors, lymphotoxin ß receptor (LTßR) and herpesvirus entry mediator (HVEM), in keratinocytes, were protected from developing imiquimod-induced psoriatic features, including epidermal thickening and hyperplasia, and expression of PS-related genes. Correspondingly, in single cell RNA-seq analysis of PS patient biopsies, LTßR transcripts were found strongly expressed with HVEM in keratinocytes, and LIGHT was upregulated in T cells. Similar transcript expression profiles were also seen in AD biopsies, and LTßR deletion in keratinocytes also protected mice from allergen-induced AD features. Moreover, in vitro, LIGHT upregulated a broad spectrum of genes in human keratinocytes that are clinical features of both PS and AD skin lesions. Our data suggest that agents blocking LIGHT activity might be useful for therapeutic intervention in PS as well as in AD.


Assuntos
Dermatite Atópica , Psoríase , Humanos , Camundongos , Animais , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Queratinócitos/metabolismo , Citocinas/metabolismo , Psoríase/genética , Psoríase/metabolismo , Inflamação/metabolismo
8.
Anticancer Drugs ; 34(1): 73-80, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35946515

RESUMO

The ratio of regulatory T cells (Treg) in peripheral blood of cancer patients has a closely correlation to the occurrence and development of ovarian cancer. In this study, our aim to explore the expression of herpesvirus entry mediator (HVEM) in ovarian cancer and its correlation with Tregs. The expression of HVEM in peripheral blood of ovarian cancer patients was detected by ELISA, and the ratio of CD4+ CD25 + Foxp3 positive Tregs cells was detected by flow cytometry. Ovarian cancer cell lines with high- and low-HVEM expression were constructed. CD4+ cells were co-cultured with ovarian cancer (OC) cells, and the expressions of IL-2 and TGF-ß1 in the supernatant of cells were detected by ELISA, and western blot was used to detect the expressions of STAT5, p-STAT5, and Foxp3. The results indicated that the number of Treg cells in the peripheral blood of OC patients increased, and the expression of HVEM increased, the two have a certain correlation. At the same time, the overexpression of HVEM promoted the expression of cytokines IL-2 and TGF- ß1, promoted the activation of STAT5 and the expression of Foxp3, leading to an increase in the positive rate of Treg, while the HVEM gene silence group was just the opposite. Our results showed that the expression of HVEM in OC cells has a positive regulation effect on Tregs through the STAT5/Foxp3 signaling pathway. To provide experimental basis and related mechanism for the clinical treatment of ovarian cancer.


Assuntos
Neoplasias Ovarianas , Membro 14 de Receptores do Fator de Necrose Tumoral , Humanos , Feminino , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Interleucina-2 , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/metabolismo , Neoplasias Ovarianas/metabolismo , Fatores de Transcrição Forkhead/genética
9.
J Virol ; 95(21): e0133821, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34379501

RESUMO

Herpes simplex virus 1 (HSV-1) enters its human host via the skin and mucosa. The open question is how the virus invades this highly protective tissue in vivo to approach its receptors in the epidermis and initiate infection. Here, we performed ex vivo infection studies in human skin to investigate how susceptible the epidermis and dermis are to HSV-1 and whether wounding facilitates viral invasion. Upon ex vivo infection of complete skin, only sample edges with integrity loss demonstrated infected cells. After removal of the dermis, HSV-1 efficiently invaded the basal layer of the epidermis and, from there, gained access to suprabasal layers. This finding supports a high susceptibility of all epidermal layers which correlated with the surface expression of the receptors nectin-1 and herpesvirus entry mediator (HVEM). In contrast, only single infected cells were detected in the separated dermis, where minor expression of the receptors was found. Interestingly, after wounding, nearly no infection of the epidermis was observed via the skin surface. However, if the wounding of the skin samples led to breaks through the dermis, HSV-1 infected mainly keratinocytes via the damaged dermal layer. The application of latex beads revealed only occasional entry via the wounded dermis; however, it facilitated penetration via the wounded skin surface. Thus, we suggest that although the wounded human skin surface allows particle penetration, the skin still provides barriers that prevent HSV-1 from reaching its receptors. IMPORTANCE The human pathogen herpes simplex virus 1 (HSV-1) invades its host via the skin and mucosa, which leads to primary infection of the epithelium. As the various epithelial barriers effectively protect the tissue against viral invasion, successful infection most likely depends on tissue damage. We addressed the initial invasion process in human skin by ex vivo infection to understand how HSV-1 overcomes physical skin barriers and reaches its receptors to enter skin cells. Our results demonstrate that intact skin samples allow viral access only from the edges, while the epidermis is highly susceptible once the basal epidermal layer serves as an initial entry portal. Surprisingly, mechanical wounding did not facilitate HSV-1 entry via the skin surface, although latex beads still penetrated via the lesions. Our results imply that successful invasion of HSV-1 depends on how well the virus can reach its receptors, which was not accomplished by skin lesions under ex vivo conditions.


Assuntos
Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Nectinas/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Pele/virologia , Internalização do Vírus , Infecção dos Ferimentos/virologia , Derme/virologia , Epiderme/virologia , Interações entre Hospedeiro e Microrganismos , Humanos , Queratinócitos/virologia
10.
Bioorg Chem ; 122: 105748, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35325694

RESUMO

Cancer immunotherapy using blockade of immune checkpoints is mainly based on monoclonal antibodies. Despite the tremendous success achieved by using those molecules to block immune checkpoint proteins, antibodies possess some weaknesses, which means that there is still a need to search for new compounds as alternatives to antibodies. Many current approaches are focused on use of peptides/peptidomimetics to destroy receptor/ligand interactions. Our studies concern blockade of the BTLA/HVEM complex, which generates an inhibitory effect on the immune response resulting in tolerance to cancer cells. To design inhibitors of such proteins binding we based our work on the amino acid sequence and structure of a ligand of HVEM protein, namely glycoprotein D, which possesses the same binding site on HVEM as BTLA protein. To disrupt the BTLA and HVEM interaction we designed several peptides, all fragments of glycoprotein D, and tested their binding to HVEM using SPR and their ability to inhibit the BTLA/HVEM complex formation using ELISA tests and cellular reporter platforms. That led to identification of two peptides, namely gD(1-36)(K10C-D30C) and gD(1-36)(A12C-L25C), which interact with HVEM and possess blocking capacities. Both peptides are not cytotoxic to human PBMCs, and show stability in human plasma. We also studied the 3D structure of the gD(1-36)(K10C-D30C) peptide using NMR and molecular modeling methods. The obtained data reveal that it possesses an unstructured conformation and binds to HVEM in the same location as gD and BTLA. All these results suggest that peptides based on the binding fragment of gD protein represent promising immunomodulation agents for future cancer immunotherapy.


Assuntos
Receptores Imunológicos , Membro 14 de Receptores do Fator de Necrose Tumoral , Sequência de Aminoácidos , Sítios de Ligação , Glicoproteínas , Humanos , Receptores Imunológicos/química , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/química , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo
11.
Gastroenterology ; 159(5): 1778-1792.e13, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32712105

RESUMO

BACKGROUND & AIMS: Eosinophilic esophagitis (EoE) is an antigen-mediated eosinophilic disease of the esophagus that involves fibroblast activation and progression to fibrostenosis. Cytokines produced by T-helper type 2 cells and transforming growth factor beta 1 (TGFß1) contribute to the development of EoE, but other cytokines involved in pathogenesis are unknown. We investigate the effects of tumor necrosis factor superfamily member 14 (TNFSF14, also called LIGHT) on fibroblasts in EoE. METHODS: We analyzed publicly available esophageal CD3+ T-cell single-cell sequencing data for expression of LIGHT. Esophageal tissues were obtained from pediatric patients with EoE or control individuals and analyzed by immunostaining. Human primary esophageal fibroblasts were isolated from esophageal biopsy samples of healthy donors or patients with active EoE. Fibroblasts were cultured; incubated with TGFß1 and/or LIGHT; and analyzed by RNA sequencing, flow cytometry, immunoblots, immunofluorescence, or reverse transcription polymerase chain reaction. Eosinophils were purified from peripheral blood of healthy donors, incubated with interleukin 5, cocultured with fibroblasts, and analyzed by immunohistochemistry. RESULTS: LIGHT was up-regulated in the esophageal tissues from patients with EoE, compared with control individuals, and expressed by several T-cell populations, including T-helper type 2 cells. TNF receptor superfamily member 14 (TNFRSF14, also called HVEM) and lymphotoxin beta receptor are receptors for LIGHT that were expressed by fibroblasts from healthy donors or patients with active EoE. Stimulation of esophageal fibroblasts with LIGHT induced inflammatory gene transcription, whereas stimulation with TGFß1 induced transcription of genes associated with a myofibroblast phenotype. Stimulation of fibroblasts with TGFß1 increased expression of HVEM; subsequent stimulation with LIGHT resulted in their differentiation into cells that express markers of myofibroblasts and inflammatory chemokines and cytokines. Eosinophils tethered to esophageal fibroblasts after LIGHT stimulation via intercellular adhesion molecule-1. CONCLUSIONS: T cells in esophageal tissues from patients with EoE express increased levels of LIGHT compared with control individuals, which induces differentiation of fibroblasts into cells with inflammatory characteristics. TGFß1 increases fibroblast expression of HVEM, a receptor for LIGHT. LIGHT mediates interactions between esophageal fibroblasts and eosinophils via ICAM1. This pathway might be targeted for the treatment of EoE.


Assuntos
Diferenciação Celular , Esofagite Eosinofílica/metabolismo , Esôfago/metabolismo , Fibroblastos/metabolismo , Mediadores da Inflamação/metabolismo , Comunicação Parácrina , Linfócitos T/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Adolescente , Estudos de Casos e Controles , Células Cultivadas , Criança , Pré-Escolar , Esofagite Eosinofílica/imunologia , Esofagite Eosinofílica/patologia , Esôfago/imunologia , Esôfago/patologia , Feminino , Fibroblastos/imunologia , Fibroblastos/patologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Fenótipo , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Regulação para Cima
12.
J Virol ; 94(16)2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32522859

RESUMO

The immune modulatory protein herpes virus entry mediator (HVEM) is one of several cellular receptors used by herpes simplex virus 1 (HSV-1) for cell entry. HVEM binds to HSV-1 glycoprotein D (gD) but is not necessary for HSV-1 replication in vitro or in vivo Previously, we showed that although HSV-1 replication was similar in wild-type (WT) control and HVEM-/- mice, HSV-1 does not establish latency or reactivate effectively in mice lacking HVEM, suggesting that HVEM is important for these functions. It is not known whether HVEM immunomodulatory functions contribute to latency and reactivation or whether its binding to gD is necessary. We used HVEM-/- mice to establish three transgenic mouse lines that express either human WT HVEM or human or mouse HVEM with a point mutation that ablates its ability to bind to gD. Here, we show that HVEM immune function, not its ability to bind gD, is required for WT levels of latency and reactivation. We further show that HVEM binding to gD does not affect expression of the HVEM ligands BTLA, CD160, or LIGHT. Interestingly, our results suggest that binding of HVEM to gD may contribute to efficient upregulation of CD8α but not PD1, TIM-3, CTLA4, or interleukin 2 (IL-2). Together, our results establish that HVEM immune function, not binding to gD, mediates establishment of latency and reactivation.IMPORTANCE HSV-1 is a common cause of ocular infections worldwide and a significant cause of preventable blindness. Corneal scarring and blindness are consequences of the immune response induced by repeated reactivation events. Therefore, HSV-1 therapeutic approaches should focus on preventing latency and reactivation. Our data suggest that the immune function of HVEM plays an important role in the HSV-1 latency and reactivation cycle that is independent of HVEM binding to gD.


Assuntos
Herpesvirus Humano 1/fisiologia , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Proteínas do Envelope Viral/metabolismo , Animais , Feminino , Glicoproteínas/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/patogenicidade , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/fisiologia , Internalização do Vírus , Latência Viral/fisiologia
13.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31826998

RESUMO

Skin is a major target tissue of herpes simplex virus 1 (HSV-1), and we are only beginning to understand how individual receptors contribute to the initiation of infection in tissue. We recently demonstrated the impact of the receptors nectin-1 and herpesvirus entry mediator (HVEM) for entry of HSV-1 into murine epidermis. Here, we focus on viral invasion into the dermis, a further critical target tissue in vivo In principle, murine dermal fibroblasts are highly susceptible to HSV-1, and we previously showed that nectin-1 and HVEM can act as alternative receptors. To characterize their contribution as receptors in dermal tissue, we established an ex vivo infection assay of murine dermis. Only after separation of the epidermis from the dermis, we observed single infected cells in the upper dermis from juvenile mice at 5 h postinfection with increasing numbers of infected cells at later times. While nectin-1-expressing cells were less frequently detected, we found HVEM expressed on most cells of juvenile dermis. The comparison of infection efficiency during aging revealed a strong delay in the onset of infection in the dermis from aged mice. This observation correlated with a decrease in nectin-1-expressing fibroblasts during aging while the number of HVEM-expressing cells remained stable. Accordingly, aged nectin-1-deficient dermis was less susceptible to HSV-1 than the dermis from control mice. Thus, we conclude that the reduced availability of nectin-1 in aged dermis is a key contributor to a decrease in infection efficiency during aging.IMPORTANCE HSV-1 is a prevalent human pathogen which invades skin and mucocutaneous linings. So far, the underlying mechanisms of how the virus invades tissue, reaches its receptors, and initiates infection are still unresolved. To unravel the mechanical prerequisites that limit or favor viral invasion into tissue, we need to understand the contribution of the receptors that are involved in viral internalization. Here, we investigated the invasion process into murine dermis with the focus on receptor availability and found that infection efficiency decreases in aging mice. Based on studies of the expression of the receptors nectin-1 and HVEM, we suggest that the decreasing number of nectin-1-expressing fibroblasts leads to a delayed onset of infection in the dermis from aged compared to juvenile mice. Our results imply that the level of infection efficiency in murine dermis is closely linked to the availability of the receptor nectin-1 and can change during aging.


Assuntos
Envelhecimento/patologia , Derme/virologia , Herpesvirus Humano 1/metabolismo , Nectinas/metabolismo , Receptores de Superfície Celular/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Animais , Derme/metabolismo , Derme/patologia , Modelos Animais de Doenças , Epiderme/metabolismo , Epiderme/virologia , Herpes Simples/patologia , Herpes Simples/virologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nectinas/genética , Pele/metabolismo , Pele/virologia , Internalização do Vírus
14.
Cytokine ; 148: 155594, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34083106

RESUMO

BACKGROUND: Little is known about the role of lymphotoxins (LTs) family in the sinonasal mucosa of patients with chronic rhinosinusitis (CRS). This study aims at investigating the expression of LIGHT, LTα, LTß, and their receptors, LTßR and HVEM in normal and inflammatory sinus mucosa, and the effect of LIGHT and LTalpha1beta2 on chemokine secretion in epithelial cells, epithelial permeability, and leukocyte migration. MATERIAL AND METHODS: The expression of LTs family in sinonasal mucosa was evaluated with real-time PCR, immunohistochemistry, and western blot. In LTßR, HVEM siRNA, or control siRNA-transfected epithelial cells treated with LIGHT or LTalpha1beta2, the expression of chemokines, the epithelial permeability, and the expression of junctional complex proteins were evaluated using real-time PCR, ELISA, western blot, confocal microscopy, and FITC-dextran. In cultured endothelial cells treated with LIGHT or LTalpha1beta2, the expression of ICAM-1 and VCAM-1, and leukocyte migration were elucidated. RESULTS: LTs family was expressed in normal mucosa and their levels were increased in inflammatory mucosa of CRS patients. Recombinant LIGHT and LTalpha1beta2 induced chemokine secretion, increased epithelial permeability, and promoted leukocyte migration. However, the activity of LIGHT and LTalpha1beta2 was attenuated in cells transfected with LTßR and HVEM siRNA. CONCLUSIONS: LIGHT and LTs may participate in the ongoing process of chronic inflammation, inducing chemokine secretion, leukocyte migration, and dysregulated epithelial barrier through LTßR and HVEM in sinonasal mucosa.


Assuntos
Linfotoxina-alfa/metabolismo , Mucosa Nasal/metabolismo , Pólipos Nasais/metabolismo , Rinite/metabolismo , Sinusite/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Adulto , Permeabilidade da Membrana Celular , Quimiocinas/metabolismo , Doença Crônica , Impedância Elétrica , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Leucócitos/patologia , Masculino , Mucosa Nasal/patologia , Pólipos Nasais/genética , Pólipos Nasais/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Rinite/genética , Rinite/patologia , Sinusite/genética , Sinusite/patologia , Migração Transendotelial e Transepitelial , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
15.
Exp Cell Res ; 395(1): 112155, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32598875

RESUMO

Acute respiratory distress syndrome (ARDS) is an organ failure syndrome caused by overactivation of the immune system. Mesenchymal stem cells (MSCs) have been found to be effective in ARDS therapy due to their excellent immunomodulatory abilities; however, people are concerned about the safety of infusing exogenous cells. We found that rat lung-resident mesenchymal stem cells (LRMSCs) (Sca-1+CD45-CD31-) played important roles in regulating inflammation in the lungs during the pathogenesis of ARDS. LRMSCs could regulate the production of cytokines (TNF-α, MCP-1, and IL-10) by both innate and adaptive immune cells following LPS stimulation in vivo or in vitro. We also found that Herpes Virus Entry Mediator (HVEM) expression in LRMSCs enhanced the immunomodulatory ability of LRMSCs, and expression of the HVEM ligand B and T Lymphocyte Attenuator (BTLA) in innate and adaptive immune cells was required. The clarification of this immunoregulatory mechanism may provide evidence for ARDS therapy mediated by mobilizing endogenous MSCs in the future.


Assuntos
Pulmão/metabolismo , Células-Tronco Mesenquimais/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Imunidade Adaptativa/imunologia , Animais , Ligantes , Ratos Sprague-Dawley , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Linfócitos T/imunologia
16.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638990

RESUMO

Obesity is one of the most prevalent metabolic diseases in the Western world and correlates directly with glucose intolerance and insulin resistance, often culminating in Type 2 Diabetes (T2D). Importantly, our team has recently shown that the TNF superfamily (TNFSF) member protein, TNFSF14, has been reported to protect against high fat diet induced obesity and pre-diabetes. We hypothesized that mimics of TNFSF14 may therefore be valuable as anti-diabetic agents. In this study, we use in silico approaches to identify key regions of TNFSF14 responsible for binding to the Herpes virus entry mediator and Lymphotoxin ß receptor. In vitro evaluation of a selection of optimised peptides identified six potentially therapeutic TNFSF14 peptides. We report that these peptides increased insulin and fatty acid oxidation signalling in skeletal muscle cells. We then selected one of these promising peptides to determine the efficacy to promote metabolic benefits in vivo. Importantly, the TNFSF14 peptide 7 reduced high fat diet-induced glucose intolerance, insulin resistance and hyperinsulinemia in a mouse model of obesity. In addition, we highlight that the TNFSF14 peptide 7 resulted in a marked reduction in liver steatosis and a concomitant increase in phospho-AMPK signalling. We conclude that TNFSF14-derived molecules positively regulate glucose homeostasis and lipid metabolism and may therefore open a completely novel therapeutic pathway for treating obesity and T2D.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Obesidade/complicações , Obesidade/tratamento farmacológico , Peptídeos/administração & dosagem , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/administração & dosagem , Animais , Sítios de Ligação , Glicemia/metabolismo , Simulação por Computador , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/metabolismo , Homeostase/efeitos dos fármacos , Hiperinsulinismo/tratamento farmacológico , Hiperinsulinismo/metabolismo , Hipoglicemiantes/síntese química , Resistência à Insulina , Receptor beta de Linfotoxina/química , Receptor beta de Linfotoxina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Peptídeos/síntese química , Membro 14 de Receptores do Fator de Necrose Tumoral/química , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/química , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
17.
J Biol Chem ; 294(27): 10519-10529, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31126984

RESUMO

Human cytomegalovirus (HCMV) is a ß-herpesvirus that has co-evolved with the host immune system to establish lifelong persistence. HCMV encodes many immunomodulatory molecules, including the glycoprotein UL144. UL144 is a structural mimic of the tumor necrosis factor receptor superfamily member HVEM (herpesvirus entry mediator), which binds to the various ligands LIGHT, LTα, BTLA, CD160, and gD. However, in contrast to HVEM, UL144 only binds BTLA, inhibiting T-cell activation. Here, we report the crystal structure of the UL144-BTLA complex, revealing that UL144 utilizes residues from its N-terminal cysteine-rich domain 1 (CRD1) to interact uniquely with BTLA. The shorter CRD2 loop of UL144 also alters the relative orientation of BTLA binding with both N-terminal CRDs. By employing structure-guided mutagenesis, we have identified a mutant of BTLA (L123A) that interferes with HVEM binding but preserves UL144 interactions. Furthermore, our results illuminate structural differences between UL144 and HVEM that explain its binding selectivity and highlight it as a suitable scaffold for designing superior, immune inhibitory BTLA agonists.


Assuntos
Citomegalovirus/metabolismo , Glicoproteínas de Membrana/química , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/química , Proteínas Virais/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Glicoproteínas de Membrana/metabolismo , Mutagênese Sítio-Dirigida , Ligação Proteica , Receptores Imunológicos/química , Receptores Imunológicos/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência , Proteínas Virais/metabolismo
18.
Nat Immunol ; 9(2): 176-85, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18193050

RESUMO

CD160, a glycosylphosphatidylinositol-anchored member of the immunoglobulin superfamily, is expressed on both cytolytic lymphocytes and some unstimulated CD4+ T cells. Here we show that CD160 expression was increased after activation of human CD4+ T cells and that crosslinking CD160 with monoclonal antibody strongly inhibited CD3- and CD28-mediated activation. We found that herpesvirus entry mediator (HVEM) was a ligand of CD160 that acted as a 'bidirectional switch' for T cell activation, producing a positive or negative outcome depending on the engagement of HVEM by CD160 and known HVEM ligands such as B and T lymphocyte attenuator (BTLA) and the T lymphocyte receptor LIGHT. Inhibition of CD4+ T cell activation by HVEM-transfected cells was dependent on CD160 and BTLA; when the cysteine-rich domain 1 of HVEM was deleted, this inhibition was lost, resulting in strong T cell activation. CD160 thus serves as a negative regulator of CD4+ T cell activation through its interaction with HVEM.


Assuntos
Antígenos CD/metabolismo , Linfócitos T CD4-Positivos/imunologia , Ativação Linfocitária , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Anticorpos Monoclonais/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Clonagem Molecular , Proteínas Ligadas por GPI , Humanos , Ligantes , Ativação Linfocitária/efeitos dos fármacos , Estrutura Terciária de Proteína , Receptores Imunológicos/antagonistas & inibidores , Membro 14 de Receptores do Fator de Necrose Tumoral/genética
19.
J Surg Res ; 245: 610-618, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31522034

RESUMO

BACKGROUND: Herpes virus entry mediator (HVEM) is a coinhibitory molecule which can both stimulate and inhibit host immune responses. Altered expression of HVEM and its ligands is associated with increased nosocomial infections in septic patients. We hypothesize critically ill trauma patients will display increased lymphocyte HVEM expression and that such alteration is predictive of infectious events. MATERIALS AND METHODS: Trauma patients prospectively enrolled from the ICU were compared with healthy controls. Leukocytes were isolated from whole blood, stained for CD3 (lymphocytes) and HVEM, and evaluated by flow cytometry. Charts were reviewed for injuries sustained, APACHE II score, hospital course, and secondary infections. RESULTS: Trauma patients (n = 31) were older (46.7 ± 2.4 versus 36.8 ± 2.1 y; P = 0.03) than healthy controls (n = 10), but matched for male sex (74% versus 60%; P = 0.4). Trauma patients had higher presenting WBC (13.9 ± 1.3 versus 5.6 ± 0.5 × 106/mL; P = 0.002), lower percentage of CD3+ lymphocytes (7.5% ± 0.8 versus 22.5% ± 0.9; P < 0.001), but significantly greater expression of HVEM+/CD3+ lymphocytes (89.6% ± 1.46 versus 67.3% ± 1.7; P < 0.001). Among trauma patients, secondary infection during the hospitalization was associated with higher APACHE II scores (20.6 ± 1.6 versus 13.6 ± 1.4; P = 0.03) and markedly lower CD3+ lymphocyte HVEM expression (75% ± 2.6 versus 93% ± 0.7; P < 0.01). CONCLUSIONS: HVEM expression on CD3+ cells increases after trauma. Patients developing secondary infections have less circulating HVEM+CD3+. This implies HVEM signaling in lymphocytes plays a role in maintaining host defense to infection in after trauma. HVEM expression may represent a marker of infectious risk as well as a potential therapeutic target, modulating immune responses to trauma.


Assuntos
Tolerância Imunológica , Infecções/imunologia , Linfócitos/imunologia , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Ferimentos e Lesões/imunologia , APACHE , Adulto , Biomarcadores/metabolismo , Complexo CD3/metabolismo , Estudos de Casos e Controles , Feminino , Voluntários Saudáveis , Humanos , Infecções/sangue , Infecções/diagnóstico , Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Ferimentos e Lesões/sangue , Ferimentos e Lesões/complicações
20.
Int J Mol Sci ; 21(2)2020 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31963646

RESUMO

Immune checkpoints are crucial in the maintenance of antitumor immune responses. The activation or blockade of immune checkpoints is dependent on the interactions between receptors and ligands; such interactions can provide inhibitory or stimulatory signals, including the enhancement or suppression of T-cell proliferation, differentiation, and/or cytokine secretion. B-and T-lymphocyte attenuator (BTLA) is a lymphoid-specific cell surface receptor which is present on T-cells and interacts with herpes virus entry mediator (HVEM), which is present on tumor cells. The binding of HVEM to BTLA triggers an inhibitory signal which attenuates the immune response. This feature is interesting for studying the molecular interactions between HVEM and BTLA, as they may be targeted for novel immunotherapies. This work was based on the crystal structure of the BTLA/HVEM complex showing that BTLA binds the N-terminal cysteine-rich domain of HVEM. We investigated the amino acid sequence of HVEM and used molecular modeling methods to develop inhibitors of the BTLA/HVEM interaction. We synthesized novel compounds and determined their ability to interact with the BTLA protein and inhibit the formation of the BTLA/HVEM complex. Our results suggest that the HVEM (14-39) peptide is a potent inhibitor of the formation of the BTLA/HVEM protein complex.


Assuntos
Dissulfetos/química , Peptídeos/farmacologia , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Peptídeos/síntese química , Peptídeos/química , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Receptores Imunológicos/química , Membro 14 de Receptores do Fator de Necrose Tumoral/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA