Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.855
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 169(2): 243-257.e25, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28388409

RESUMO

Of all known cultured stem cell types, pluripotent stem cells (PSCs) sit atop the landscape of developmental potency and are characterized by their ability to generate all cell types of an adult organism. However, PSCs show limited contribution to the extraembryonic placental tissues in vivo. Here, we show that a chemical cocktail enables the derivation of stem cells with unique functional and molecular features from mice and humans, designated as extended pluripotent stem (EPS) cells, which are capable of chimerizing both embryonic and extraembryonic tissues. Notably, a single mouse EPS cell shows widespread chimeric contribution to both embryonic and extraembryonic lineages in vivo and permits generating single-EPS-cell-derived mice by tetraploid complementation. Furthermore, human EPS cells exhibit interspecies chimeric competency in mouse conceptuses. Our findings constitute a first step toward capturing pluripotent stem cells with extraembryonic developmental potentials in culture and open new avenues for basic and translational research. VIDEO ABSTRACT.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes/citologia , Animais , Blastocisto/citologia , Linhagem Celular , Quimera/metabolismo , Dimetideno/farmacologia , Humanos , Indicadores e Reagentes/química , Camundongos , Minociclina/química , Minociclina/farmacologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/metabolismo
2.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38981852

RESUMO

Previously, we found that dCA1 A1-like polarization of astrocytes contributes a lot to the spatial memory deficit in methamphetamine abstinence mice. However, the underlying mechanism remains unclear, resulting in a lack of promising therapeutic targets. Here, we found that methamphetamine abstinence mice exhibited an increased M1-like microglia and A1-like astrocytes, together with elevated levels of interleukin 1α and tumor necrosis factor α in dCA1. In vitro, the M1-like BV2 microglia cell medium, containing high levels of Interleukin 1α and tumor necrosis factor α, elevated A1-like polarization of astrocytes, which weakened their capacity for glutamate clearance. Locally suppressing dCA1 M1-like microglia activation with minocycline administration attenuated A1-like polarization of astrocytes, ameliorated dCA1 neurotoxicity, and, most importantly, rescued spatial memory in methamphetamine abstinence mice. The effective time window of minocycline treatment on spatial memory is the methamphetamine exposure period, rather than the long-term methamphetamine abstinence.


Assuntos
Astrócitos , Transtornos da Memória , Metanfetamina , Microglia , Minociclina , Memória Espacial , Animais , Metanfetamina/toxicidade , Microglia/efeitos dos fármacos , Microglia/metabolismo , Camundongos , Transtornos da Memória/induzido quimicamente , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Memória Espacial/fisiologia , Memória Espacial/efeitos dos fármacos , Masculino , Minociclina/farmacologia , Camundongos Endogâmicos C57BL , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/patologia , Estimulantes do Sistema Nervoso Central/toxicidade
3.
J Neurosci ; 43(24): 4390-4404, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37127364

RESUMO

Injury that severs peripheral nerves often results in long-lasting motor behavioral deficits and in reorganization of related spinal motor circuitry, neither of which reverse even after nerve regeneration. Stretch areflexia and gait ataxia, for example, emerge from a combination of factors including degeneration of Ia-motoneuron synapses between peripherally damaged Ia muscle spindle afferents and motoneurons. Based on evidence that nerve injury acts via immune responses to induce synapse degeneration, we hypothesized that suppressing inflammatory responses would preserve Ia-motoneuron connectivity and aid in restoring normal function. We tested our hypothesis by administering the anti-inflammatory agent minocycline in male and female rats following axotomy of a peripheral nerve. The connectivity of Ia-motoneuron synapses was then assessed both structurally and functionally at different time points. We found that minocycline treatment overcame the physical loss of Ia contacts on motoneurons which are otherwise lost after axotomy. While necessary for functional recovery, synaptic preservation was not sufficient to overcome functional decline expressed as smaller than normal stretch-evoked synaptic potentials evoked monosynaptically at Ia-motoneuron connections and an absence of the stretch reflex. These findings demonstrate a limited capacity of minocycline to rescue normal sensorimotor behavior, illustrating that structural preservation of synaptic connectivity does not ensure normal synaptic function.SIGNIFICANCE STATEMENT Here we demonstrate that acute treatment with the semisynthetic tetracycline anti-inflammatory agent minocycline permanently prevents the comprehensive loss of synaptic contacts made between sensory neurons and spinal motoneurons following peripheral nerve injury and eventual regeneration. Treatment failed, however, to rescue normal function of those synapses or the reflex circuit they mediate. These findings demonstrate that preventing synaptic disconnection alone is not sufficient to restore neural circuit operation and associated sensorimotor behaviors.


Assuntos
Traumatismos dos Nervos Periféricos , Medula Espinal , Ratos , Masculino , Feminino , Animais , Medula Espinal/fisiologia , Minociclina/farmacologia , Minociclina/uso terapêutico , Neurônios Motores/fisiologia , Sinapses/fisiologia , Células Receptoras Sensoriais
4.
Physiol Genomics ; 56(4): 360-366, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38314697

RESUMO

Adverse cardiac remodeling contributes to heart failure development and progression, partly due to inappropriate sympathetic nervous system activation. Although ß-adrenergic receptor (ß-AR) blockade is a common heart failure therapy, not all patients respond, prompting exploration of alternative treatments. Minocycline, an FDA-approved antibiotic, has pleiotropic properties beyond antimicrobial action. Recent evidence suggests it may alter gene expression via changes in miRNA expression. Thus, we hypothesized that minocycline could prevent adverse cardiac remodeling induced by the ß-AR agonist isoproterenol, involving miRNA-mRNA transcriptome alterations. Male C57BL/6J mice received isoproterenol (30 mg/kg/day sc) or vehicle via osmotic minipump for 21 days, along with daily minocycline (50 mg/kg ip) or sterile saline. Isoproterenol induced cardiac hypertrophy without altering cardiac function, which minocycline prevented. Total mRNA sequencing revealed isoproterenol altering gene networks associated with inflammation and metabolism, with fibrosis activation predicted by integrated miRNA-mRNA sequencing, involving miR-21, miR-30a, miR-34a, miR-92a, and miR-150, among others. Conversely, the cardiac miRNA-mRNA transcriptome predicted fibrosis inhibition in minocycline-treated mice, involving antifibrotic shifts in Atf3 and Itgb6 gene expression associated with miR-194 upregulation. Picrosirius red staining confirmed isoproterenol-induced cardiac fibrosis, prevented by minocycline. These results demonstrate minocycline's therapeutic potential in attenuating adverse cardiac remodeling through miRNA-mRNA-dependent mechanisms, especially in reducing cardiac fibrosis. NEW & NOTEWORTHY We demonstrate that minocycline treatment prevents cardiac hypertrophy and fibrotic remodeling induced by chronic ß-adrenergic stimulation by inducing antifibrotic shifts in the cardiac miRNA-mRNA transcriptome.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , MicroRNAs , Humanos , Masculino , Camundongos , Animais , Isoproterenol/farmacologia , Isoproterenol/metabolismo , Minociclina/farmacologia , Miócitos Cardíacos/metabolismo , Adrenérgicos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Remodelação Ventricular/genética , Camundongos Endogâmicos C57BL , Cardiomegalia/metabolismo , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Fibrose
5.
J Neuroinflammation ; 21(1): 260, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39396010

RESUMO

Haploinsufficiency of the transcriptional repressor ZBTB18/RP58 is associated with intellectual disability. However, the mechanisms causing this disability are unknown, and preventative measures and treatments are not available. Here, we assessed multiple behaviors in Zbtb18/Rp58 heterozygous-knockout mice, and examined local field potentials, DNA fragmentation, mitochondrial morphology, and performed histochemical and transcriptome analyses in the hippocampus to evaluate chronic inflammation. In wild-type mice, object location memory was present at a similar level at 2 and 4-5 months of age, and became impaired at 12-18 months. In contrast, Zbtb18/Rp58 heterozygous-knockout mice displayed early onset impairments in object location memory by 4-5 months of age. These mice also exhibited earlier accumulation of DNA and mitochondrial damage, and activated microglia in the dentate gyrus, which are associated with defective DNA repair. Notably, chronic minocycline therapy, which has neuroprotective and anti-inflammatory effects, attenuated age-related phenotypes, including accumulation of DNA damage, increased microglial activation, and impairment of object location memory. Our results suggest that Zbtb18/Rp58 activity is required for DNA repair and its reduction results in DNA and mitochondrial damage, increased activation of microglia, and inflammation, leading to accelerated declines in cognitive functions. Minocycline has potential as a therapeutic agent for the treatment of ZBTB18/RP58 haploinsufficiency-associated cognitive dysfunction.


Assuntos
Disfunção Cognitiva , Modelos Animais de Doenças , Haploinsuficiência , Deficiência Intelectual , Minociclina , Animais , Minociclina/farmacologia , Minociclina/uso terapêutico , Camundongos , Deficiência Intelectual/genética , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/patologia , Camundongos Endogâmicos C57BL , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Camundongos Knockout , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/efeitos dos fármacos , Masculino , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia
6.
J Antimicrob Chemother ; 79(2): 391-402, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38158772

RESUMO

OBJECTIVES: Combination therapy is often used for carbapenem-resistant Gram-negative bacteria. We previously demonstrated synergy of polymyxin B and minocycline against carbapenem-resistant Klebsiella pneumoniae in static time-kill experiments and developed an in silico pharmacokinetic/pharmacodynamic (PK/PD) model. The present study assessed the synergistic potential of this antibiotic combination in dynamic experiments. METHODS: Two clinical K. pneumoniae isolates producing KPC-3 and OXA-48 (polymyxin B MICs 0.5 and 8 mg/L, and minocycline MICs 1 and 8 mg/L, respectively) were included. Activities of the single drugs and the combination were assessed in 72 h dynamic time-kill experiments mimicking patient pharmacokinetics. Population analysis was performed every 12 h using plates containing antibiotics at 4× and 8× MIC. WGS was applied to reveal resistance genes and mutations. RESULTS: The combination showed synergistic and bactericidal effects against the KPC-3-producing strain from 12 h onwards. Subpopulations with decreased susceptibility to polymyxin B were frequently detected after single-drug exposures but not with the combination. Against the OXA-48-producing strain, synergy was observed between 4 and 8 h and was followed by regrowth. Subpopulations with decreased susceptibility to polymyxin B and minocycline were detected throughout experiments. For both strains, the observed antibacterial activities showed overall agreement with the in silico predictions. CONCLUSIONS: Polymyxin B and minocycline in combination showed synergistic effects, mainly against the KPC-3-producing K. pneumoniae. The agreement between the experimental results and in silico predictions supports the use of PK/PD models based on static time-kill data to predict the activity of antibiotic combinations at dynamic drug concentrations.


Assuntos
Minociclina , Polimixina B , Humanos , Polimixina B/farmacocinética , Minociclina/farmacologia , Klebsiella pneumoniae , beta-Lactamases/genética , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana , Sinergismo Farmacológico
7.
J Antimicrob Chemother ; 79(6): 1294-1302, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574003

RESUMO

OBJECTIVES: To elucidate the mechanism of tigecycline resistance in Escherichia coli that is mediated by the tet(A) variant gene. METHODS: E. coli strain 573 carried a plasmid-borne tet(A) variant gene, tentatively designated tet(A)TIG, that conferred decreased tigecycline susceptibility (MIC 0.5 mg/L). When exposed to increasing concentrations of tigecycline (0.25-8 mg/L), mutants growing at 2, 4 and 8 mg/L were obtained and sequenced. Copies of plasmid and tet(A)TIG relative to the chromosomal DNA in the mutants were determined by WGS and quantitative PCR (qPCR). Expression of tet(A)TIG in the mutants was evaluated by RT-qPCR. The tet(A)TIG-carrying plasmids were visualized by S1-PFGE and Southern blot hybridization. PCR served for the detection of a tet(A)TIG-carrying unconventional circularizable structure (UCS). RESULTS: Tigecycline resistance with maximum MICs of 16 mg/L was seen in E. coli mutants selected in the presence of tigecycline. Compared with the parental strain, the relative copy number and transcription level of tet(A)TIG in the mutants increased significantly in the presence of 2, 4 and 8 mg/L tigecycline, respectively. With increasing tigecycline selection pressure, the tet(A)TIG-carrying plasmids in the mutants increased in size, correlating with the number of tandem amplificates of a ΔTnAs1-flanked UCS harbouring tet(A)TIG. These tandem amplificates were not stable in the absence of tigecycline. CONCLUSIONS: Tigecycline resistance is due to the tandem amplification of a ΔTnAs1-flanked tet(A)TIG-carrying plasmid-borne segment in E. coli. The gain/loss of the tandem amplificates in the presence/absence of tigecycline represents an economic way for the bacteria to survive in the presence of tigecycline.


Assuntos
Antibacterianos , Escherichia coli , Testes de Sensibilidade Microbiana , Plasmídeos , Tigeciclina , Tigeciclina/farmacologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Plasmídeos/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Minociclina/farmacologia , Minociclina/análogos & derivados , Amplificação de Genes , Farmacorresistência Bacteriana/genética , Sequenciamento Completo do Genoma , Antiporters
8.
J Antimicrob Chemother ; 79(5): 1101-1108, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501368

RESUMO

OBJECTIVES: To evaluate the in vitro activity of the combination of apramycin with colistin, meropenem, minocycline or sulbactam, against some well-characterized XDR Acinetobacter baumannii clinical isolates from Greece, to understand how apramycin can be best incorporated into clinical practice and optimize effectiveness. METHODS: In vitro interactions of apramycin (0.5×, 1× and 2× the MIC value) with colistin (2 mg/L), meropenem (30 mg/L), minocycline (3.5 mg/L) or sulbactam (24 mg/L) were tested using time-kill methodology. Twenty-one clinical A. baumannii isolates were chosen, exhibiting apramycin MICs of 4-16 mg/L, which were at or below the apramycin preliminary epidemiological cut-off value of 16 mg/L. These isolates were selected for a range of colistin (4-32 mg/L), meropenem (16-256 mg/L), minocycline (8-32 mg/L) and sulbactam (8-32 mg/L) MICs across the resistant range. Synergy was defined as a ≥2 log10 cfu/mL reduction compared with the most active agent. RESULTS: The combination of apramycin with colistin, meropenem, minocycline or sulbactam was synergistic, at least at one of the concentrations of apramycin (0.5×, 1× or 2× MIC), against 83.3%, 90.5%, 90.9% or 92.3% of the tested isolates, respectively. Apramycin alone was bactericidal at 24 h against 9.5% and 33.3% of the tested isolates at concentrations equal to 1× and 2× MIC, while the combination of apramycin at 2× MIC with colistin, meropenem or sulbactam was bactericidal against all isolates tested (100%). The apramycin 2× MIC/minocycline combination had bactericidal activity against 90.9% of the tested isolates. CONCLUSIONS: Apramycin combinations may have potential as a treatment option for XDR/pandrug-resistant (PDR) A. baumannii infections and warrant validation in the clinical setting, when this new aminoglycoside is available for clinical use.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Testes de Sensibilidade Microbiana , Nebramicina , Nebramicina/análogos & derivados , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Grécia , Antibacterianos/farmacologia , Humanos , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/tratamento farmacológico , Nebramicina/farmacologia , Sulbactam/farmacologia , Sinergismo Farmacológico , Meropeném/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla , Viabilidade Microbiana/efeitos dos fármacos , Minociclina/farmacologia
9.
Toxicol Appl Pharmacol ; 484: 116859, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342443

RESUMO

When liver or intestinal function is impaired, bilirubin accumulates in the body and leads to neonatal jaundice. However, the potential negative effects caused by excessive accumulation of bilirubin such as developmental immunotoxicity and neurotoxicity remain unclear. We used a zebrafish model to establish bilirubin-induced jaundice symptoms and evaluated the toxic effects of bilirubin in aquatic organisms. Firstly, our results suggested that bilirubin exposure markedly decreased the survival rate, induced the developmental toxicity and increased the yellow pigment deposited in the zebrafish tail. Meanwhile, the number of macrophages and neutrophils was substantially reduced in a concentration-dependent manner. Besides, the antioxidant enzyme activities were greatly elevated while the inflammatory genes were significantly decreased after bilirubin exposure. Secondly, transcriptome analysis identified 708 genes were differentially expressed after bilirubin exposure, which animal organ morphogenesis, chemical synaptic transmission, and MAPK / mTOR signaling pathways were significantly enriched. Thirdly, bilirubin exposure leads to a significant decrease in the motility of zebrafish, including a dose-dependent decrease in the travelled distance, movement time, and average velocity. Moreover, the innate immune genes and apoptosis-related genes such as TLR4, NF-κB p65, STAT3 and p53 were elevated at a concentration of 10 µg/mL of bilirubin. Finally, our results further revealed that the anti-inflammatory and neuroprotective minocycline could partially rescue the bilirubin-induced neurobehavioral disorders in zebrafish embryos. In conclusion, our study explored the bilirubin-induced immunotoxicity and neurotoxicity in aquatic organisms, which will provide a theoretical basis for the treatment of neonatal jaundice in clinical practice.


Assuntos
Icterícia Neonatal , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Minociclina/farmacologia , Bilirrubina , Icterícia Neonatal/metabolismo , Imunidade Inata , Estresse Oxidativo , Antioxidantes/farmacologia , Embrião não Mamífero , Poluentes Químicos da Água/toxicidade
10.
Brain Behav Immun ; 119: 236-250, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38604269

RESUMO

Mounting evidence suggests that high-fat diet (HFD) consumption increases the risk for depression, but the neurophysiological mechanisms involved remain to be elucidated. Here, we demonstrated that HFD feeding of C57BL/6J mice during the adolescent period (from 4 to 8 weeks of age) resulted in increased depression- and anxiety-like behaviors concurrent with changes in neuronal and myelin structure in the hippocampus. Additionally, we showed that hippocampal microglia in HFD-fed mice assumed a hyperactive state concomitant with increased PSD95-positive and myelin basic protein (MBP)-positive inclusions, implicating microglia in hippocampal structural alterations induced by HFD consumption. Along with increased levels of serum free fatty acids (FFAs), abnormal deposition of lipid droplets and increased levels of HIF-1α protein (a transcription factor that has been reported to facilitate cellular lipid accumulation) within hippocampal microglia were observed in HFD-fed mice. The use of minocycline, a pharmacological suppressor of microglial overactivation, effectively attenuated neurobehavioral abnormalities and hippocampal structural alterations but barely altered lipid droplet accumulation in the hippocampal microglia of HFD-fed mice. Coadministration of triacsin C abolished the increases in lipid droplet formation, phagocytic activity, and ROS levels in primary microglia treated with serum from HFD-fed mice. In conclusion, our studies demonstrate that the adverse influence of early-life HFD consumption on behavior and hippocampal structure is attributed at least in part to microglial overactivation that is accompanied by an elevated serum FFA concentration and microglial aberrations represent a potential preventive and therapeutic target for HFD-related emotional disorders.


Assuntos
Ansiedade , Dieta Hiperlipídica , Ácidos Graxos não Esterificados , Hipocampo , Camundongos Endogâmicos C57BL , Microglia , Animais , Hipocampo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Microglia/metabolismo , Camundongos , Masculino , Ansiedade/metabolismo , Ácidos Graxos não Esterificados/sangue , Ácidos Graxos não Esterificados/metabolismo , Depressão/metabolismo , Comportamento Animal , Minociclina/farmacologia
11.
Brain Behav Immun ; 115: 280-294, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914097

RESUMO

BACKGROUND: Mental disorders may be involved in neuroinflammatory processes that are triggered by gut microbiota. How gut microbiota influence microglia-mediated sensitivity to stress remains unclear. Here we explored in an animal model of depression whether disruption of the gut microbiome primes hippocampal microglia, thereby impairing neurogenesis and sensitizing to stress. METHODS: Male C57BL/6J mice were exposed to chronic unpredictable mild stress (CUMS) for 4 weeks, and effects on gut microbiota were assessed using 16S rRNA sequencing. Fecal microbiota was transplanted from control or CUMS mice into naïve animals. The depression-like behaviors of recipients were evaluated in a forced swimming test and sucrose preference test. The morphology and phenotype of microglia in the hippocampus of recipients were examined using immunohistochemistry, quantitative PCR, and enzyme-linked immunosorbent assays. The recipients were treated with lipopolysaccharide or chronic stress exposure, and effects were evaluated on behavior, microglial responses and hippocampal neurogenesis. Finally, we explored the ability of minocycline to reverse the effects of CUMS on hippocampal neurogenesis and stress sensitivity in recipients. RESULTS: CUMS altered the gut microbiome, leading to higher relative abundance of some bacteria (Helicobacter, Bacteroides, and Desulfovibrio) and lower relative abundance of some bacteria (Lactobacillus, Bifidobacterium, and Akkermansia). Fecal microbiota transplantation from CUMS mice to naïve animals induced microglial priming in the dentate gyrus of recipients. This microglia showed hyper-ramified morphology, and became more sensitive to LPS challenge or chronic stress, which characterized by more significant morphological changes and inflammatory responses, as well as impaired hippocampal neurogenesis and increased depressive-like behaviors. Giving minocycline to recipients reversed these effects of fecal transplantation. CONCLUSIONS: These findings suggest that gut microbiota from stressed animals can induce microglial priming in the dentate gyrus, which is associated with a hyper-immune response to stress and impaired hippocampal neurogenesis. Remodeling the gut microbiome or inhibiting microglial priming may be strategies to reduce sensitivity to stress.


Assuntos
Depressão , Microbioma Gastrointestinal , Humanos , Camundongos , Masculino , Animais , Depressão/microbiologia , Microglia , Minociclina/farmacologia , RNA Ribossômico 16S , Camundongos Endogâmicos C57BL , Hipocampo , Neurogênese/fisiologia , Estresse Psicológico
12.
Brain Behav Immun ; 122: 353-367, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39187049

RESUMO

Chronic stress increases activity of the brain's innate immune system and impairs function of the medial prefrontal cortex (mPFC). However, whether acute stress triggers similar neuroimmune mechanisms is poorly understood. Across four studies, we used a Syrian hamster model to investigate whether acute stress drives changes in mPFC microglia in a time-, subregion-, and social status-dependent manner. We found that acute social defeat increased expression of ionized calcium binding adapter molecule 1 (Iba1) in the infralimbic (IL) and prelimbic (PL) and altered the morphology Iba1+ cells 1, 2, and 7 days after social defeat. We also investigated whether acute defeat induced tissue degeneration and reductions of synaptic plasticity 2 days post-defeat. We found that while social defeat increased deposition of cellular debris and reduced synaptophysin immunoreactivity in the PL and IL, treatment with minocycline protected against these cellular changes. Finally, we tested whether a reduced conditioned defeat response in dominant compared to subordinate hamsters was associated with changes in microglia reactivity in the IL and PL. We found that while subordinate hamsters and those without an established dominance relationships showed defeat-induced changes in morphology of Iba1+ cells and cellular degeneration, dominant hamsters showed resistance to these effects of social defeat. Taken together, these findings indicate that acute social defeat alters microglial morphology, increases markers of tissue degradation, and impairs structural integrity in the IL and PL, and that experience winning competitive interactions can specifically protect the IL and reduce stress vulnerability.


Assuntos
Mesocricetus , Microglia , Córtex Pré-Frontal , Predomínio Social , Estresse Psicológico , Animais , Microglia/metabolismo , Microglia/patologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Masculino , Estresse Psicológico/metabolismo , Cricetinae , Plasticidade Neuronal/fisiologia , Derrota Social , Minociclina/farmacologia
13.
Brain Behav Immun ; 119: 465-481, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552926

RESUMO

Microglia modulate synaptic refinement in the central nervous system (CNS). We have previously shown that a mouse model with innate high anxiety-related behavior (HAB) displays higher CD68+ microglia density in the key regions of anxiety circuits compared to mice with normal anxiety-related behavior (NAB) in males, and that minocycline treatment attenuated the enhanced anxiety of HAB male. Given that a higher prevalence of anxiety is widely reported in females compared to males, little is known concerning sex differences at the cellular level. Herein, we address this by analyzing microglia heterogeneity and function in the HAB and NAB brains of both sexes. Single-cell RNA sequencing revealed ten distinct microglia clusters varied by their frequency and gene expression profile. We report striking sex differences, especially in the major microglia clusters of HABs, indicating a higher expression of genes associated with phagocytosis and synaptic engulfment in the female compared to the male. On a functional level, we show that female HAB microglia engulfed a greater amount of hippocampal vGLUT1+ excitatory synapses compared to the male. We moreover show that female HAB microglia engulfed more synaptosomes compared to the male HAB in vitro. Due to previously reported effects of minocycline on microglia, we finally administered oral minocycline to HABs of both sexes and showed a significant reduction in the engulfment of synapses by female HAB microglia. In parallel to our microglia-specific findings, we further showed an anxiolytic effect of minocycline on female HABs, which is complementary to our previous findings in the male HABs. Our study, therefore, identifies the altered function of synaptic engulfment by microglia as a potential avenue to target and resolve microglia heterogeneity in mice with innate high anxiety.


Assuntos
Ansiedade , Microglia , Minociclina , Caracteres Sexuais , Animais , Minociclina/farmacologia , Microglia/metabolismo , Microglia/efeitos dos fármacos , Feminino , Ansiedade/metabolismo , Ansiedade/tratamento farmacológico , Masculino , Camundongos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Modelos Animais de Doenças , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Fagocitose/efeitos dos fármacos
14.
J Sex Med ; 21(9): 823-826, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39079058

RESUMO

BACKGROUND: 0.05% Chlorhexidine gluconate (CHG; Irrisept [IrriMax]) is a commercial wound irrigation solution approved by the Food and Drug Administration that has seen recent adoption in the field of prosthetic urology; however, no study has evaluated whether 0.05% CHG is compatible with the minocycline-rifampin-impregnated surface (InhibiZone) of the AMS 700 penile prosthesis (Boston Scientific). AIM: To evaluate whether 0.05% CHG alters the antibiotic efficacy of the minocycline-rifampin-impregnated penile prosthesis surface. METHODS: Discs (8 mm) were taken by a punch biopsy (Sklar) from sterile penile prosthesis reservoirs whose surfaces had been impregnated with rifampin and minocycline. Discs (n = 10) were suspended in 0.05% CHG, vancomycin and gentamicin, or normal saline for 2 minutes to simulate intraoperative irrigation. Discs were then rinsed in normal saline to remove any unbound solution and incubated with methicillin-sensitive Staphylococcus aureus for 48 hours. Adherent surface bacteria were suspended by shaking in a 0.3% Tween 20 solution, serially diluted, plated onto 3M PetriFilms, and counted. Kirby-Bauer disc diffusion assays were conducted to generalize findings across various organisms. OUTCOMES: Outcomes included (1) bacterial adherence to the implant surface measured as bacterial counts (in colony-forming units per milliliter) and (2) bacterial growth reduction measured as zones of inhibitions (in millimeters). RESULTS: Incubation of implant surfaces in 0.05% CHG did not alter recovered bacterial counts as compared with normal saline and vancomycin/gentamycin. Similarly, within a single bacterial species, 0.05% CHG and vancomycin/gentamycin did not alter zone-of-inhibition measurements in Kirby-Bauer disc diffusion studies. CLINICAL TRANSLATION: This study demonstrates in vitro that 0.05% CHG may be used directly on the minocycline-rifampin-impregnated surface without altering the antibiotic efficacy of the coating. STRENGTHS AND LIMITATIONS: Strengths include that this is the first study to evaluate if 0.05% CHG affected the minocycline-rifampin-impregnated surface. Limitations include the use of in vitro studies, which serve as a proxy for in vivo practices and may not be entirely accurate or translatable in a clinical setting. CONCLUSION: 0.05% CHG does not alter the antimicrobial activity of the minocycline-rifampin-impregnated surface as compared with vancomycin/gentamycin and normal saline in vitro; however, its efficacy in clinical practice remains to be evaluated.


Assuntos
Antibacterianos , Clorexidina , Minociclina , Prótese de Pênis , Rifampina , Clorexidina/análogos & derivados , Clorexidina/farmacologia , Clorexidina/administração & dosagem , Humanos , Minociclina/farmacologia , Minociclina/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Masculino , Rifampina/farmacologia , Rifampina/administração & dosagem , Irrigação Terapêutica/métodos , Gentamicinas/farmacologia , Gentamicinas/administração & dosagem , Vancomicina/farmacologia , Vancomicina/administração & dosagem , Staphylococcus aureus/efeitos dos fármacos , Anti-Infecciosos Locais/farmacologia , Anti-Infecciosos Locais/administração & dosagem
15.
Inflamm Res ; 73(10): 1727-1745, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39112649

RESUMO

OBJECTIVE: Ischemic stroke is a leading cause of death and disability in individuals worldwide. Cerebral ischemia-reperfusion injury (CIRI) typically results in severe secondary injury and complications following reperfusion therapy. Microglia play critical roles in the inflammatory reaction of CIRI. However, less attention has been given to microglial death in this process. Our study aims to explore microglial death in CIRI and the effects and mechanism of minocycline treatment on microglia. METHODS: A middle cerebral artery occlusion (MCAO) model was applied to induce CIRI in rats. At 0 h, 24 h and 48 h post-operation, rats were intraperitoneally injected with 45 mg/kg minocycline. Neurological deficit scoring, 2,3,5-triphenyltetrazolium chloride (TTC) staining, assessment of activated microglia and examination of mitochondrial structure were conducted and checked at 72 h after reperfusion. Additionally, an in vitro model of oxygen-glucose deprivation/reperfusion (OGD/R) model was established. BV-2 cells were treated with various pharmacological inhibitors of cell death or minocycline. Cell viability, lipid peroxidation, mitochondrial structure and function, and labile Fe2+ and ferroptosis-associated gene/protein levels were measured. Hemin was used for further validation after transcriptome analysis. RESULTS: In the MCAO and OGD/R models, ferroptosis was identified as a major form of microglial death. Minocycline inhibited microglia ferroptosis by reducing HO-1 expression. In addition, minocycline improved mitochondrial membrane potential, mitochondrial structures and microglial survival in vivo. Minocycline also decreased labile Fe2+ levels, lipid peroxidation, and expression of ferritin heavy chain (FTH) and it improved mitochondrial structure and function in vitro. Upregulation of HO-1 counteracted the protective effect of minocycline. CONCLUSION: Ferroptosis is a major form of microglial death in CIRI. The protective mechanism of minocycline in CIRI partially hinges on its ability to effectively ameliorate microglia ferroptosis by downregulating HO-1 expression. Consequently, targeting microglia ferroptosis is a promising treatment for CIRI.


Assuntos
Ferroptose , Infarto da Artéria Cerebral Média , Microglia , Minociclina , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Minociclina/farmacologia , Minociclina/uso terapêutico , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Ferroptose/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Masculino , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Camundongos , Ratos , Linhagem Celular , Heme Oxigenase-1/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Heme Oxigenase (Desciclizante)
16.
J Surg Res ; 301: 696-703, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39168042

RESUMO

INTRODUCTION: This study aimed to investigate whether the maternal administration of minocycline, a tetracycline antibiotic known to have anti-inflammatory and neuroprotective properties in models of neural injury, reduces inflammation and neural cell death in a fetal rat model of myelomeningocele (MMC). METHODS: E10 pregnant rats were gavaged with olive oil or olive oil + retinoic acid to induce fetal MMC. At E12, the dams were exposed to regular drinking water or water containing minocycline (range, 40-140 mg/kg/day). At E21, fetal lumbosacral spinal cords were isolated for immunohistochemistry and quantitative gene expression studies focused on microglia activity, inflammation, and apoptosis (P < 0.05). RESULTS: There was a trend toward decreased activated Iba1+ microglial cells within the dorsal spinal cord of MMC pups following minocycline exposure when compared to water (H2O) alone (P = 0.052). Prenatal minocycline exposure was correlated with significantly reduced expression of the proinflammatory cytokine, IL-6 (minocycline: 1.75 versus H2O: 3.52, P = 0.04) and apoptosis gene, Bax (minocycline: 0.71 versus H2O: 1.04, P < 0.001) among MMC pups. CONCLUSIONS: This study found evidence that the maternal administration of minocycline reduces selected markers of inflammation and apoptosis within the exposed dorsal spinal cords of fetal MMC rats. Further study of minocycline as a novel prenatal treatment strategy to mitigate spinal cord damage in MMC is warranted.


Assuntos
Modelos Animais de Doenças , Meningomielocele , Minociclina , Ratos Sprague-Dawley , Medula Espinal , Animais , Feminino , Minociclina/farmacologia , Minociclina/administração & dosagem , Gravidez , Meningomielocele/patologia , Ratos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia , Apoptose/efeitos dos fármacos , Terapias Fetais/métodos , Antibacterianos , Microglia/efeitos dos fármacos , Microglia/patologia , Microglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem
17.
Behav Pharmacol ; 35(1): 4-13, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38375658

RESUMO

Minocycline is a tetracycline antibiotic with off-label use as an anti-inflammatory drug. Because it can cross the blood-brain barrier, minocycline has been proposed as an alternative treatment for psychiatric disorders, in which inflammation plays an important role. However, its beneficial effects on anxiety disorders are unclear. Therefore, we performed a systematic review and meta-analysis to evaluate the efficacy of minocycline as an anxiolytic drug in preclinical models. We performed a PubMed search according to the PRISMA guidelines and PICOS strategy. The risk of bias was evaluated using the SYRCLE tool. We included studies that determined the efficacy of minocycline in animal models of anxiety that may involve exposures (e.g. stressors, immunomodulators, injury). Data extracted included treatment effect, dose range, route of administration, and potential mechanisms for the anxiolytic effect. Meta-analysis of twenty studies showed that minocycline reduced anxiety-like behavior in rodents previously exposed to stress or immunostimulants but not in exposure-naïve animals. This effect was not associated with the dose administered or treatment duration. The mechanism for the anxiolytic activity of minocycline may depend on its anti-inflammatory effects in the brain regions involving anxiety. These suggest that minocycline could be repurposed as a treatment for anxiety and related disorders and warrants further evaluation.


Assuntos
Ansiolíticos , Ansiedade , Modelos Animais de Doenças , Minociclina , Minociclina/farmacologia , Animais , Ansiolíticos/farmacologia , Camundongos , Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/tratamento farmacológico , Anti-Inflamatórios/farmacologia
18.
Behav Pharmacol ; 35(4): 211-226, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651984

RESUMO

Stimulation of the innate immune system prior to stress exposure is a possible strategy to prevent depression under stressful conditions. Based on the innate immune system stimulating activities of zymosan A, we hypothesize that zymosan A may prevent the development of chronic stress-induced depression-like behavior. Our results showed that a single injection of zymosan A 1 day before stress exposure at a dose of 2 or 4 mg/kg, but not at a dose of 1 mg/kg, prevented the development of depression-like behaviors in mice treated with chronic social defeat stress (CSDS). The prophylactic effect of a single zymosan A injection (2 mg/kg) on CSDS-induced depression-like behaviors disappeared when the time interval between zymosan A and stress exposure was extended from 1 day or 5 days to 10 days, which was rescued by a second zymosan A injection 10 days after the first zymosan A injection and 4 days (4×, once daily) of zymosan A injections 10 days before stress exposure. Further analysis showed that a single zymosan A injection (2 mg/kg) 1 day before stress exposure could prevent the CSDS-induced increase in pro-inflammatory cytokines in the hippocampus and prefrontal cortex. Inhibition of the innate immune system by pretreatment with minocycline (40 mg/kg) abolished the preventive effect of zymosan A on CSDS-induced depression-like behaviors and CSDS-induced increase in pro-inflammatory cytokines in the brain. These results suggest that activation of the innate immune system triggered by zymosan A prevents the depression-like behaviors and neuroinflammatory responses in the brain induced by chronic stress.


Assuntos
Depressão , Hipocampo , Estresse Psicológico , Zimosan , Animais , Zimosan/farmacologia , Camundongos , Estresse Psicológico/imunologia , Masculino , Depressão/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Citocinas/metabolismo , Comportamento Animal/efeitos dos fármacos , Derrota Social , Imunização/métodos , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/imunologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Minociclina/farmacologia , Relação Dose-Resposta a Droga
19.
Mol Biol Rep ; 51(1): 463, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551800

RESUMO

BACKGROUND: In women, breast cancer is the second most frequent type of cancer. Looking for new and effective cancer-specific therapies with little to no adverse effects on healthy cells is critical. OBJECTIVE: Minocycline, a second-generation tetracycline, has shown anticancer effects by targeting multiple pathways in various cancers. This study aimed to determine minocycline effects on the cell proliferation, apoptosis, and invasion of the human MCF-7 cells. METHODS: MTT assay was used to evaluate the cytotoxicity of minocycline on the cells. Flow cytometry was performed to investigate the induction of apoptosis and the cell cycle progression. The expression levels of apoptotic and migration proteins and genes were assessed by western blotting and qRT-PCR. The scratch test was performed to evaluate the anti-migration effect of the drug. RESULTS: The results indicated that the IC50 value of minocycline for MCF-7 cells was 36.10 µM. Minocycline treatment caused sub-G1 cell accumulation, indicating a significant apoptotic effect on the MCF-7 cells. Annexin-V/PI staining revealed a significant rise in early and late apoptotic cell percentages. Minocycline up-regulated Bax and Caspase-3 expression and down-regulated Bcl-2 and Pro-Cas3. The scratch test revealed significant anti-migration effects for minocycline. Furthermore, it caused down-regulation of MMP-2 and MMP-9 in a concentration-dependent method. CONCLUSION: These findings further confirmed the anticancer effect of minocycline and highlighted that minocycline maybe considered as potential therapeutic agent for breast cancer treatment.


Assuntos
Neoplasias da Mama , Minociclina , Feminino , Humanos , Células MCF-7 , Minociclina/farmacologia , Minociclina/uso terapêutico , Neoplasias da Mama/genética , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Apoptose , Proliferação de Células , Linhagem Celular Tumoral
20.
Anesth Analg ; 139(2): 411-419, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241681

RESUMO

BACKGROUND: The microglial activation has been implicated in cancer-induced bone pain. Recent studies have revealed that microglia mediate synaptic pruning in the central nervous system, where the cluster of differentiation 47-signal regulatory protein α (CD47-SIRPα) axis creates a "don't eat me" signal and elicits an antiphagocytic effect to protect synapses against elimination. To date, the synaptic phagocytosis in microglia has never been investigated in the murine cancer-induced bone pain model. The present experiments sought to explore whether microglia phagocytize synapses in mice with bone cancer pain as well as the possible mechanisms. METHODS: Male C3H/HeN mice were used to induce bone cancer pain. Minocycline and S-ketamine were injected into D14. The number of spontaneous flinches (NSF) and paw withdrawal mechanical thresholds (PWMT) were measured on D0, D4, D7, D10, D14, D21, and D28. Hematoxylin and eosin staining presented bone lesions. Western blotting examined the Gephyrin, CD47, and SIRPα expression. Flow cytometry evaluated the proportion of SIRPα + cells in the spine. Immunofluorescence and 3-dimensional reconstruction showed the Gephyrin puncta inside microglial lysosomes. RESULTS: Mice embedded with tumor cells induced persistent spontaneous pain and mechanical hyperalgesia. Hematoxylin and eosin staining revealed bone destruction and tumor infiltration in marrow cavities. Microglia underwent a responsive and proliferative burst (t = -16.831, P < .001). Western blotting manifested lowered Gephyrin expression in the tumor group (D4, D7, D10, D14, D21, and D28: P < .001). Immunofluorescence and 3-dimensional reconstruction showed larger volumes of Gephyrin puncta inside microglial lysosomes (t = -23.273, P < .001; t = -27.997, P < .001). Treatment with minocycline or S-ketamine exhibited pain relief and antiphagocytic effects (t = -6.191, P < .001, t = -7.083, P < .001; t = -20.767, P < .001, t = -17.080, P < .001; t = 11.789, P < .001, t = 16.777, P < .001; t = 8.868, P < .001, t = 21.319, P < .001). Last but not least, the levels of CD47 and SIRPα proteins were downregulated (D10: P = .004, D14, D21, and D28: P < .001; D10, D14, D21, and D28: P < .001). Flow cytometry and immunofluorescence substantiated reduced microglial SIRPα (t = 11.311, P < .001; t = 12.189, P < .001). CONCLUSIONS: Microglia-mediated GABAergic synapse pruning in the spinal cord dorsal horn in bone cancer pain mice, which might be associated with the declined CD47-SIRPα signal. Our research uncovered an innovative mechanism that highlighted microglia-mediated synaptic phagocytosis in a murine cancer-induced bone pain model.


Assuntos
Neoplasias Ósseas , Antígeno CD47 , Dor do Câncer , Modelos Animais de Doenças , Camundongos Endogâmicos C3H , Microglia , Fagocitose , Receptores Imunológicos , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Masculino , Fagocitose/efeitos dos fármacos , Dor do Câncer/metabolismo , Dor do Câncer/etiologia , Dor do Câncer/fisiopatologia , Neoplasias Ósseas/complicações , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Camundongos , Receptores Imunológicos/metabolismo , Antígeno CD47/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/patologia , Sinapses/metabolismo , Minociclina/farmacologia , Comportamento Animal/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA