Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Am J Physiol Cell Physiol ; 322(3): C338-C353, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044858

RESUMO

The small conductance calcium-activated potassium channel (KCa2.3) has long been recognized for its role in mediating vasorelaxation through the endothelium-derived hyperpolarization (EDH) response. Histone deacetylases (HDACs) have been implicated as potential modulators of blood pressure and histone deacetylase inhibitors (HDACi) are being explored as therapeutics for hypertension. Herein, we show that HDACi increase KCa2.3 expression when heterologously expressed in HEK cells and endogenously expressed in primary cultures of human umbilical vein endothelial cells (HUVECs) and human intestinal microvascular endothelial cells (HIMECs). When primary endothelial cells were exposed to HDACi, KCa2.3 transcripts, subunits, and functional current are increased. Quantitative RT-PCR (qPCR) demonstrated increased KCa2.3 mRNA following HDACi, confirming transcriptional regulation of KCa2.3 by HDACs. By using pharmacological agents selective for different classes of HDACs, we discriminated between cytoplasmic and epigenetic modulation of KCa2.3. Biochemical analysis revealed an association between the cytoplasmic HDAC6 and KCa2.3 in immunoprecipitation studies. Specifically inhibiting HDAC6 increases expression of KCa2.3. In addition to increasing the expression of KCa2.3, we show that nonspecific inhibition of HDACs causes an increase in the expression of the molecular chaperone Hsp70 in endothelial cells. When Hsp70 is inhibited in the presence of HDACi, the magnitude of the increase in KCa2.3 expression is diminished. Finally, we show a slower rate of endocytosis of KCa2.3 as a result of exposure of primary endothelial cells to HDACi. These data provide the first demonstrated approach to increase KCa2.3 channel number in endothelial cells and may partially account for the mechanism by which HDACi induce vasorelaxation.


Assuntos
Células Endoteliais/efeitos dos fármacos , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Intestinos/irrigação sanguínea , Microvasos/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Endocitose , Células Endoteliais/enzimologia , Células HEK293 , Proteínas de Choque Térmico HSP70/metabolismo , Desacetilase 6 de Histona/metabolismo , Humanos , Potenciais da Membrana , Microvasos/enzimologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Regulação para Cima , Vasodilatação
2.
Am J Physiol Cell Physiol ; 321(6): C964-C977, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34586897

RESUMO

Pulmonary microvascular endothelial cells (PMVECs) uniquely express an α1G-subtype of voltage-gated T-type Ca2+ channel. We have previously revealed that the α1G channel functions as a background Ca2+ entry pathway that is critical for the cell proliferation, migration, and angiogenic potential of PMVECs, a novel function attributed to the coupling between α1G-mediated Ca2+ entry and constitutive Akt phosphorylation and activation. Despite this significance, mechanism(s) that link the α1G-mediated Ca2+ entry to Akt phosphorylation remain incompletely understood. In this study, we demonstrate that Ca2+/calmodulin-dependent protein kinase (CaMK) 4 serves as a downstream effector of the α1G-mediated Ca2+ entry to promote the angiogenic potential of PMVECs. Notably, CaMK2 and CaMK4 are both expressed in PMVECs. Pharmacological blockade or genetic knockdown of the α1G channel led to a significant reduction in the phosphorylation level of CaMK4 but not the phosphorylation level of CaMK2. Pharmacological inhibition as well as genetic knockdown of CaMK4 significantly decreased cell proliferation, migration, and network formation capacity in PMVECs. However, CaMK4 inhibition or knockdown did not alter Akt phosphorylation status in PMVECs, indicating that α1G/Ca2+/CaMK4 is independent of the α1G/Ca2+/Akt pathway in sustaining the cells' angiogenic potential. Altogether, these findings suggest a novel α1G-CaMK4 signaling complex that regulates the Ca2+-dominated angiogenic potential in PMVECs.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Sinalização do Cálcio , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Células Endoteliais/enzimologia , Pulmão/irrigação sanguínea , Microvasos/enzimologia , Neovascularização Fisiológica , Inibidores da Angiogênese/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/genética , Movimento Celular , Proliferação de Células , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Masculino , Microvasos/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Ratos Sprague-Dawley
3.
Am J Physiol Heart Circ Physiol ; 321(5): H985-H1003, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34559580

RESUMO

Ventilation with gases containing enhanced fractions of oxygen is the cornerstone of therapy for patients with hypoxia and acute respiratory distress syndrome. Yet, hyperoxia treatment increases free reactive oxygen species (ROS)-induced lung injury, which is reported to disrupt autophagy/mitophagy. Altered extranuclear activity of the catalytic subunit of telomerase, telomerase reverse transcriptase (TERT), plays a protective role in ROS injury and autophagy in the systemic and coronary endothelium. We investigated interactions between autophagy/mitophagy and TERT that contribute to mitochondrial dysfunction and pulmonary injury in cultured rat lung microvascular endothelial cells (RLMVECs) exposed in vitro, and rat lungs exposed in vivo to hyperoxia for 48 h. Hyperoxia-induced mitochondrial damage in rat lungs [TOMM20, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)], which was paralleled by increased markers of inflammation [myeloperoxidase (MPO), IL-1ß, TLR9], impaired autophagy signaling (Beclin-1, LC3B-II/1, and p62), and decreased the expression of TERT. Mitochondrial-specific autophagy (mitophagy) was not altered, as hyperoxia increased expression of Pink1 but not Parkin. Hyperoxia-induced mitochondrial damage (TOMM20) was more pronounced in rats that lack the catalytic subunit of TERT and resulted in a reduction in cellular proliferation rather than cell death in RLMVECs. Activation of TERT or autophagy individually offset mitochondrial damage (MTT). Combined activation/inhibition failed to alleviate hyperoxic-induced mitochondrial damage in vitro, whereas activation of autophagy in vivo decreased mitochondrial damage (MTT) in both wild type (WT) and rats lacking TERT. Functionally, activation of either TERT or autophagy preserved transendothelial membrane resistance. Altogether, these observations show that activation of autophagy/mitophagy and/or TERT mitigate loss of mitochondrial function and barrier integrity in hyperoxia.NEW & NOTEWORTHY In cultured pulmonary artery endothelial cells and in lungs exposed in vivo to hyperoxia, autophagy is activated, but clearance of autophagosomes is impaired in a manner that suggests cross talk between TERT and autophagy. Stimulation of autophagy prevents hyperoxia-induced decreases in mitochondrial metabolism and sustains monolayer resistance. Hyperoxia increases mitochondrial outer membrane (TOMM20) protein, decreases mitochondrial function, and reduces cellular proliferation without increasing cell death.


Assuntos
Células Endoteliais/enzimologia , Hiperóxia/complicações , Lesão Pulmonar/enzimologia , Pulmão/irrigação sanguínea , Microvasos/enzimologia , Mitocôndrias/enzimologia , Mitofagia , Telomerase/metabolismo , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Permeabilidade Capilar , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Técnicas de Inativação de Genes , Mediadores da Inflamação/metabolismo , Lesão Pulmonar/etiologia , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Microvasos/patologia , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Ratos Sprague-Dawley , Ratos Transgênicos , Receptores de Superfície Celular/metabolismo , Telomerase/deficiência , Telomerase/genética , Receptor 4 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo
4.
Microvasc Res ; 133: 104078, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32980388

RESUMO

The present study assessed the impact of impaired tetrahydrobiopterin (BH4) production on vasoreactivity from conduit and small arteries along the vascular tree as seen during aging. For this purpose, the mutant hyperphenylalaninemic mouse (hph-1) was used. This model is reported to be deficient in GTP cyclohydrolase I, a rate limiting enzyme in BH4 biosynthesis. BH4 is a key regulator of vascular homeostasis by regulating the nitric oxide synthase 3 (NOS3) activity. In GTP-CH deficient mice, the aortic BH4 levels were decreased, by -77% in 12 week-middle-aged mice (young) and by -83% in 35-45 week-middle-aged mice (middle-aged). In young hph-1, the mesenteric artery ability to respond to flow was slightly reduced by 9%. Aging induced huge modification in many vascular functions. In middle-aged hph-1, we observed a decrease in aortic cGMP levels, biomarker of NO availability (-46%), in flow-mediated vasodilation of mesenteric artery (-31%), in coronary hyperemia response measured in isolated heart following transient ischemia (-27%) and in cutaneous microcirculation dilation in response to acetylcholine assessed in vivo by laser-doppler technic (-69%). In parallel, the endothelium-dependent relaxation in response to acetylcholine in conduit blood vessel, measured on isolated aorta rings, was unchanged in hph-1 mice whatever the age. Our findings demonstrate that in middle-aged GTP-CH depleted mice, the reduction of BH4 was characterized by an alteration of microcirculation dilatory properties observed in various parts of the vascular tree. Large conduit blood vessels vasoreactivity, ie aorta, was unaltered even in middle-aged mice emphasizing the main BH4-deletion impact on the microcirculation.


Assuntos
GTP Cicloidrolase/deficiência , Microcirculação , Microvasos/enzimologia , Fenilcetonúrias/enzimologia , Pele/irrigação sanguínea , Vasodilatação , Fatores Etários , Animais , Aorta Torácica/enzimologia , Aorta Torácica/fisiopatologia , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Vasos Coronários/enzimologia , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , GTP Cicloidrolase/genética , Masculino , Artérias Mesentéricas/enzimologia , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/fisiopatologia , Fenilcetonúrias/genética , Fenilcetonúrias/fisiopatologia
5.
Microvasc Res ; 138: 104227, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34324883

RESUMO

This study examined the effects of vitamin D deficiency on vascular function and tissue oxidative status in the microcirculation; and whether or not these effects can be ameliorated with calcitriol, the active vitamin D metabolite. Three groups (n = 10 each) of male Sprague Dawley rats were fed for 10 weeks with control diet (CR), vitamin D-deficient diet without (DR), or with oral calcitriol supplementation (0.15 µg/kg) for the last four weeks (DSR). After 10 weeks, rats were sacrificed; mesenteric arterial rings were studied using wire myograph. Oxidative stress biomarkers malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were measured in the mesenteric arterial tissue. Vascular protein expression of endothelial nitric oxide synthase (eNOS) was determined by Western blotting. Acetylcholine-induced endothelium-dependent relaxation of DR was lower than CR. eNOS expression and SOD activity were lower in mesenteric arterial tissue of DR compared to CR. Calcitriol supplementation to DSR did not ameliorate the above parameters; in fact, augmented endothelium-dependent contraction was observed. Serum calcium was higher in DSR compared to CR and DR. In conclusion, vitamin D deficiency impaired microvascular vasodilation, associated with eNOS downregulation and reduced antioxidant activity. Calcitriol supplementation to vitamin D-deficient rats at the dosage used augmented endothelium-dependent contraction, possibly due to hypercalcaemia.


Assuntos
Antioxidantes/metabolismo , Endotélio Vascular/enzimologia , Microcirculação , Microvasos/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo , Vasodilatação , Deficiência de Vitamina D/enzimologia , Animais , Calcitriol/farmacologia , Cálcio/sangue , Modelos Animais de Doenças , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Masculino , Malondialdeído/metabolismo , Microcirculação/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Microvasos/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais , Superóxido Dismutase/metabolismo , Vasodilatação/efeitos dos fármacos , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/fisiopatologia , Vitaminas/farmacologia
6.
Microcirculation ; 27(6): e12624, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32352607

RESUMO

OBJECTIVE: Inhibition of adenosine kinase (ADK), via augmenting endogenous adenosine levels exerts cardiovascular protection. We tested the hypothesis that ADK inhibition improves microvascular dilator and left ventricle (LV) contractile function under metabolic or hemodynamic stress. METHODS AND RESULTS: In Obese diabetic Zucker fatty/spontaneously hypertensive heart failure F1 hybrid rats, treatment with the selective ADK inhibitor, ABT-702 (1.5 mg/kg, intraperitoneal injections for 8-week) restored acetylcholine-, sodium nitroprusside-, and adenosine-induced dilations in isolated coronary arterioles, an effect that was accompanied by normalized end-diastolic pressure (in mm Hg, Lean: 3.4 ± 0.6, Obese: 17.6 ± 4.2, Obese + ABT: 6.6 ± 1.4) and LV relaxation constant, Tau (in ms, Lean: 6.9 ± 1.5, Obese: 13.9 ± 1.7, Obese + ABT: 6.0 ± 1.1). Mice with vascular endothelium selective ADK deletion (ADKVEC KO) exhibited an enhanced dilation to acetylcholine in isolated gracilis muscle (lgEC50 WT: -8.2 ± 0.1, ADKVEC KO: -8.8 ± 0.1, P < .05) and mesenteric arterioles (lgEC50 WT: -7.4 ± 0.2, ADKVEC KO: -8.1 ± 1.2, P < .05) when compared to wild-type (WT) mice, whereas relaxation of the femoral artery and aorta (lgEC50 WT: -7.03 ± 0.6, ADKVEC KO: -7.05 ± 0.8) was similar in the two groups. Wild-type mice progressively developed LV systolic and diastolic dysfunction when they underwent transverse aortic constriction surgery, whereas ADKVEC -KO mice displayed a lesser degree in decline of LV function. CONCLUSIONS: Our results indicate that ADK inhibition selectively enhances microvascular vasodilator function, whereby it improves LV perfusion and LV contractile function under metabolic and hemodynamic stress.


Assuntos
Adenosina Quinase/antagonistas & inibidores , Microvasos/enzimologia , Morfolinas/farmacologia , Pirimidinas/farmacologia , Vasodilatação/efeitos dos fármacos , Disfunção Ventricular Esquerda/enzimologia , Adenosina Quinase/genética , Adenosina Quinase/metabolismo , Animais , Diástole/efeitos dos fármacos , Diástole/genética , Masculino , Camundongos , Camundongos Knockout , Ratos , Ratos Zucker , Vasodilatação/genética , Disfunção Ventricular Esquerda/genética
7.
Basic Res Cardiol ; 115(6): 64, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057972

RESUMO

By cleaving sphingomyelin into ceramide, which is an essential component of plasma membrane microdomains, acid sphingomyelinase (Asm) pivotally controls cell signaling. To define how the activation of the Asm/ceramide pathway, which occurs within seconds to minutes upon stress stimuli, influences brain ischemia/reperfusion (I/R) injury, we exposed male and female wildtype mice carrying both alleles of Asm's gene sphingomyelinase phosphodiesterase-1 (Smpd1+/+), heterozygously Asm-deficient mice (Smpd1+/-) and homozygously Asm-deficient mice (Smpd1-/-) of different age (8, 12 or 16 weeks) to 30, 60 or 90 min intraluminal middle cerebral artery occlusion (MCAO). For studying the contribution of brain-invading polymorphonuclear neutrophils (PMN) to I/R injury, PMNs were depleted by delivery of a PMN-specific Ly6G antibody. In male and female mice exposed to 30 min, but not 60 or 90 min MCAO, homozygous Smpd1-/- consistently increased I/R injury, blood-brain barrier permeability and brain leukocyte and PMN infiltration, whereas heterozygous Smpd1+/- reduced I/R injury. Increased abundance of the intercellular leukocyte adhesion molecule ICAM-1 was noted on cerebral microvessels of Smpd1-/- mice. PMN depletion by anti-Ly6G delivery prevented the exacerbation of I/R injury in Smpd1-/- compared with wildtype mice and reduced brain leukocyte infiltrates. Our results show that Asm tempers leukocyte entry into the reperfused ischemic brain, thereby attenuating I/R injury.


Assuntos
Encéfalo/irrigação sanguínea , Infarto da Artéria Cerebral Média/enzimologia , Microvasos/enzimologia , Infiltração de Neutrófilos , Neutrófilos/enzimologia , Traumatismo por Reperfusão/enzimologia , Esfingomielina Fosfodiesterase/deficiência , Animais , Modelos Animais de Doenças , Feminino , Heterozigoto , Homozigoto , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/patologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle , Esfingomielina Fosfodiesterase/genética , Fatores de Tempo
8.
Am J Physiol Regul Integr Comp Physiol ; 318(2): R390-R398, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31913684

RESUMO

Local skin heating to 42°C causes cutaneous thermal hyperemia largely via nitric oxide (NO) synthase (NOS)-related mechanisms. We assessed the hypothesis that ATP-sensitive K+ (KATP) channels interact with NOS to mediate cutaneous thermal hyperemia. In 13 young adults (6 women, 7 men), cutaneous vascular conductance (CVC) was measured at four intradermal microdialysis sites that were continuously perfused with 1) lactated Ringer solution (control), 2) 5 mM glibenclamide (KATP channel blocker), 3) 20 mM NG-nitro-l-arginine methyl ester (NOS inhibitor), or 4) a combination of KATP channel blocker and NOS inhibitor. Local skin heating to 42°C was administered at all four treatment sites to elicit cutaneous thermal hyperemia. Thirty minutes after the local heating, 1.25 mM pinacidil (KATP channel opener) and subsequently 25 mM sodium nitroprusside (NO donor) were administered to three of the four sites (each 25-30 min). The local heating-induced prolonged elevation in CVC was attenuated by glibenclamide (19%), but the transient initial peak was not. However, glibenclamide had no effect on the prolonged elevation in CVC in the presence of NOS inhibition. Pinacidil caused an elevation in CVC, but this response was abolished at the glibenclamide-treated skin site, demonstrating its effectiveness as a KATP channel blocker. The pinacidil-induced increase in CVC was unaffected by NOS inhibition, whereas the increase in CVC elicited by sodium nitroprusside was partly (15%) inhibited by glibenclamide. In summary, we showed an interactive effect of KATP channels and NOS for the plateau of cutaneous thermal hyperemia. This interplay may reflect a vascular smooth muscle cell KATP channel activation by NO.


Assuntos
Hiperemia/enzimologia , Canais KATP/metabolismo , Microcirculação , Microvasos/enzimologia , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Pele/irrigação sanguínea , Vasodilatação , Adulto , Velocidade do Fluxo Sanguíneo , Inibidores Enzimáticos/administração & dosagem , Feminino , Humanos , Hiperemia/etiologia , Hiperemia/fisiopatologia , Hipotermia Induzida , Ativação do Canal Iônico , Canais KATP/antagonistas & inibidores , Masculino , Microcirculação/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Microvasos/fisiopatologia , Doadores de Óxido Nítrico/administração & dosagem , Óxido Nítrico Sintase/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/administração & dosagem , Transdução de Sinais , Vasodilatação/efeitos dos fármacos , Vasodilatadores/administração & dosagem , Adulto Jovem
9.
Microvasc Res ; 128: 103941, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31678362

RESUMO

BACKGROUND: Activation of the proliferation of pulmonary microvascular endothelial cells (PMVECs) is a key step in the recovery of the integrity of endothelial monolayer, which helps to alleviate acute lung injury (ALI). Platelet endothelial aggregation receptor-1 (PEAR1), expressed on endothelial cells, was reported to inhibit the proliferation of vascular endothelial cells and angiogenesis. However, little is known about its role and mechanism in vascular endothelial disorders in ALI. OBJECTIVE: The aim of this study was to investigate the impact of PEAR1 on the proliferation of pulmonary microvascular endothelial cells in ALI. METHODS: We tested the expression level of PEAR1 in the lungs of WT mice in ALI model induced by intestinal IR. Primary human pulmonary microvascular endothelial cells (HPMECs) were stimulated by 1 mg/L LPS in vitro. We synthesized siPEAR1 and Flag-PEAR1 plasmid to verify the role of PEAR1 on regulating the proliferation of HPMECs under LPS condition and to explore related signaling pathways. RESULTS: The expression level of PEAR1 significantly increased in ALI induced by intestinal IR. PEAR1 knockdown enhanced the proliferation level of HPMECs, which, however, was inhibited by PEAR1 overexpression. PEAR1 knockdown activated PI3K/AKT pathway both in steady state and under LPS condition. PI3K inhibitor, LY294002, reversed the increasing proliferation level and cell progression of HPMECs induced by PEAR1 knockdown after LPS challenge. CONCLUSIONS: PEAR1 acts as a negative regulator in the proliferation of HPMECs in ALI model via the PI3K/AKT pathway.


Assuntos
Lesão Pulmonar Aguda/enzimologia , Proliferação de Células , Células Endoteliais/enzimologia , Pulmão/irrigação sanguínea , Microvasos/enzimologia , Receptores de Superfície Celular/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Microvasos/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Superfície Celular/genética , Transdução de Sinais
10.
Microvasc Res ; 131: 104012, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32428522

RESUMO

Recent evidences have shown that reactive oxygen species (ROS) are involved in regulating angiogenesis and preventing tissue injury. However, the precise molecular mechanisms behind ROS-induced angiogenesis are still unknown. The aim of the present study was to investigate the effects of ROS-induced angiogenesis in rat brain microvessel endothelial cells (rBMECs) and identify involving the signal pathways. For initial experiments, the rBMECs were incubated with different concentrations of hydrogen peroxide (H2O2). For the second experiments, the rBMECs were respectively treated with ROS scavenger dimethylthiourea (DMTU), NADPH oxidase (Nox) inhibitor apocynin, small interfering RNAs-mediated knock down Nox2 or Nox4, or pretreated with c-Jun N-terminal kinase (JNK) inhibitor SP600125. The cell proliferation, migration, tube formation, and the expressions of several important neuroangiogenic factors including vascular endothelial growth factor (VEGF), brain derived neurotrophic factor (BDNF), matrix metalloproteinase (MMP) -9 and phos-JNK were measured. Low level of H2O2 significantly promoted endothelial cell (EC) proliferation, migration and tube formation and upregulated levels of VEGF, BDNF, MMP-9 and phos-JNK. DMTU and apocynin significantly inhibited endothelial angiogenesis and downregulated these protein levels. As expected, knockdown of Nox2 or Nox4 expression blocked endothelial angiogenesis and downregulated the expressions of pro-neuroangiogenic factors. Furthermore, H2O2-induced endothelial angiogenesis and high expressions of pro-neuroangiogenic factors were decreased by SP600125. In conclusion, Nox-derived ROS were required for endothelial angiogenesis. Low level of ROS may activate JNK signaling pathway and upregulate pro-neuroangiogenic factors, ultimately mediating endothelial angiogenesis.


Assuntos
Córtex Cerebral/irrigação sanguínea , Células Endoteliais/enzimologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Microvasos/enzimologia , NADP/metabolismo , Neovascularização Fisiológica , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/farmacologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Microvasos/efeitos dos fármacos , NADPH Oxidase 2/antagonistas & inibidores , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , NADPH Oxidase 4/antagonistas & inibidores , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Oxidantes/farmacologia , Fosforilação , Ratos , Transdução de Sinais
11.
Brain Behav Immun ; 84: 115-131, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31778743

RESUMO

Sepsis is a host response to systemic inflammation and infection that may lead to multi-organ dysfunction and eventual death. While acute brain dysfunction is common among all sepsis patients, chronic neurological impairment is prevalent among sepsis survivors. The brain microvasculature has emerged as a major determinant of sepsis-associated brain dysfunction, yet the mechanisms that underlie its associated neuroimmune perturbations and behavioral deficits are not well understood. An emerging body of data suggests that inhibition of tissue-nonspecific alkaline phosphatase (TNAP) enzyme activity in cerebral microvessels may be associated with changes in endothelial cell barrier integrity. The objective of this study was to elucidate the connection between alterations in cerebrovascular TNAP enzyme activity and brain microvascular dysfunction in late sepsis. We hypothesized that the disruption of TNAP enzymatic activity in cerebral microvessels would be coupled to the sustained loss of brain microvascular integrity, elevated neuroinflammatory responses, and behavioral deficits. Male mice were subjected to cecal ligation and puncture (CLP), a model of experimental sepsis, and assessed up to seven days post-sepsis. All mice were observed daily for sickness behavior and underwent behavioral testing. Our results showed a significant decrease in brain microvascular TNAP enzyme activity in the somatosensory cortex and spinal cord of septic mice but not in the CA1 and CA3 hippocampal regions. Furthermore, we showed that loss of cerebrovascular TNAP enzyme activity was coupled to a loss of claudin-5 and increased perivascular IgG infiltration in the somatosensory cortex. Analyses of whole brain myeloid and T-lymphoid cell populations also revealed a persistent elevation of infiltrating leukocytes, which included both neutrophil and monocyte myeloid derived suppressor cells (MDSCs). Regional analyses of the somatosensory cortex, hippocampus, and spinal cord revealed significant astrogliosis and microgliosis in the cortex and spinal cord of septic mice that was accompanied by significant microgliosis in the CA1 and CA3 hippocampal regions. Assessment of behavioral deficits revealed no changes in learning and memory or evoked locomotion. However, the hot plate test uncovered a novel anti-nociceptive phenotype in our septic mice, and we speculate that this phenotype may be a consequence of sustained GFAP astrogliosis and loss of TNAP activity in the somatosensory cortex and spinal cord of septic mice. Taken together, these results demonstrate that the loss of TNAP enzyme activity in cerebral microvessels during late sepsis is coupled to sustained neuroimmune dysfunction which may underlie, in part, the chronic neurological impairments observed in sepsis survivors.


Assuntos
Fosfatase Alcalina/metabolismo , Encéfalo/irrigação sanguínea , Inflamação/complicações , Inflamação/enzimologia , Microvasos/enzimologia , Sepse/complicações , Sepse/psicologia , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Linhagem Celular , Modelos Animais de Doenças , Humanos , Inflamação/psicologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sepse/enzimologia
12.
Microvasc Res ; 126: 103891, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31283926

RESUMO

Angiogenesis after cerebral ischemia plays a pivotal role in neurological recovery and represents a therapeutic target. The angiogenic effect of nuclear factor E2-related factor 2 (Nrf2) was identified in recent years. However, the effects of tert-butylhydroquinone, an Nrf2 inducer, on angiogenesis and astrocyte activation after stroke remain unclear. In this study, we investigated whether tert-butylhydroquinone enhanced angiogenesis and astrocyte activation through Nrf2 pathway. Wild-type (Nrf2+/+) and Nrf2-deficient (Nrf2-/-) mice were subjected to permanent distal middle cerebral artery occlusion (dMCAO). We established 6 experimental groups (sham Nrf2+/+ group, vehicle Nrf2+/+ group, tBHQ Nrf2+/+ group; sham Nrf2-/- group, vehicle Nrf2-/- group, and tBHQ Nrf2-/- group). The infarct volume, neurological function, microvessel density (MVD), astrocytic endfeet covered ratio and the expression of Nrf2, HO-1 and VEGF in the ischemic brain were measured at different time points. Compared with that observed in the vehicle Nrf2+/+ group, tBHQ significantly reduced the infarct volume, enhanced post-stroke angiogenesis and astrocytic endfeet covered ratio in the peri-infarct area. The Nrf2/HO-1/VEGF pathway was activated by tBHQ in the angiogenesis process. However, in Nrf2-/- mice, Nrf2 deficiency blocked the effects of tBHQ on angiogenesis process and neurological recovery as well as abolished the mediation of proangiogenic factors. These results suggested that tBHQ enhanced angiogenesis and astrocyte activation through activating Nrf2 pathway after cerebral ischemia.


Assuntos
Indutores da Angiogênese/farmacologia , Astrócitos/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Encéfalo/irrigação sanguínea , Heme Oxigenase-1/metabolismo , Hidroquinonas/farmacologia , Proteínas de Membrana/metabolismo , Microvasos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Astrócitos/enzimologia , Astrócitos/patologia , Isquemia Encefálica/enzimologia , Isquemia Encefálica/genética , Isquemia Encefálica/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos Endogâmicos ICR , Camundongos Knockout , Microvasos/enzimologia , Microvasos/fisiopatologia , Fator 2 Relacionado a NF-E2/deficiência , Fator 2 Relacionado a NF-E2/genética , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Arterioscler Thromb Vasc Biol ; 38(4): 913-926, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29472234

RESUMO

OBJECTIVE: KLF15 (Kruppel-like factor 15) has recently been shown to suppress activation of proinflammatory processes that contribute to atherogenesis in vascular smooth muscle, however, the role of KLF15 in vascular endothelial function is unknown. Arginase mediates inflammatory vasculopathy and vascular injury in pulmonary hypertension. Here, we tested the hypothesis that KLF15 is a critical regulator of hypoxia-induced Arg2 (arginase 2) transcription in human pulmonary microvascular endothelial cells (HPMEC). APPROACH AND RESULTS: Quiescent HPMEC express ample amounts of full-length KLF15. HPMECs exposed to 24 hours of hypoxia exhibited a marked decrease in KLF15 protein levels and a reciprocal increase in Arg2 protein and mRNA. Chromatin immunoprecipitation indicated direct binding of KLF15 to the Arg2 promoter, which was relieved with HPMEC exposure to hypoxia. Furthermore, overexpression of KLF15 in HPMEC reversed hypoxia-induced augmentation of Arg2 abundance and arginase activity and rescued nitric oxide (NO) production. Ectopic KLF15 also reversed hypoxia-induced endothelium-mediated vasodilatation in isolated rat pulmonary artery rings. Mechanisms by which hypoxia regulates KLF15 abundance, stability, and compartmentalization to the nucleus in HPMEC were then investigated. Hypoxia triggered deSUMOylation of KLF15 by SENP1 (sentrin-specific protease 1), and translocation of KLF15 from nucleus to cytoplasm. CONCLUSIONS: KLF15 is a critical regulator of pulmonary endothelial homeostasis via repression of endothelial Arg2 expression. KLF15 abundance and nuclear compartmentalization are regulated by SUMOylation/deSUMOylation-a hypoxia-sensitive process that is controlled by SENP1. Strategies including overexpression of KLF15 or inhibition of SENP1 may represent novel therapeutic targets for pulmonary hypertension.


Assuntos
Arginase/metabolismo , Cisteína Endopeptidases/metabolismo , Células Endoteliais/enzimologia , Fatores de Transcrição Kruppel-Like/metabolismo , Pulmão/irrigação sanguínea , Microvasos/enzimologia , Proteínas Nucleares/metabolismo , Transcrição Gênica , Transporte Ativo do Núcleo Celular , Animais , Arginase/genética , Hipóxia Celular , Células Cultivadas , Cisteína Endopeptidases/genética , Células Endoteliais/patologia , Regulação Enzimológica da Expressão Gênica , Humanos , Fatores de Transcrição Kruppel-Like/genética , Microvasos/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Nucleares/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Ratos , Transdução de Sinais , Sumoilação , Vasodilatação
14.
J Appl Toxicol ; 39(7): 966-973, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30784107

RESUMO

Graphene-based nanomaterials hold the potential to be used in a wide variety of applications, including biomedical devices. Pristine graphene (PG) is an un-functionalized, defect-free type of graphene that could be used as a material for neural interfacing. However, the neurotoxic effects of PG, particularly to the blood-brain barrier (BBB), have not been fully studied. The BBB separates the brain tissue from the circulating substances in the blood and is essential to maintain the brain homeostasis. The principal components of the BBB are brain microvascular endothelial cells (BMVECs), which maintain a protectively low permeability due to the expression of tight junction proteins. Here we analyzed the effects of PG on BMVECs in an in vitro model of the BBB. BMVECs were treated with PG at 0, 10, 50 and 100 µg/mL for 24 hours and viability and functional analyses of BBB integrity were performed. PG increased lactate dehydrogenase release at 50 and 100 µg/mL, suggesting the induction of necrosis. Surprisingly, 2,3,-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium (XTT) conversion was increased at 10 and 50 µg/mL. In contrast, XTT conversion was decreased at 100 µg/mL, suggesting the induction of cell death. In addition, 100 µg/mL PG increased DNA fragmentation, suggesting induction of apoptosis. At the same time, 50 and 100 µg/mL of PG increased the endothelial permeability, which corresponded with a decrease in the expression of the tight junction protein occludin at 100 µg/mL. In conclusion, these results suggest that PG negatively affects the viability and function of the BBB endothelial cells in vitro.


Assuntos
Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Grafite/toxicidade , Microvasos/efeitos dos fármacos , Animais , Apoptose/genética , Barreira Hematoencefálica/enzimologia , Barreira Hematoencefálica/patologia , Encéfalo/irrigação sanguínea , Permeabilidade Capilar/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Fragmentação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Grafite/farmacocinética , L-Lactato Desidrogenase/metabolismo , Microvasos/enzimologia , Microvasos/patologia , Ratos
15.
J Stroke Cerebrovasc Dis ; 28(1): 97-106, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30309728

RESUMO

BACKGROUND: Blood-brain barrier (BBB) disruption plays a key role in the pathophysiology of acute ischemic stroke. Matrix metalloproteinases-2/9 (MMP-2/9) have been shown to participate in the disruption of the BBB and hemorrhagic transformation after cerebral ischemia. Toll-like receptor 2 (TLR2) may also be correlated with endothelial cell injury during ischemia-reperfusion events. However, the correlation between MMP-2/9 and TLR2 on endothelial cells after ischemia has not yet been evaluated. The aim of the study was to evaluate the impact of TLR2 and MMP-2/9 on tight junction proteins (TJs) after oxygen-glucose deprivation and reoxygenation (OGDR). MATERIALS AND METHODS: Rat primary brain microvascular endothelial cells (BMECs) were cultured. Quantitative real-time PCR and western blotting were used to measure the mRNA and proteins expression of TLR2 and MMP-2/-9. The protein expression of TJs was detected by western blotting and immunofluorescence. RESULTS: MMP-9 significantly increased after OGDR. Protein and mRNA expression of TLR2 was also upregulated. However, claudin-5, occludin, collagen-Ⅳ, and ZO-1 were decreased after OGDR. When monoclonal anti-TLR2 antibody (T2.5) was added to BMECs after OGDR, MMP-9 was significantly downregulated, whereas occludin and collagen-Ⅳ had a tendency to increase. CONCLUSION: TLR2 antagonist T2.5 is able to downregulate the expression of MMP-9, and may constitute a therapeutic option for restoration of the BBB after OGDR.


Assuntos
Anticorpos Monoclonais/farmacologia , Fármacos Cardiovasculares/farmacologia , Hipóxia Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Glucose/deficiência , Metaloproteinase 9 da Matriz/metabolismo , Animais , Encéfalo/irrigação sanguínea , Hipóxia Celular/fisiologia , Células Cultivadas , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Metaloproteinase 2 da Matriz/metabolismo , Microvasos/efeitos dos fármacos , Microvasos/enzimologia , Microvasos/patologia , Fármacos Neuroprotetores/farmacologia , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Proteínas de Junções Íntimas/metabolismo , Receptor 2 Toll-Like/antagonistas & inibidores , Receptor 2 Toll-Like/metabolismo , Regulação para Cima/efeitos dos fármacos
16.
Am J Physiol Heart Circ Physiol ; 314(5): H1053-H1060, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351466

RESUMO

A rise in reactive oxygen species (ROS) may contribute to cardiovascular disease by reducing nitric oxide (NO) levels, leading to loss of NO's vasodilator and anti-inflammatory effects. Although primarily studied in larger conduit arteries, excess ROS release and a corresponding loss of NO also occur in smaller resistance arteries of the microcirculation, but the underlying mechanisms and therapeutic targets have not been fully characterized. We examined whether either of the two subunits of telomerase, telomerase reverse transcriptase (TERT) or telomerase RNA component (TERC), affect microvascular ROS production and peak vasodilation at baseline and in response to in vivo administration to angiotensin II (ANG II). We report that genetic loss of TERT [maximal dilation: 52.0 ± 6.1% with vehicle, 60.4 ± 12.9% with Nω-nitro-l-arginine methyl ester (l-NAME), and 32.2 ± 12.2% with polyethylene glycol-catalase (PEG-Cat) ( P < 0.05), means ± SD, n = 9-19] but not TERC [maximal dilation: 79 ± 5% with vehicle, 10.7 ± 9.8% with l-NAME ( P < 0.05), and 86.4 ± 8.4% with PEG-Cat, n = 4-7] promotes flow-induced ROS formation. Moreover, TERT knockout exacerbates the microvascular dysfunction resulting from in vivo ANG II treatment, whereas TERT overexpression is protective [maximal dilation: 88.22 ± 4.6% with vehicle vs. 74.0 ± 7.3% with ANG II (1,000 ng·kg-1·min-1) ( P = not significant), n = 4]. Therefore, loss of TERT but not TERC may be a key contributor to the elevated microvascular ROS levels and reduced peak dilation observed in several cardiovascular disease pathologies. NEW & NOTEWORTHY This study identifies telomerase reverse transcriptase (TERT) but not telomerase RNA component as a key factor regulating endothelium-dependent dilation in the microcirculation. Loss of TERT activity leads to microvascular dysfunction but not conduit vessel dysfunction in first-generation mice. In contrast, TERT is protective in the microcirculation in the presence of prolonged vascular stress. Understanding the mechanism of how TERT protects against vascular stress represents a novel target for the treatment of vascular disorders.


Assuntos
Angiotensina II/toxicidade , Vasos Coronários/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Artérias Mesentéricas/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Telomerase/metabolismo , Vasodilatação/efeitos dos fármacos , Animais , Vasos Coronários/enzimologia , Vasos Coronários/fisiopatologia , Endotélio Vascular/enzimologia , Endotélio Vascular/fisiopatologia , Feminino , Peróxido de Hidrogênio/metabolismo , Masculino , Artérias Mesentéricas/enzimologia , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/enzimologia , Microvasos/fisiopatologia , Óxido Nítrico/metabolismo , RNA/genética , RNA/metabolismo , Telomerase/deficiência , Telomerase/genética
17.
Am J Physiol Heart Circ Physiol ; 314(3): H424-H433, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167120

RESUMO

The lysyl oxidase (LOX) family of enzymes regulates collagen cross-linking. LOX is upregulated in hypertension, increasing vascular stiffness. In vivo human research is sparse, as long-term LOX inhibition in animals causes vascular instability. Our aim was to evaluate the effects of LOX inhibition on cutaneous microvascular function to determine whether LOX function was upregulated in hypertensive humans. Four intradermal microdialysis fibers were placed in the forearm of 10 young [age: 24 ± 1 yr, mean arterial pressure (MAP): 87 ± 2 mmHg], 10 normotensive (age: 50 ± 2 yr, MAP: 84 ± 1 mmHg), and 10 hypertensive (age: 53 ± 2 yr, MAP: 112 ± 2 mmHg) subjects. Two sites were perfused with 10 mM ß-aminopropionitrile (BAPN) to inhibit LOX. The remaining two sites were perfused with lactated Ringer solution (control). A norepinephrine dose response (10-12-10-2 M) was performed to examine receptor-mediated vasoconstrictor function. A sodium nitroprusside dose response (10-8-10-1.3 M) was performed to examine vascular smooth muscle vasodilator function. Red blood cell flux was measured via laser-Doppler flowmetry and normalized to cutaneous vascular conductance (flux/MAP). LogEC50 values were calculated to determine changes in vasosensitivity. Skin tissue samples were analyzed for both extracellular matrix-bound and soluble LOX. LOX inhibition augmented vasoconstrictor sensitivity in young (control: -6.0 and BAPN: -7.1, P = 0.03) and normotensive (control: -4.8 and BAPN: -7.0, P = 0.01) but not hypertensive (control: -6.0 and BAPN: -6.1, P = 0.79) men and women. Relative to young subjects, extracellular matrix-bound LOX expression was higher in hypertensive subjects (young: 100 ± 8 and hypertensive: 162 ± 8, P = 0.002). These results suggest that upregulated LOX may contribute to the vascular stiffness and microvascular dysfunction characteristic in hypertension. NEW & NOTEWORTHY Matrix-bound lysyl oxidase (LOX) and LOX-like 2 expression are upregulated in the microvasculature of hypertensive men and women. Microvascular responsiveness to exogenous stimuli is altered with localized LOX inhibition in healthy men and women but not hypertensive adults. The LOX family differentially affects microvascular function in hypertensive and normotensive men and women.


Assuntos
Aminopropionitrilo/administração & dosagem , Inibidores Enzimáticos/administração & dosagem , Hipertensão/fisiopatologia , Microcirculação/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , Pele/irrigação sanguínea , Adulto , Aminoácido Oxirredutases/antagonistas & inibidores , Aminoácido Oxirredutases/metabolismo , Pressão Sanguínea , Feminino , Humanos , Hipertensão/diagnóstico , Masculino , Microdiálise , Microvasos/enzimologia , Microvasos/fisiopatologia , Pessoa de Meia-Idade , Proteína-Lisina 6-Oxidase/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Adulto Jovem
18.
Am J Physiol Heart Circ Physiol ; 315(4): H1063-H1071, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30074835

RESUMO

The black population exhibits attenuated vasodilatory function across their lifespan, yet little is known regarding the mechanisms of this impairment. Recent evidence suggests a potential role for oxidative stress. Therefore, we tested the hypothesis that NADPH oxidase (NOX) and/or xanthine oxidase (XO) contribute to blunted nitric oxide (NO)-mediated cutaneous microvascular function in young black adults. In 30 white and black subjects (8 men and 7 women in each group), local heating was performed while NOX and XO were inhibited by apocynin and allopurinol, respectively, via intradermal microdialysis. The plateau in cutaneous vascular conductance (red blood cell flux/mean arterial pressure) during 39°C local heating at each site was compared with a control site perfused with lactated Ringer solution. Subsequent inhibition of NO synthase via Nω-nitro-l-arginine methyl ester allowed for quantification of the NO contribution to vasodilation during heating. Black individuals, relative to white individuals, had a blunted cutaneous vascular conductance plateau at the control site (45 ± 9 vs. 68 ± 13%max, P < 0.001) that was increased by both apocynin (61 ± 15%max, P < 0.001) and allopurinol (58 ± 17%max, P = 0.005). Black men and black women had similar responses to heating at the control site ( P = 0.99), yet apocynin and allopurinol increased this response only in black men (both P < 0.001 vs. control). The NO contribution was also increased via apocynin and allopurinol exclusively in black men. These findings suggest that cutaneous microvascular function is reduced because of NOX and XO activity in black men but not black women, identifying a novel sex difference in the mechanisms that contribute to blunted vascular responses in the black population. NEW & NOTEWORTHY We demonstrate that cutaneous microvascular responses to local heating are consistently reduced in otherwise healthy young black men and women relative to their white counterparts. Inhibition of NADPH oxidase and xanthine oxidase via apocynin and allopurinol, respectively, augments microvascular function in black men but not black women. These data reveal clear sex differences in the mechanisms underlying the racial disparity in cutaneous microvascular function.


Assuntos
Negro ou Afro-Americano , Microcirculação/efeitos dos fármacos , Microvasos/fisiologia , Pele/irrigação sanguínea , Vasodilatação/efeitos dos fármacos , População Branca , Administração Cutânea , Adulto , Inibidores Enzimáticos/administração & dosagem , Feminino , Humanos , Hipertermia Induzida , Masculino , Microdiálise , Microvasos/efeitos dos fármacos , Microvasos/enzimologia , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Fluxo Sanguíneo Regional , Fatores Sexuais , Texas , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismo , Adulto Jovem
19.
Basic Res Cardiol ; 113(4): 23, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29744594

RESUMO

Mitochondrial fission and mitophagy are considered key processes involved in the pathogenesis of cardiac microvascular ischemia reperfusion (IR) injury although the upstream regulatory mechanism for fission and mitophagy still remains unclear. Herein, we reported that NR4A1 was significantly upregulated following cardiac microvascular IR injury, and its level was positively correlated with microvascular collapse, endothelial cellular apoptosis and mitochondrial damage. However, NR4A1-knockout mice exhibited resistance against the acute microvascular injury and mitochondrial dysfunction compared with the wild-type mice. Functional studies illustrated that IR injury increased NR4A1 expression, which activated serine/threonine kinase casein kinase2 α (CK2α). CK2α promoted phosphorylation of mitochondrial fission factor (Mff) and FUN14 domain-containing 1 (FUNDC1). Phosphorylated activation of Mff enhanced the cytoplasmic translocation of Drp1 to the mitochondria, leading to fatal mitochondrial fission. Excessive fission disrupted mitochondrial function and structure, ultimately triggering mitochondrial apoptosis. In addition, phosphorylated inactivation of FUNDC1 failed to launch the protective mitophagy process, resulting in the accumulation of damaged mitochondria and endothelial apoptosis. By facilitating Mff-mediated mitochondrial fission and FUNDC1-required mitophagy, NR4A1 disturbed mitochondrial homeostasis, enhanced endothelial apoptosis and provoked microvascular dysfunction. In summary, our data illustrated that NR4A1 serves as a novel culprit factor in cardiac microvascular IR injury that operates through synchronous elevation of fission and suppression of mitophagy. Novel therapeutic strategies targeting the balance among NR4A1, fission and mitophagy might provide survival advantage to microvasculature following IR stress.


Assuntos
Caseína Quinase II/metabolismo , Vasos Coronários/enzimologia , Proteínas de Membrana/metabolismo , Microvasos/enzimologia , Mitocôndrias Cardíacas/enzimologia , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Mitofagia , Traumatismo por Reperfusão Miocárdica/enzimologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Animais , Apoptose , Permeabilidade Capilar , Caseína Quinase II/genética , Células Cultivadas , Vasos Coronários/patologia , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Dinaminas/metabolismo , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Predisposição Genética para Doença , Masculino , Proteínas de Membrana/genética , Camundongos Knockout , Microvasos/patologia , Microvasos/fisiopatologia , Mitocôndrias Cardíacas/patologia , Proteínas Mitocondriais/genética , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/deficiência , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Fosforilação , Transporte Proteico , Transdução de Sinais , Vasodilatação
20.
J Cardiovasc Pharmacol ; 72(5): 231-241, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30399060

RESUMO

We investigated whether resveratrol (RSV) can attenuate obesity and diabetes progression and improve diabetes-induced vascular dysfunction, and we attempted to delineate its underlying mechanisms. Male C57Bl/6 mice were administered a high-fat diet (HFD) for 17 weeks. Mice developed type 2 diabetes with increased body weight, hyperglycemia, hyperinsulinemia, and hyperlipidemia. Oral gavage with RSV significantly reversed the symptoms induced by the HFD. Insulin sensitivity likewise improved after the RSV intervention in these mice. Phenylephrine-induced cremaster arteriolar constriction was impaired, whereas RSV treatment significantly mitigated the vessel responsiveness to phenylephrine. The obese diabetic mice exhibited increased leukocyte rolling, adhesion, and transmigration in the postcapillary venules of the cremaster muscle. By contrast, RSV treatment significantly attenuated HFD-induced extravasation. RSV significantly recovered phosphorylated Akt and eNOS expression in the thoracic aorta. In addition, activated adenosine monophosphate-activated protein kinase in the thoracic aorta was involved in the improvement of epithelial function after RSV intervention. RSV considerably upregulated the plasma NO level in HFD mice. Moreover, RSV-enhanced human umbilical vein endothelial cells healing through Sirt1/ER pathway may be involved in the prevention of leukocyte extravasation. Collectively, RSV attenuates diabetes-induced vascular dysfunction by activating Akt/eNOS/NO and Sirt1/ER pathway. Our mechanistic study provides a potential RSV-based therapeutic strategy against cardiovascular disease.


Assuntos
Músculos Abdominais/irrigação sanguínea , Vasos Sanguíneos/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Angiopatias Diabéticas/prevenção & controle , Dieta Hiperlipídica , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Estrogênio/metabolismo , Resveratrol/farmacologia , Sirtuína 1/metabolismo , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/enzimologia , Aorta Torácica/fisiopatologia , Vasos Sanguíneos/enzimologia , Vasos Sanguíneos/fisiopatologia , Células Cultivadas , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/etiologia , Angiopatias Diabéticas/enzimologia , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Microvasos/efeitos dos fármacos , Microvasos/enzimologia , Microvasos/fisiopatologia , Fosforilação , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA