Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nature ; 625(7994): 366-376, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38093015

RESUMO

Sexual reproduction of Toxoplasma gondii, confined to the felid gut, remains largely uncharted owing to ethical concerns regarding the use of cats as model organisms. Chromatin modifiers dictate the developmental fate of the parasite during its multistage life cycle, but their targeting to stage-specific cistromes is poorly described1,2. Here we found that the transcription factors AP2XII-1 and AP2XI-2 operate during the tachyzoite stage, a hallmark of acute toxoplasmosis, to silence genes necessary for merozoites, a developmental stage critical for subsequent sexual commitment and transmission to the next host, including humans. Their conditional and simultaneous depletion leads to a marked change in the transcriptional program, promoting a full transition from tachyzoites to merozoites. These in vitro-cultured pre-gametes have unique protein markers and undergo typical asexual endopolygenic division cycles. In tachyzoites, AP2XII-1 and AP2XI-2 bind DNA as heterodimers at merozoite promoters and recruit MORC and HDAC3 (ref. 1), thereby limiting chromatin accessibility and transcription. Consequently, the commitment to merogony stems from a profound epigenetic rewiring orchestrated by AP2XII-1 and AP2XI-2. Successful production of merozoites in vitro paves the way for future studies on Toxoplasma sexual development without the need for cat infections and holds promise for the development of therapies to prevent parasite transmission.


Assuntos
Gatos , Técnicas In Vitro , Estágios do Ciclo de Vida , Toxoplasma , Animais , Gatos/parasitologia , Humanos , Cromatina/genética , Cromatina/metabolismo , Modelos Animais de Doenças , Epigênese Genética , Técnicas In Vitro/métodos , Estágios do Ciclo de Vida/genética , Merozoítos/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/fisiologia , Toxoplasmose/genética , Toxoplasmose/parasitologia , Toxoplasmose/transmissão , Transcrição Gênica
2.
PLoS Biol ; 17(2): e3000154, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30794532

RESUMO

Cyclic nucleotide signalling is a major regulator of malaria parasite differentiation. Phosphodiesterase (PDE) enzymes are known to control cyclic GMP (cGMP) levels in the parasite, but the mechanisms by which cyclic AMP (cAMP) is regulated remain enigmatic. Here, we demonstrate that Plasmodium falciparum phosphodiesterase ß (PDEß) hydrolyses both cAMP and cGMP and is essential for blood stage viability. Conditional gene disruption causes a profound reduction in invasion of erythrocytes and rapid death of those merozoites that invade. We show that this dual phenotype results from elevated cAMP levels and hyperactivation of the cAMP-dependent protein kinase (PKA). Phosphoproteomic analysis of PDEß-null parasites reveals a >2-fold increase in phosphorylation at over 200 phosphosites, more than half of which conform to a PKA substrate consensus sequence. We conclude that PDEß plays a critical role in governing correct temporal activation of PKA required for erythrocyte invasion, whilst suppressing untimely PKA activation during early intra-erythrocytic development.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/genética , AMP Cíclico/metabolismo , Diester Fosfórico Hidrolases/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Transdução de Sinais/genética , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Eritrócitos/parasitologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hidrólise , Merozoítos/enzimologia , Merozoítos/genética , Merozoítos/crescimento & desenvolvimento , Fosfoproteínas/classificação , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Fosforilação , Plasmodium falciparum/enzimologia , Plasmodium falciparum/crescimento & desenvolvimento , Proteoma/classificação , Proteoma/genética , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Esquizontes/enzimologia , Esquizontes/genética , Esquizontes/crescimento & desenvolvimento , Fatores de Tempo
3.
Parasitol Res ; 121(5): 1507-1516, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35314894

RESUMO

Rhoptry proteins (ROPs), secreted by specific rhoptry organelles of apicomplexan parasites, are determinants of parasite pathogenesis and sources of vaccine candidates. Twenty-eight ROPs of Eimeria tenella have been predicted by genomic approaches, and in the present study, E. tenella rhoptry protein 30 (EtROP30) was characterized. Subcellular localizations of EtROP30 in sporozoites and merozoites were in the apical complex and rhoptry-like bulb, suggesting that EtROP30 is a member of ROPs in E. tenella. Sequence analysis showed that EtROP30 contained an N-terminal secretory signal, a protein kinase domain with eight E. tenella-specific rhoptry kinase 1 subfamily (ROPK-Eten1) motifs, and a C-terminal nuclear localization sequence (NLS), making EtROP30 the only ROP that contains both a secretory signal and an NLS in E. tenella. Subsequent experiments showed that EtROP30 was a secreted protein in the sporozoite stage, relying on NLS for migration to the host nucleus. In addition, EtROP30 showed significantly higher expression levels in the parasite merozoite stage, indicating that EtROP30 plays a critical role during parasite reinvasion and development and may be a viable option as a vaccine candidate for anti-parasitic infection. The immunization protection efficacies of EtROP30 were evaluated. Significant improvements in mean body weight gain, reduction of cecum lesion score, and number of oocysts excreted were observed, indicating that EtROP30 has good immunogenicity against E. tenella. In the present study, a ROP of E. tenella with secretory and nuclear localization characteristics has been identified, and proved to be an effective vaccine candidate against this parasite.


Assuntos
Eimeria tenella , Animais , Merozoítos/genética , Oocistos/metabolismo , Proteínas de Protozoários/metabolismo , Esporozoítos
4.
EMBO Rep ; 20(12): e48896, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31584242

RESUMO

The obligate intracellular parasites Toxoplasma gondii and Plasmodium spp. invade host cells by injecting a protein complex into the membrane of the targeted cell that bridges the two cells through the assembly of a ring-like junction. This circular junction stretches while the parasites apply a traction force to pass through, a step that typically concurs with transient constriction of the parasite body. Here we analyse F-actin dynamics during host cell invasion. Super-resolution microscopy and real-time imaging highlighted an F-actin pool at the apex of pre-invading parasite, an F-actin ring at the junction area during invasion but also networks of perinuclear and posteriorly localised F-actin. Mutant parasites with dysfunctional acto-myosin showed significant decrease of junctional and perinuclear F-actin and are coincidently affected in nuclear passage through the junction. We propose that the F-actin machinery eases nuclear passage by stabilising the junction and pushing the nucleus through the constriction. Our analysis suggests that the junction opposes resistance to the passage of the parasite's nucleus and provides the first evidence for a dual contribution of actin-forces during host cell invasion by apicomplexan parasites.


Assuntos
Actinas/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Plasmodium falciparum/fisiologia , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/fisiologia , Toxoplasma/parasitologia , Toxoplasma/patogenicidade , Actinas/genética , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Núcleo Celular/parasitologia , Núcleo Celular/fisiologia , Células Cultivadas , Técnicas de Inativação de Genes , Humanos , Merozoítos/genética , Merozoítos/patogenicidade , Merozoítos/fisiologia , Modelos Biológicos , Mutação , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Transdução de Sinais , Toxoplasma/genética , Virulência/fisiologia
5.
PLoS Pathog ; 13(7): e1006453, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28683142

RESUMO

Egress of the malaria parasite Plasmodium falciparum from its host red blood cell is a rapid, highly regulated event that is essential for maintenance and completion of the parasite life cycle. Egress is protease-dependent and is temporally associated with extensive proteolytic modification of parasite proteins, including a family of papain-like proteins called SERA that are expressed in the parasite parasitophorous vacuole. Previous work has shown that the most abundant SERA, SERA5, plays an important but non-enzymatic role in asexual blood stages. SERA5 is extensively proteolytically processed by a parasite serine protease called SUB1 as well as an unidentified cysteine protease just prior to egress. However, neither the function of SERA5 nor the role of its processing is known. Here we show that conditional disruption of the SERA5 gene, or of both the SERA5 and related SERA4 genes simultaneously, results in a dramatic egress and replication defect characterised by premature host cell rupture and the failure of daughter merozoites to efficiently disseminate, instead being transiently retained within residual bounding membranes. SERA5 is not required for poration (permeabilization) or vesiculation of the host cell membrane at egress, but the premature rupture phenotype requires the activity of a parasite or host cell cysteine protease. Complementation of SERA5 null parasites by ectopic expression of wild-type SERA5 reversed the egress defect, whereas expression of a SERA5 mutant refractory to processing failed to rescue the phenotype. Our findings implicate SERA5 as an important regulator of the kinetics and efficiency of egress and suggest that proteolytic modification is required for SERA5 function. In addition, our study reveals that efficient egress requires tight control of the timing of membrane rupture.


Assuntos
Antígenos de Protozoários/metabolismo , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Peptídeo Hidrolases/metabolismo , Plasmodium falciparum/fisiologia , Animais , Antígenos de Protozoários/genética , Membrana Celular/parasitologia , Eritrócitos/química , Humanos , Cinética , Merozoítos/química , Merozoítos/genética , Merozoítos/crescimento & desenvolvimento , Merozoítos/fisiologia , Peptídeo Hidrolases/genética , Plasmodium falciparum/química , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteólise
6.
Malar J ; 18(1): 330, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551073

RESUMO

BACKGROUND: The complex life cycle of malaria parasites requires well-orchestrated stage specific gene expression. In the vertebrate host the parasites grow and multiply by schizogony in two different environments: within erythrocytes and within hepatocytes. Whereas erythrocytic parasites are well-studied in this respect, relatively little is known about the exo-erythrocytic stages. METHODS: In an attempt to fill this gap, genome wide RNA-seq analyses of various exo-erythrocytic stages of Plasmodium berghei including sporozoites, samples from a time-course of liver stage development and detached cells were performed. These latter contain infectious merozoites and represent the final step in exo-erythrocytic development. RESULTS: The analysis represents the complete transcriptome of the entire life cycle of P. berghei parasites with temporal detailed analysis of the liver stage allowing comparison of gene expression across the progression of the life cycle. These RNA-seq data from different developmental stages were used to cluster genes with similar expression profiles, in order to infer their functions. A comparison with published data from other parasite stages confirmed stage-specific gene expression and revealed numerous genes that are expressed differentially in blood and exo-erythrocytic stages. One of the most exo-erythrocytic stage-specific genes was PBANKA_1003900, which has previously been annotated as a "gametocyte specific protein". The promoter of this gene drove high GFP expression in exo-erythrocytic stages, confirming its expression profile seen by RNA-seq. CONCLUSIONS: The comparative analysis of the genome wide mRNA expression profiles of erythrocytic and different exo-erythrocytic stages could be used to improve the understanding of gene regulation in Plasmodium parasites and can be used to model exo-erythrocytic stage metabolic networks toward the identification of differences in metabolic processes during schizogony in erythrocytes and hepatocytes.


Assuntos
Perfilação da Expressão Gênica , Hepatócitos/parasitologia , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/genética , Proteínas de Protozoários/genética , Eritrócitos/parasitologia , Regulação da Expressão Gênica , Genoma de Protozoário , Humanos , Estágios do Ciclo de Vida , Fígado/parasitologia , Malária/parasitologia , Merozoítos/genética , Merozoítos/crescimento & desenvolvimento , Regiões Promotoras Genéticas , RNA-Seq , Esporozoítos/genética , Esporozoítos/crescimento & desenvolvimento
7.
Parasitology ; 146(13): 1646-1654, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31452491

RESUMO

Bovine babesiosis is the most important protozoan disease transmitted by ticks. In Plasmodium falciparum, another Apicomplexa protozoan, the interaction of rhoptry neck protein 2 (RON2) with apical membrane antigen-1 (AMA-1) has been described to have a key role in the invasion process. To date, RON2 has not been described in Babesia bigemina, the causal agent of bovine babesiosis in the Americas. In this work, we found a ron2 gene in the B. bigemina genome. RON2 encodes a protein that is 1351 amino acids long, has an identity of 64% (98% coverage) with RON2 of B. bovis and contains the CLAG domain, a conserved domain in Apicomplexa. B. bigemina ron2 is a single copy gene and it is transcribed and expressed in blood stages as determined by RT-PCR, Western blot, and confocal microscopy. Serum samples from B. bigemina-infected bovines were screened for the presence of RON2-specific antibodies, showing the recognition of conserved B-cell epitopes. Importantly, in vitro neutralization assays showed an inhibitory effect of RON2-specific antibodies on the red blood cell invasion by B. bigemina. Therefore, RON2 is a novel antigen in B. bigemina and contains conserved B-cell epitopes, which induce antibodies that inhibit merozoite invasion.


Assuntos
Anticorpos Antiprotozoários/sangue , Babesia/genética , Epitopos de Linfócito B/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Animais , Babesia/imunologia , Babesiose/parasitologia , Bovinos , DNA de Protozoário/imunologia , Eritrócitos/parasitologia , Genoma de Protozoário , Masculino , Merozoítos/genética , Merozoítos/imunologia , Testes de Neutralização
8.
Parasitol Res ; 118(4): 1159-1169, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30747293

RESUMO

In our previous study, we obtained a large number of differentially expressed genes (DEGs) between second-generation merozoites (MZ-2) and third-generation merozoites (MZ-3) of Eimeria necatrix using RNA sequencing (RNA-seq). Here, we report two subtractive cDNA libraries for MZ2 (forward library) and MZ3 (reverse library) that were constructed using suppression subtractive hybridization (SSH). PCR amplification revealed that the MZ2 and MZ3 libraries contained approximately 96.7% and 95% recombinant clones, respectively, and the length of the inserted fragments ranged from 0.5 to 1.5 kb. A total of 106 and 111 unique sequences were obtained from the MZ2 and MZ3 libraries, respectively, and were assembled into 13 specific consensus sequences (contigs or genes) (5 from MZ2 and 8 from MZ3). The qRT-PCR results revealed that 11 out of 13 genes were differentially expressed between MZ-2 and MZ-3. Of 13 genes, 11 genes were found in both SSH and our RNA-seq data and displayed a similar expression trend between SSH and RNA-seq data, and the remaining 2 genes have not been reported in both E. necatrix genome and our RNA-seq data. Among the 11 genes, the expression trends of 8 genes were highly consistent between SSH and our RNA-seq data. These DEGs may provide specialized functions related to the life-cycle transitions of Eimeria species.


Assuntos
Galinhas/parasitologia , Coccidiose/veterinária , Eimeria/genética , Eimeria/metabolismo , Regulação da Expressão Gênica/genética , Genes de Protozoários/genética , Merozoítos/genética , Animais , Sequência de Bases , DNA de Protozoário/genética , Biblioteca Gênica , Merozoítos/metabolismo , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase , RNA de Protozoário/genética , Análise de Sequência de RNA , Técnicas de Hibridização Subtrativa
9.
Malar J ; 16(1): 305, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28764716

RESUMO

BACKGROUND: Malaria research is greatly dependent on and has drastically advanced with the possibility of genetically modifying Plasmodium parasites. The commonly used transfection protocol by Janse and colleagues utilizes blood stage-derived Plasmodium berghei schizonts that have been purified from a blood culture by density gradient centrifugation. Naturally, this transfection protocol depends on the availability of suitably infected mice, constituting a time-based variable. In this study, the potential of transfecting liver stage-derived merozoites was explored. In cell culture, upon merozoite development, infected cells detach from the neighbouring cells and can be easily harvested from the cell culture supernatant. This protocol offers robust experimental timing and temporal flexibility. METHODS: HeLa cells are infected with P. berghei sporozoites to obtain liver stage-derived merozoites, which are harvested from the cell culture supernatant and are transfected using the Amaxa Nucleofector® electroporation technology. RESULTS: Using this protocol, wild type P. berghei ANKA strain and marker-free PbmCherryHsp70-expressing P. berghei parasites were successfully transfected with DNA constructs designed for integration via single- or double-crossover homologous recombination. CONCLUSION: An alternative protocol for Plasmodium transfection is hereby provided, which uses liver stage-derived P. berghei merozoites for transfection. This protocol has the potential to substantially reduce the number of mice used per transfection, as well as to increase the temporal flexibility and robustness of performing transfections, if mosquitoes are routinely present in the laboratory. Transfection of liver stage-derived P. berghei parasites should enable generation of transgenic parasites within 8-18 days.


Assuntos
Merozoítos/fisiologia , Microrganismos Geneticamente Modificados/fisiologia , Plasmodium berghei/fisiologia , Animais , Técnicas de Cultura de Células , Fígado , Merozoítos/genética , Merozoítos/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos BALB C , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/crescimento & desenvolvimento , Plasmodium berghei/genética , Esquizontes/genética , Esquizontes/crescimento & desenvolvimento , Esquizontes/fisiologia , Transfecção
10.
Commun Biol ; 6(1): 659, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349497

RESUMO

Protein arginine methyltransferases (PRMTs) regulate many important cellular processes, such as transcription and RNA processing in model organisms but their functions in human malaria parasites are not elucidated. Here, we characterize PfPRMT5 in Plasmodium falciparum, which catalyzes symmetric dimethylation of histone H3 at R2 (H3R2me2s) and R8, and histone H4 at R3 in vitro. PfPRMT5 disruption results in asexual stage growth defects primarily due to lower invasion efficiency of the merozoites. Transcriptomic analysis reveals down-regulation of many transcripts related to invasion upon PfPRMT5 disruption, in agreement with H3R2me2s being an active chromatin mark. Genome-wide chromatin profiling detects extensive H3R2me2s marking of genes of different cellular processes, including invasion-related genes in wildtype parasites and PfPRMT5 disruption leads to the depletion of H3R2me2s. Interactome studies identify the association of PfPRMT5 with invasion-related transcriptional regulators such as AP2-I, BDP1, and GCN5. Furthermore, PfPRMT5 is associated with the RNA splicing machinery, and PfPRMT5 disruption caused substantial anomalies in RNA splicing events, including those for invasion-related genes. In summary, PfPRMT5 is critical for regulating parasite invasion and RNA splicing in this early-branching eukaryote.


Assuntos
Merozoítos , Plasmodium falciparum , Animais , Humanos , Plasmodium falciparum/metabolismo , Merozoítos/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Histonas/genética , Histonas/metabolismo , Cromatina/metabolismo
11.
Genes (Basel) ; 14(10)2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37895285

RESUMO

Cattle can be severely infected with the tick-borne protozoa Babesia bovis, giving rise to serious economic losses. Invasion of the host's RBCs by the parasite merozoite/sporozoites depends largely on the MSA (merozoite surface antigens) gene family, which comprises various fragments, e.g., MSA-1, MSA-2a1, MSA-2a2, MSA-2b and MSA-2c, highlighting the importance of these antigens as vaccine candidates. However, experimental trials documented the failure of some developed MSA-based vaccines to fully protect animals from B. bovis infection. One reason for this failure may be related to the genetic structure of the parasite. In the present study, all MSA-sequenced B. bovis isolates on the GenBank were collected and subjected to various analyses to evaluate their genetic diversity and population structure. The analyses were conducted on 199 MSA-1, 24 MSA-2a1, 193 MSA-2b and 148 MSA-2c isolates from geographically diverse regions. All these fragments displayed high nucleotide and haplotype diversities, but the MSA-1 was the most hypervariable and had the lowest inter- and intra-population gene flow values. This fragment also displayed a strong positive selection when testing its isolates for the natural selection, which suggests the potential occurrence of more genetic variations. On the contrary, the MSA-2c was the most conserved in comparison to the other fragments, and displayed the highest inter- and intra-population gene flow values, which was evidenced by a significantly negative selection and negative neutrality indices (Fu's Fs and Tajima's D). The majority of the MSA-2c tested isolates had two conserved amino acid repeats, and earlier reports have found these repeats to be highly immunogenic, which underlines the importance of this fragment in developing vaccines against B. bovis. Results of the MSA-2a1 analyses were also promising, but many more MSA-2a1 sequenced isolates are required to validating this assumption. The genetic analyses conducted for the MSA-2b fragment displayed borderline values when compared to the other fragments.


Assuntos
Babesia bovis , Babesiose , Vacinas , Animais , Bovinos , Babesia bovis/genética , Merozoítos/genética , Antígenos de Superfície/genética , Proteína 1 de Superfície de Merozoito/genética , Babesiose/epidemiologia , Babesiose/parasitologia , Variação Genética/genética
12.
Epigenetics Chromatin ; 16(1): 25, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322481

RESUMO

Gene expression in malaria parasites is subject to various layers of regulation, including histone post-translational modifications (PTMs). Gene regulatory mechanisms have been extensively studied during the main developmental stages of Plasmodium parasites inside erythrocytes, from the ring stage following invasion to the schizont stage leading up to egress. However, gene regulation in merozoites that mediate the transition from one host cell to the next is an understudied area of parasite biology. Here, we sought to characterize gene expression and the corresponding histone PTM landscape during this stage of the parasite lifecycle through RNA-seq and ChIP-seq on P. falciparum blood stage schizonts, merozoites, and rings, as well as P. berghei liver stage merozoites. In both hepatic and erythrocytic merozoites, we identified a subset of genes with a unique histone PTM profile characterized by a region of H3K4me3 depletion in their promoter. These genes were upregulated in hepatic and erythrocytic merozoites and rings, had roles in protein export, translation, and host cell remodeling, and shared a DNA motif. These results indicate that similar regulatory mechanisms may underlie merozoite formation in the liver and blood stages. We also observed that H3K4me2 was deposited in gene bodies of gene families encoding variant surface antigens in erythrocytic merozoites, which may facilitate switching of gene expression between different members of these families. Finally, H3K18me and H2K27me were uncoupled from gene expression and were enriched around the centromeres in erythrocytic schizonts and merozoites, suggesting potential roles in the maintenance of chromosomal organization during schizogony. Together, our results demonstrate that extensive changes in gene expression and histone landscape occur during the schizont-to-ring transition to facilitate productive erythrocyte infection. The dynamic remodeling of the transcriptional program in hepatic and erythrocytic merozoites makes this stage attractive as a target for novel anti-malarial drugs that may have activity against both the liver and blood stages.


Assuntos
Parasitos , Plasmodium , Animais , Merozoítos/genética , Merozoítos/metabolismo , Parasitos/genética , Parasitos/metabolismo , Histonas/metabolismo , Código das Histonas , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Fígado/metabolismo , Plasmodium/genética , Plasmodium/metabolismo , Esquizontes/metabolismo , Processamento de Proteína Pós-Traducional , Expressão Gênica
13.
Poult Sci ; 101(11): 102109, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36067577

RESUMO

Though genome sequencing of Eimeria tenella predicts more than 8,000 genes, the molecular functions of many proteins remain unknown. In this study, the coding region corresponding to the mature peptide of a hypothetical protein of E. tenella (ETH_00023950) was amplified and expressed in a bacterial system. Following preparation of polyclonal antibody that recognizes ETH_00023950, the expression of ETH_00023950 in merozoites was examined. Meanwhile, we determined the transcriptomic responses of the leghorn male hepatoma (LMH) cells to its expression. Sequencing analysis showed that one single nucleotide polymorphism and one indel of ETH_00023950 of E. tenella SD-01 strain were found compared with that of the UK reference Houghton strain, leading to a frame shift and a premature stop codon. The expression of ETH_00023950 in E. tenella merozoites was confirmed by indirect immunofluorescence and Western blot analysis. Transcriptomic analysis showed that ETH_00023950 altered the expression of 2,680 genes (321 downregulated genes and 2,359 upregulated genes) in LMH cells. The RNA-sequencing data were consistent with the results of the quantitative real-time polymerase chain reaction (qRT-PCR). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that differentially expressed transcripts were significantly related to 8 pathways, including oxidative phosphorylation and TGF-beta signaling pathway. These findings contribute to understanding host-pathogen interaction and secondary bacterial infections related to E. tenella.


Assuntos
Coccidiose , Eimeria tenella , Animais , Masculino , Eimeria tenella/genética , Galinhas/genética , Transcriptoma , Merozoítos/genética , Perfilação da Expressão Gênica/veterinária , Coccidiose/veterinária , Coccidiose/metabolismo
14.
mBio ; 12(2)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33688001

RESUMO

Malaria parasites cause disease through repeated cycles of intraerythrocytic proliferation. Within each cycle, several rounds of DNA replication produce multinucleated forms, called schizonts, that undergo segmentation to form daughter merozoites. Upon rupture of the infected cell, the merozoites egress to invade new erythrocytes and repeat the cycle. In human malarial infections, an antibody response specific for the Plasmodium falciparum protein PF3D7_1021800 was previously associated with protection against malaria, leading to an interest in PF3D7_1021800 as a candidate vaccine antigen. Antibodies to the protein were reported to inhibit egress, resulting in it being named schizont egress antigen-1 (SEA1). A separate study found that SEA1 undergoes phosphorylation in a manner dependent upon the parasite cGMP-dependent protein kinase PKG, which triggers egress. While these findings imply a role for SEA1 in merozoite egress, this protein has also been implicated in kinetochore function during schizont development. Therefore, the function of SEA1 remains unclear. Here, we show that P. falciparum SEA1 localizes in proximity to centromeres within dividing nuclei and that conditional disruption of SEA1 expression severely impacts the distribution of DNA and formation of merozoites during schizont development, with a proportion of SEA1-null merozoites completely lacking nuclei. SEA1-null schizonts rupture, albeit with low efficiency, suggesting that neither SEA1 function nor normal segmentation is a prerequisite for egress. We conclude that SEA1 does not play a direct mechanistic role in egress but instead acts upstream of egress as an essential regulator required to ensure the correct packaging of nuclei within merozoites.IMPORTANCE Malaria is a deadly infectious disease. Rationally designed novel therapeutics will be essential for its control and eradication. The Plasmodium falciparum protein PF3D7_1021800, annotated as SEA1, is under investigation as a prospective component of a malaria vaccine, based on previous indications that antibodies to SEA1 interfere with parasite egress from infected erythrocytes. However, a consensus on the function of SEA1 is lacking. Here, we demonstrate that SEA1 localizes to dividing parasite nuclei and is necessary for the correct segregation of replicated DNA into individual daughter merozoites. In the absence of SEA1, merozoites develop defectively, often completely lacking a nucleus, and, consequently, egress is impaired and/or aberrant. Our findings provide insights into the divergent mechanisms by which intraerythrocytic malaria parasites develop and divide. Our conclusions regarding the localization and function of SEA1 are not consistent with the hypothesis that antibodies against it confer protective immunity to malaria by blocking merozoite egress.


Assuntos
Antígenos de Protozoários/genética , Eritrócitos/parasitologia , Merozoítos/genética , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/genética , Esquizontes/fisiologia , Antígenos de Protozoários/metabolismo , Divisão Celular , Humanos , Merozoítos/química , Fosforilação , Plasmodium falciparum/química , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Estudos Prospectivos , Proteínas de Protozoários/metabolismo
15.
Mol Biochem Parasitol ; 243: 111373, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33961917

RESUMO

The Coccidia is the largest group of parasites within the Apicomplexa, a phylum of unicellular, obligate parasites characterized by the possession of an apical complex of organelles and structures in the asexual stages of their life cycles, as well as by a sexual reproductive phase that occurs enterically in host animals. Coccidian sexual reproduction involves morphologically distinct microgametes and macrogametes that combine to form a diploid zygote and, ultimately, following meiosis and mitosis, haploid, infectious sporozoites, inside sporocysts within an oocyst. Recent transcriptomic analyses have identified genes involved in coccidian sexual stage development and reproduction, including genes encoding for microgamete- and macrogamete-specific proteins with roles in gamete motility, fusion and fertilization, and in the formation of the resilient oocyst wall that allows coccidians to persist for long periods in the environment. Transcriptomics has also provided important clues about the regulation of gene expression in the transformation of parasites from one developmental stage to the next, a complex sequence of events that may involve transcription factors such as the apicomplexan Apetala2 (ApiAP2) family, alternative splicing, regulatory RNAs and MORC (a microrchida homologue and regulator of sexual stage development in Toxoplasma gondii). The molecular dissection of coccidian sexual development and reproduction by transcriptomic analyses may lead to the development of novel transmission-blocking strategies.


Assuntos
Coccídios/fisiologia , Regulação da Expressão Gênica , Proteínas de Protozoários/genética , Processamento Alternativo , Coccídios/isolamento & purificação , Coccídios/patogenicidade , Perfilação da Expressão Gênica , Estágios do Ciclo de Vida , Merozoítos/genética , MicroRNAs , Oocistos/genética , RNA Longo não Codificante , RNA de Protozoário , Análise de Célula Única/métodos
16.
Parasit Vectors ; 14(1): 502, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579769

RESUMO

BACKGROUND: Eimeria necatrix is one of the most pathogenic parasites, causing high mortality in chickens. Although its genome sequence has been published, the sequences and complete structures of its mRNA transcripts remain unclear, limiting exploration of novel biomarkers, drug targets and genetic functions in E. necatrix. METHODS: Second-generation merozoites (MZ-2) of E. necatrix were collected using Percoll density gradients, and high-quality RNA was extracted from them. Single-molecule real-time (SMRT) sequencing and Illumina sequencing were combined to generate the transcripts of MZ-2. Combined with the SMRT sequencing data of sporozoites (SZ) collected in our previous study, the transcriptome and transcript structures of E. necatrix were studied. RESULTS: SMRT sequencing yielded 21,923 consensus isoforms in MZ-2. A total of 17,151 novel isoforms of known genes and 3918 isoforms of novel genes were successfully identified. We also identified 2752 (SZ) and 3255 (MZ-2) alternative splicing (AS) events, 1705 (SZ) and 1874 (MZ-2) genes with alternative polyadenylation (APA) sites, 4019 (SZ) and 2588 (MZ-2) fusion transcripts, 159 (SZ) and 84 (MZ-2) putative transcription factors (TFs) and 3581 (SZ) and 2039 (MZ-2) long non-coding RNAs (lncRNAs). To validate fusion transcripts, reverse transcription-PCR was performed on 16 candidates, with an accuracy reaching up to 87.5%. Sanger sequencing of the PCR products further confirmed the authenticity of chimeric transcripts. Comparative analysis of transcript structures revealed a total of 3710 consensus isoforms, 815 AS events, 1139 genes with APA sites, 20 putative TFs and 352 lncRNAs in both SZ and MZ-2. CONCLUSIONS: We obtained many long-read isoforms in E. necatrix SZ and MZ-2, from which a series of lncRNAs, AS events, APA events and fusion transcripts were identified. Information on TFs will improve understanding of transcriptional regulation, and fusion event data will greatly improve draft versions of gene models in E. necatrix. This information offers insights into the mechanisms governing the development of E. necatrix and will aid in the development of novel strategies for coccidiosis control.


Assuntos
Eimeria/genética , Perfilação da Expressão Gênica , Estágios do Ciclo de Vida/genética , Fatores de Transcrição/genética , Transcriptoma , Processamento Alternativo , Animais , Galinhas/parasitologia , Eimeria/patogenicidade , Merozoítos/genética , RNA Longo não Codificante/genética , RNA de Protozoário/genética , RNA-Seq/métodos , Análise de Sequência de RNA
17.
Poult Sci ; 100(3): 100888, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33516468

RESUMO

Coccidiosis, caused by parasites of the genus Eimeria, is one of the most widespread and economically detrimental diseases in the global poultry industry. Because the merozoite stage of Eimeria tenella is immunologically vulnerable, motile, and functionally important for the parasites, the proteins expressed in these stages are considered to be potentially immunoprotective antigens, especially the secreted antigens and surface antigens. Here, we detected a previously unidentified MIC2-associated protein (Et-M2AP) from E. tenella and determined its localization. An immunofluorescence assay revealed that Et-M2AP was distributed in the apical part of second generation merozoites and sporozoites. In addition, an expression profile analysis revealed that the transcriptional level of Et-M2AP is significantly higher in the merozoite stage. To assess the potential of Et-M2AP protein as a coccidiosis vaccine, we expressed recombinant Et-M2AP (rEt-M2AP) and compared the immune protective efficacy of rEt-M2AP with 3 surface antigens that are highly expressed by merozoites (rEt-SAG23, rEt-SAG16, and rEt-SAG2 proteins). The immune protective efficacy of these vaccine candidates was assessed based on survival rate, lesion score, BW gain, relative BW gain, and oocyst output. The results show that the survival rate was 90%, which are significantly higher than those in the challenge control group. The BW gain rate was 42% (P < 0.001) in rEt-M2AP-immunized chickens, which are significantly higher than those in the challenge control group and rEt-SAG23, rEt-SAG16, and rEt-SAG2 proteins-immunized chickens. In addition, chickens immunized with rEt-M2AP (88% oocyst output decrease rate, P < 0.001) had the least oocyst output, compared with those immunized with rEt-SAG16 (59.2% oocyst output decrease rate, P < 0.001), rEt-SAG23 (22% oocyst output decrease rate), and rEt-SAG2 (1.36% oocyst output decrease rate). These results demonstrate that rEt-M2AP provided effective protection against challenge with E. tenella, suggesting that rEt-M2AP is a promising candidate antigen gene for development as a coccidiosis vaccine.


Assuntos
Coccidiose , Eimeria tenella , Merozoítos , Doenças das Aves Domésticas , Vacinas Protozoárias , Animais , Galinhas/imunologia , Coccidiose/prevenção & controle , Coccidiose/veterinária , Eimeria tenella/genética , Eimeria tenella/imunologia , Merozoítos/genética , Doenças das Aves Domésticas/parasitologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Protozoárias/imunologia , Vacinas Protozoárias/normas , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
18.
Front Immunol ; 12: 623492, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079537

RESUMO

Babesia orientalis, a major infectious agent of water buffalo hemolytic babesiosis, is transmitted by Rhipicephalus haemaphysaloides. However, no effective vaccine is available. Essential antigens that are involved in parasite invasion of host red blood cells (RBCs) are potential vaccine candidates. Therefore, the identification and the conduction of functional studies of essential antigens are highly desirable. Here, we evaluated the function of B. orientalis merozoite surface antigen 2c1 (BoMSA-2c1), which belongs to the variable merozoite surface antigen (VMSA) family in B. orientalis. We developed a polyclonal antiserum against the purified recombinant (r)BoMSA-2c1 protein. Immunofluorescence staining results showed that BoMSA-2c1 was expressed only on extracellular merozoites, whereas the antigen was undetectable in intracellular parasites. RBC binding assays suggested that BoMSA-2c1 specifically bound to buffalo erythrocytes. Cytoadherence assays using a eukaryotic expression system in vitro further verified the binding and inhibitory ability of BoMSA-2c1. We found that BoMSA-2c1 with a GPI domain was expressed on the surface of HEK293T cells that bound to water buffalo RBCs, and that the anti-rBoMSA2c1 antibody inhibited this binding. These results indicated that BoMSA-2c1 was involved in mediating initial binding to host erythrocytes of B. orientalis. Identification of the occurrence of binding early in the invasion process may facilitate understanding of the growth characteristics, and may help in formulating strategies for the prevention and control of this parasite.


Assuntos
Antígenos de Protozoários/metabolismo , Antígenos de Superfície/metabolismo , Babesia/metabolismo , Babesiose/parasitologia , Adesão Celular , Eritrócitos/parasitologia , Merozoítos/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Antígenos de Protozoários/genética , Antígenos de Superfície/genética , Babesia/genética , Babesia/patogenicidade , Babesiose/sangue , Búfalos , Eritrócitos/metabolismo , Células HEK293 , Humanos , Merozoítos/genética , Merozoítos/patogenicidade , Proteínas de Protozoários/genética
19.
Parasit Vectors ; 14(1): 308, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099031

RESUMO

BACKGROUND: Coccidiosis caused by Eimeria stiedae is a widespread and economically significant disease of rabbits. The lack of studies on the life-cycle development and host interactions of E. stiedae at the molecular level has hampered our understanding of its pathogenesis. METHODS: In this study, we present a comprehensive transcriptome landscape of E. stiedae to illustrate its dynamic development from unsporulated oocysts to sporulated oocysts, merozoites, and gametocytes, and to identify genes related to parasite-host interactions during parasitism using combined PacBio single-molecule real-time and Illumina RNA sequencing followed by bioinformatics analysis and qRT-PCR validation. RESULTS: In total, 12,582 non-redundant full-length transcripts were generated with an average length of 1808 bp from the life-cycle stages of E. stiedae. Pairwise comparisons between stages revealed 8775 differentially expressed genes (DEGs) showing highly significant description changes, which compiled a snapshot of the mechanisms underlining asexual and sexual biology of E. stiedae including oocyst sporulation between unsporulated and sporulated oocysts; merozoite replication between sporulated oocysts and merozoites; and gametophyte development and gamete generation between merozoites and gametocytes. Further, 248 DEGs were grouped into nine series clusters and five groups by expression patterns, and showed that parasite-host interaction-related genes predominated in merozoites and gametocytes and were mostly involved in steroid biosynthesis and lipid metabolism and carboxylic acid. Additionally, co-expression analyses identified genes associated with development and host invasion in unsporulated and sporulated oocysts and immune interactions during gametocyte parasitism. CONCLUSIONS: This is the first study, to our knowledge, to use the global transcriptome profiles to decipher molecular changes across the E. stiedae life cycle, and these results not only provide important information for the molecular characterization of E. stiedae, but also offer valuable resources to study other apicomplexan parasites with veterinary and public significance.


Assuntos
Coccidiose/veterinária , Eimeria/genética , Coelhos/parasitologia , Transcriptoma , Animais , Coccidiose/parasitologia , Eimeria/crescimento & desenvolvimento , Eimeria/isolamento & purificação , Eimeria/metabolismo , Merozoítos/genética , Merozoítos/crescimento & desenvolvimento , Merozoítos/metabolismo , Oocistos/genética , Oocistos/crescimento & desenvolvimento , Oocistos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Análise de Sequência de RNA
20.
Sci Rep ; 11(1): 19118, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34580326

RESUMO

The use of quantitative qRT-PCR assays for detection and quantification of late gametocyte stages has revealed the high transmission capacity of the human malaria parasite, Plasmodium falciparum. To understand how the parasite adjusts its transmission in response to in-host environmental conditions including antimalarials requires simultaneous quantification of early and late gametocytes. Here, we describe qRT-PCR assays that specifically detect and quantify early-stage P. falciparum gametocytes. The assays are based on expression of known early and late gametocyte genes and were developed using purified stage II and stage V gametocytes and tested in natural and controlled human infections. Genes pfpeg4 and pfg27 are specifically expressed at significant levels in early gametocytes with a limit of quantification of 190 and 390 gametocytes/mL, respectively. In infected volunteers, transcripts of pfpeg4 and pfg27 were detected shortly after the onset of blood stage infection. In natural infections, both early (pfpeg4/pfg27) and late gametocyte transcripts (pfs25) were detected in 71.2% of individuals, only early gametocyte transcripts in 12.6%, and only late gametocyte transcripts in 15.2%. The pfpeg4/pfg27 qRT-PCR assays are sensitive and specific for quantification of circulating sexually committed ring stages/early gametocytes and can be used to increase our understanding of epidemiological processes that modulate P. falciparum transmission.


Assuntos
Malária Falciparum/diagnóstico , Merozoítos/isolamento & purificação , Plasmodium falciparum/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Adolescente , Adulto , Antimaláricos/uso terapêutico , Feminino , Genes de Protozoários , Voluntários Saudáveis , Interações Hospedeiro-Parasita/efeitos dos fármacos , Humanos , Limite de Detecção , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Masculino , Merozoítos/genética , Pessoa de Meia-Idade , Carga Parasitária , Plasmodium falciparum/genética , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA