RESUMO
Muscle spasticity after nervous system injuries and painful low back spasm affect more than 10% of global population. Current medications are of limited efficacy and cause neurological and cardiovascular side effects because they target upstream regulators of muscle contraction. Direct myosin inhibition could provide optimal muscle relaxation; however, targeting skeletal myosin is particularly challenging because of its similarity to the cardiac isoform. We identified a key residue difference between these myosin isoforms, located in the communication center of the functional regions, which allowed us to design a selective inhibitor, MPH-220. Mutagenic analysis and the atomic structure of MPH-220-bound skeletal muscle myosin confirmed the mechanism of specificity. Targeting skeletal muscle myosin by MPH-220 enabled muscle relaxation, in human and model systems, without cardiovascular side effects and improved spastic gait disorders after brain injury in a disease model. MPH-220 provides a potential nervous-system-independent option to treat spasticity and muscle stiffness.
Assuntos
Músculo Esquelético/metabolismo , Miosinas de Músculo Esquelético/efeitos dos fármacos , Miosinas de Músculo Esquelético/genética , Adulto , Animais , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Linhagem Celular , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Masculino , Camundongos , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Espasticidade Muscular/genética , Espasticidade Muscular/fisiopatologia , Músculo Esquelético/fisiologia , Miosinas/efeitos dos fármacos , Miosinas/genética , Miosinas/metabolismo , Isoformas de Proteínas , Ratos , Ratos Wistar , Miosinas de Músculo Esquelético/metabolismoRESUMO
The thick filament is a key component of sarcomeres, the basic units of striated muscle1. Alterations in thick filament proteins are associated with familial hypertrophic cardiomyopathy and other heart and muscle diseases2. Despite the central importance of the thick filament, its molecular organization remains unclear. Here we present the molecular architecture of native cardiac sarcomeres in the relaxed state, determined by cryo-electron tomography. Our reconstruction of the thick filament reveals the three-dimensional organization of myosin, titin and myosin-binding protein C (MyBP-C). The arrangement of myosin molecules is dependent on their position along the filament, suggesting specialized capacities in terms of strain susceptibility and force generation. Three pairs of titin-α and titin-ß chains run axially along the filament, intertwining with myosin tails and probably orchestrating the length-dependent activation of the sarcomere. Notably, whereas the three titin-α chains run along the entire length of the thick filament, titin-ß chains do not. The structure also demonstrates that MyBP-C bridges thin and thick filaments, with its carboxy-terminal region binding to the myosin tails and directly stabilizing the OFF state of the myosin heads in an unforeseen manner. These results provide a foundation for future research investigating muscle disorders involving sarcomeric components.
Assuntos
Miosinas Cardíacas , Miocárdio , Sarcômeros , Conectina/química , Conectina/metabolismo , Conectina/ultraestrutura , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Miocárdio/química , Miocárdio/citologia , Miocárdio/ultraestrutura , Sarcômeros/química , Sarcômeros/metabolismo , Sarcômeros/ultraestrutura , Miosinas Cardíacas/química , Miosinas Cardíacas/metabolismo , Miosinas Cardíacas/ultraestruturaRESUMO
Pumping of the heart is powered by filaments of the motor protein myosin that pull on actin filaments to generate cardiac contraction. In addition to myosin, the filaments contain cardiac myosin-binding protein C (cMyBP-C), which modulates contractility in response to physiological stimuli, and titin, which functions as a scaffold for filament assembly1. Myosin, cMyBP-C and titin are all subject to mutation, which can lead to heart failure. Despite the central importance of cardiac myosin filaments to life, their molecular structure has remained a mystery for 60 years2. Here we solve the structure of the main (cMyBP-C-containing) region of the human cardiac filament using cryo-electron microscopy. The reconstruction reveals the architecture of titin and cMyBP-C and shows how myosin's motor domains (heads) form three different types of motif (providing functional flexibility), which interact with each other and with titin and cMyBP-C to dictate filament architecture and function. The packing of myosin tails in the filament backbone is also resolved. The structure suggests how cMyBP-C helps to generate the cardiac super-relaxed state3; how titin and cMyBP-C may contribute to length-dependent activation4; and how mutations in myosin and cMyBP-C might disturb interactions, causing disease5,6. The reconstruction resolves past uncertainties and integrates previous data on cardiac muscle structure and function. It provides a new paradigm for interpreting structural, physiological and clinical observations, and for the design of potential therapeutic drugs.
Assuntos
Miosinas Cardíacas , Microscopia Crioeletrônica , Miocárdio , Humanos , Miosinas Cardíacas/química , Miosinas Cardíacas/metabolismo , Miosinas Cardíacas/ultraestrutura , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Transporte/ultraestrutura , Conectina/química , Conectina/metabolismo , Conectina/ultraestrutura , Miocárdio/química , Miocárdio/ultraestruturaRESUMO
Bicuspid aortic valve (BAV) is the most common congenital heart lesion with an estimated population prevalence of 1%. We hypothesize that specific gene variants predispose to early-onset complications of BAV (EBAV). We analyzed whole-exome sequences (WESs) to identify rare coding variants that contribute to BAV disease in 215 EBAV-affected families. Predicted damaging variants in candidate genes with moderate or strong supportive evidence to cause developmental cardiac phenotypes were present in 107 EBAV-affected families (50% of total), including genes that cause BAV (9%) or heritable thoracic aortic disease (HTAD, 19%). After appropriate filtration, we also identified 129 variants in 54 candidate genes that are associated with autosomal-dominant congenital heart phenotypes, including recurrent deleterious variation of FBN2, MYH6, channelopathy genes, and type 1 and 5 collagen genes. These findings confirm our hypothesis that unique rare genetic variants drive early-onset presentations of BAV disease.
Assuntos
Valva Aórtica , Doença da Válvula Aórtica Bicúspide , Sequenciamento do Exoma , Doenças das Valvas Cardíacas , Linhagem , Humanos , Doença da Válvula Aórtica Bicúspide/genética , Doença da Válvula Aórtica Bicúspide/patologia , Valva Aórtica/anormalidades , Valva Aórtica/patologia , Doenças das Valvas Cardíacas/genética , Masculino , Feminino , Predisposição Genética para Doença , Idade de Início , Fenótipo , Exoma/genética , Adulto , Cadeias Pesadas de Miosina/genética , Fibrilina-2/genética , Miosinas Cardíacas/genéticaRESUMO
BACKGROUND: One of the major determinants of exercise intolerance and limiting symptoms among patients with obstructive hypertrophic cardiomyopathy (HCM) is an elevated intracardiac pressure resulting from left ventricular outflow tract obstruction. Aficamten is an oral selective cardiac myosin inhibitor that reduces left ventricular outflow tract gradients by mitigating cardiac hypercontractility. METHODS: In this phase 3, double-blind trial, we randomly assigned adults with symptomatic obstructive HCM to receive aficamten (starting dose, 5 mg; maximum dose, 20 mg) or placebo for 24 weeks, with dose adjustment based on echocardiography results. The primary end point was the change from baseline to week 24 in the peak oxygen uptake as assessed by cardiopulmonary exercise testing. The 10 prespecified secondary end points (tested hierarchically) were change in the Kansas City Cardiomyopathy Questionnaire clinical summary score (KCCQ-CSS), improvement in the New York Heart Association (NYHA) functional class, change in the pressure gradient after the Valsalva maneuver, occurrence of a gradient of less than 30 mm Hg after the Valsalva maneuver, and duration of eligibility for septal reduction therapy (all assessed at week 24); change in the KCCQ-CSS, improvement in the NYHA functional class, change in the pressure gradient after the Valsalva maneuver, and occurrence of a gradient of less than 30 mm Hg after the Valsalva maneuver (all assessed at week 12); and change in the total workload as assessed by cardiopulmonary exercise testing at week 24. RESULTS: A total of 282 patients underwent randomization: 142 to the aficamten group and 140 to the placebo group. The mean age was 59.1 years, 59.2% were men, the baseline mean resting left ventricular outflow tract gradient was 55.1 mm Hg, and the baseline mean left ventricular ejection fraction was 74.8%. At 24 weeks, the mean change in the peak oxygen uptake was 1.8 ml per kilogram per minute (95% confidence interval [CI], 1.2 to 2.3) in the aficamten group and 0.0 ml per kilogram per minute (95% CI, -0.5 to 0.5) in the placebo group (least-squares mean between-group difference, 1.7 ml per kilogram per minute; 95% CI, 1.0 to 2.4; P<0.001). The results for all 10 secondary end points were significantly improved with aficamten as compared with placebo. The incidence of adverse events appeared to be similar in the two groups. CONCLUSIONS: Among patients with symptomatic obstructive HCM, treatment with aficamten resulted in a significantly greater improvement in peak oxygen uptake than placebo. (Funded by Cytokinetics; SEQUOIA-HCM ClinicalTrials.gov number, NCT05186818.).
Assuntos
Cardiomiopatia Hipertrófica , Fármacos Cardiovasculares , Teste de Esforço , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Benzilaminas , Miosinas Cardíacas/antagonistas & inibidores , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/fisiopatologia , Método Duplo-Cego , Tolerância ao Exercício/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Uracila/análogos & derivados , Manobra de Valsalva , Obstrução do Fluxo Ventricular Externo/tratamento farmacológico , Obstrução do Fluxo Ventricular Externo/fisiopatologia , Obstrução do Fluxo Ventricular Externo/etiologia , Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/uso terapêutico , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia , Administração OralRESUMO
Determining the pathogenicity of hypertrophic cardiomyopathy-associated mutations in the ß-myosin heavy chain (MYH7) can be challenging due to its variable penetrance and clinical severity. This study investigates the early pathogenic effects of the incomplete-penetrant MYH7 G256E mutation on myosin function that may trigger pathogenic adaptations and hypertrophy. We hypothesized that the G256E mutation would alter myosin biomechanical function, leading to changes in cellular functions. We developed a collaborative pipeline to characterize myosin function across protein, myofibril, cell, and tissue levels to determine the multiscale effects on structure-function of the contractile apparatus and its implications for gene regulation and metabolic state. The G256E mutation disrupts the transducer region of the S1 head and reduces the fraction of myosin in the folded-back state by 33%, resulting in more myosin heads available for contraction. Myofibrils from gene-edited MYH7WT/G256E human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) exhibited greater and faster tension development. This hypercontractile phenotype persisted in single-cell hiPSC-CMs and engineered heart tissues. We demonstrated consistent hypercontractile myosin function as a primary consequence of the MYH7 G256E mutation across scales, highlighting the pathogenicity of this gene variant. Single-cell transcriptomic and metabolic profiling demonstrated upregulated mitochondrial genes and increased mitochondrial respiration, indicating early bioenergetic alterations. This work highlights the benefit of our multiscale platform to systematically evaluate the pathogenicity of gene variants at the protein and contractile organelle level and their early consequences on cellular and tissue function. We believe this platform can help elucidate the genotype-phenotype relationships underlying other genetic cardiovascular diseases.
Assuntos
Miosinas Cardíacas , Cardiomiopatia Hipertrófica , Células-Tronco Pluripotentes Induzidas , Contração Miocárdica , Miócitos Cardíacos , Cadeias Pesadas de Miosina , Humanos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Contração Miocárdica/genética , Mutação , Mitocôndrias/metabolismo , Mitocôndrias/genética , Miofibrilas/metabolismo , Respiração Celular/genéticaRESUMO
Cardiac myosin-specific (MyHC) T cells drive the disease pathogenesis of immune checkpoint inhibitor-associated myocarditis (ICI-myocarditis). To determine whether MyHC T cells are tissue-resident memory T (TRM) cells, we characterized cardiac TRM cells in naive mice and established that they have a distinct phenotypic and transcriptional profile that can be defined by their upregulation of CD69, PD-1, and CXCR6. We then investigated the effects of cardiac injury through a modified experimental autoimmune myocarditis mouse model and an ischemia-reperfusion injury mouse model and determined that cardiac inflammation induces the recruitment of autoreactive MyHC TRM cells, which coexpress PD-1 and CD69. To investigate whether the recruited MyHC TRM cells could increase susceptibility to ICI-myocarditis, we developed a two-hit ICI-myocarditis mouse model where cardiac injury was induced, mice were allowed to recover, and then were treated with anti-PD-1 antibodies. We determined that mice who recover from cardiac injury are more susceptible to ICI-myocarditis development. We found that murine and human TRM cells share a similar location in the heart and aggregate along the perimyocardium. We phenotyped cells obtained from pericardial fluid from patients diagnosed with dilated cardiomyopathy and ischemic cardiomyopathy and established that pericardial T cells are predominantly CD69+ TRM cells that up-regulate PD-1. Finally, we determined that human pericardial macrophages produce IL-15, which supports and maintains pericardial TRM cells.
Assuntos
Inibidores de Checkpoint Imunológico , Células T de Memória , Miocardite , Animais , Miocardite/imunologia , Miocardite/patologia , Miocardite/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos , Humanos , Células T de Memória/imunologia , Células T de Memória/metabolismo , Modelos Animais de Doenças , Masculino , Receptor de Morte Celular Programada 1/metabolismo , Miosinas Cardíacas/imunologia , Miosinas Cardíacas/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígenos de Diferenciação de Linfócitos T/imunologia , Camundongos Endogâmicos C57BL , Lectinas Tipo C/metabolismo , Feminino , Miosinas/metabolismo , Miocárdio/imunologia , Miocárdio/patologia , Miocárdio/metabolismo , Antígenos CDRESUMO
Patent ductus arteriosus (PDA) is a common form of congenital heart disease. The MYH6 gene has important effects on cardiovascular growth and development, but the effect of variants in the MYH6 gene promoter on ductus arteriosus is unknown. DNA was extracted from blood samples of 721 subjects (428 patients with isolated and sporadic PDA and 293 healthy controls) and analyzed by sequencing for MYH6 gene promoter region variants. Cellular function experiments with three cell lines (HEK-293, HL-1, and H9C2 cells) and bioinformatics analyses were performed to verify their effects on gene expression. In the MYH6 gene promoter, 11 variants were identified. Four variants were found only in patients with PDA and 2 of them (g.3434G>C and g.4524C>T) were novel. Electrophoretic mobility shift assay showed that the transcription factors bound by the promoter variants were significantly altered in comparison to the wild-type in all three cell lines. Dual luciferase reporter showed that all the 4 variants reduced the transcriptional activity of the MYH6 gene promoter (P < 0.05). Prediction of transcription factors bound by the variants indicated that these variants alter the transcription factor binding sites. These pathological alterations most likely affect the contraction of the smooth muscle of ductus arteriosus, leading to PDA. This study is the first to focus on variants at the promoter region of the MYH6 gene in PDA patients with cellular function tests. Therefore, this study provides new insights to understand the genetic basis and facilitates further studies on the mechanism of PDA formation.
Assuntos
Miosinas Cardíacas , Permeabilidade do Canal Arterial , Cadeias Pesadas de Miosina , Regiões Promotoras Genéticas , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Miosinas Cardíacas/genética , Estudos de Casos e Controles , Linhagem Celular , Permeabilidade do Canal Arterial/genética , Permeabilidade do Canal Arterial/patologia , Células HEK293 , Cadeias Pesadas de Miosina/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Autoimmunity significantly contributes to the pathogenesis of myocarditis, underscored by its increased frequency in autoimmune diseases such as systemic lupus erythematosus and polymyositis. Even in cases of myocarditis caused by viral infections, dysregulated immune responses contribute to pathogenesis. However, whether triggered by existing autoimmune conditions or viral infections, the precise antigens and immunologic pathways driving myocarditis remain incompletely understood. The emergence of myocarditis associated with immune checkpoint inhibitor therapy, commonly used for treating cancer, has afforded an opportunity to understand autoimmune mechanisms in myocarditis, with autoreactive T cells specific for cardiac myosin playing a pivotal role. Despite their self-antigen recognition, cardiac myosin-specific T cells can be present in healthy individuals due to bypassing the thymic selection stage. In recent studies, novel modalities in suppressing the activity of pathogenic T cells including cardiac myosin-specific T cells have proven effective in treating autoimmune myocarditis. This review offers an overview of the current understanding of heart antigens, autoantibodies, and immune cells as the autoimmune mechanisms underlying various forms of myocarditis, along with the latest updates on clinical management and prospects for future research.
Assuntos
Doenças Autoimunes , Miocardite , Miocardite/imunologia , Miocardite/terapia , Miocardite/etiologia , Humanos , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Doenças Autoimunes/tratamento farmacológico , Animais , Autoanticorpos/imunologia , Autoimunidade , Linfócitos T/imunologia , Autoantígenos/imunologia , Miosinas Cardíacas/imunologiaRESUMO
Resistance to inhibitors of cholinesterases (ric-8 proteins) are involved in modulating G-protein function, but little is known of their potential physiological importance in the heart. In the present study, we assessed the role of resistance to inhibitors of cholinesterase 8b (Ric-8b) in determining cardiac contractile function. We developed a murine model in which it was possible to conditionally delete ric-8b in cardiac tissue in the adult animal after the addition of tamoxifen. Deletion of ric-8b led to severely reduced contractility as measured using echocardiography days after administration of tamoxifen. Histological analysis of the ventricular tissue showed highly variable myocyte size, prominent fibrosis, and an increase in cellular apoptosis. RNA sequencing revealed transcriptional remodeling in response to cardiac ric-8b deletion involving the extracellular matrix and inflammation. Phosphoproteomic analysis revealed substantial downregulation of phosphopeptides related to myosin light chain 2. At the cellular level, the deletion of ric-8b led to loss of activation of the L-type calcium channel through the ß-adrenergic pathways. Using fluorescence resonance energy transfer-based assays, we showed ric-8b protein selectively interacts with the stimulatory G-protein, Gαs. We explored if deletion of Gnas (the gene encoding Gαs) in cardiac tissue using a similar approach in the mouse led to an equivalent phenotype. The conditional deletion of the Gαs gene in the ventricle led to comparable effects on contractile function and cardiac histology. We conclude that ric-8b is essential to preserve cardiac contractile function likely through an interaction with the stimulatory G-protein and downstream phosphorylation of myosin light chain 2.
Assuntos
Contração Miocárdica , Animais , Camundongos , Contração Miocárdica/efeitos dos fármacos , Cadeias Leves de Miosina/metabolismo , Cadeias Leves de Miosina/genética , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/genética , Miosinas Cardíacas/metabolismo , Miosinas Cardíacas/genética , Miocárdio/metabolismo , Miocárdio/patologia , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Humanos , Inibidores da Colinesterase/farmacologia , Masculino , Apoptose/efeitos dos fármacos , Fatores de Troca do Nucleotídeo GuaninaRESUMO
BACKGROUND: Familial hypertrophic cardiomyopathy has severe clinical complications of heart failure, arrhythmia, and sudden cardiac death. Heterozygous single nucleotide variants (SNVs) of sarcomere genes such as MYH7 are the leading cause of this type of disease. CRISPR-Cas13 (clustered regularly interspaced short palindromic repeats and their associated protein 13) is an emerging gene therapy approach for treating genetic disorders, but its therapeutic potential in genetic cardiomyopathy remains unexplored. METHODS: We developed a sensitive allelic point mutation reporter system to screen the mutagenic variants of Cas13d. On the basis of Cas13d homology structure, we rationally designed a series of Cas13d variants and obtained a high-precision Cas13d variant (hpCas13d) that specifically cleaves the MYH7 variant RNAs containing 1 allelic SNV. We validated the high precision and low collateral cleavage activity of hpCas13d through various in vitro assays. We generated 2 HCM mouse models bearing distinct MYH7 SNVs and used adenovirus-associated virus serotype 9 to deliver hpCas13d specifically to the cardiomyocytes. We performed a large-scale library screening to assess the potency of hpCas13d in resolving 45 human MYH7 allelic pathogenic SNVs. RESULTS: Wild-type Cas13d cannot distinguish and specifically cleave the heterozygous MYH7 allele with SNV. hpCas13d, with 3 amino acid substitutions, had minimized collateral RNase activity and was able to resolve various human MYH7 pathological sequence variations that cause hypertrophic cardiomyopathy. In vivo application of hpCas13d to 2 hypertrophic cardiomyopathy models caused by distinct human MYH7 analogous sequence variations specifically suppressed the altered allele and prevented cardiac hypertrophy. CONCLUSIONS: Our study unveils the great potential of CRISPR-Cas nucleases with high precision in treating inheritable cardiomyopathy and opens a new avenue for therapeutic management of inherited cardiac diseases.
Assuntos
Sistemas CRISPR-Cas , Miosinas Cardíacas , Cardiomiopatia Hipertrófica , Cadeias Pesadas de Miosina , Animais , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/terapia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Camundongos , Humanos , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Alelos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Modelos Animais de Doenças , Terapia Genética/métodosRESUMO
In this study, we investigated the role of the super-relaxed (SRX) state of myosin in the structure-function relationship of sarcomeres in the hearts of mouse models of cardiomyopathy-bearing mutations in the human ventricular regulatory light chain (RLC, MYL2 gene). Skinned papillary muscles from hypertrophic (HCM-D166V) and dilated (DCM-D94A) cardiomyopathy models were subjected to small-angle X-ray diffraction simultaneously with isometric force measurements to obtain the interfilament lattice spacing and equatorial intensity ratios (I11/I10) together with the force-pCa relationship over a full range of [Ca2+] and at a sarcomere length of 2.1 µm. In parallel, we studied the effect of mutations on the ATP-dependent myosin energetic states. Compared with wild-type (WT) and DCM-D94A mice, HCM-D166V significantly increased the Ca2+ sensitivity of force and left shifted the I11/I10-pCa relationship, indicating an apparent movement of HCM-D166V cross-bridges closer to actin-containing thin filaments, thereby allowing for their premature Ca2+ activation. The HCM-D166V model also disrupted the SRX state and promoted an SRX-to-DRX (super-relaxed to disordered relaxed) transition that correlated with an HCM-linked phenotype of hypercontractility. While this dysregulation of SRX â DRX equilibrium was consistent with repositioning of myosin motors closer to the thin filaments and with increased force-pCa dependence for HCM-D166V, the DCM-D94A model favored the energy-conserving SRX state, but the structure/function-pCa data were similar to WT. Our results suggest that the mutation-induced redistribution of myosin energetic states is one of the key mechanisms contributing to the development of complex clinical phenotypes associated with human HCM-D166V and DCM-D94A mutations.
Assuntos
Miosinas Cardíacas/genética , Cardiomiopatias/metabolismo , Cadeias Leves de Miosina/genética , Actinas/metabolismo , Animais , Miosinas Cardíacas/metabolismo , Cardiomiopatias/genética , Cardiomiopatia Hipertrófica/genética , Modelos Animais de Doenças , Feminino , Humanos , Hipertrofia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Contração Miocárdica/genética , Cadeias Leves de Miosina/metabolismo , Miosinas/metabolismo , Miosinas/fisiologia , Fenótipo , Fosforilação , Sarcômeros/metabolismo , Relação Estrutura-Atividade , Difração de Raios X/métodosRESUMO
Phenotypic changes to endometrial epithelial cells underpin receptivity to embryo implantation at the onset of pregnancy but the effect of hyperglycemia on these processes remains poorly understood. Here, we show that physiological levels of glucose (5 mM) abolished receptivity in the endometrial epithelial cell line, Ishikawa. However, embryo attachment was supported by 17 mM glucose as a result of glucose flux through the hexosamine biosynthetic pathway (HBP) and modulation of cell function via protein O-GlcNAcylation. Pharmacological inhibition of HBP or protein O-GlcNAcylation reduced embryo attachment in cocultures at 17 mM glucose. Mass spectrometry analysis of the O-GlcNAcylated proteome in Ishikawa cells revealed that myosin phosphatase target subunit 1 (MYPT1) is more highly O-GlcNAcylated in 17 mM glucose, correlating with loss of its target protein, phospho-myosin light chain 2, from apical cell junctions of polarized epithelium. Two-dimensional (2-D) and three-dimensional (3-D) morphologic analysis demonstrated that the higher glucose level attenuates epithelial polarity through O-GlcNAcylation. Inhibition of Rho (ras homologous)A-associated kinase (ROCK) or myosin II led to reduced polarity and enhanced receptivity in cells cultured in 5 mM glucose, consistent with data showing that MYPT1 acts downstream of ROCK signaling. These data implicate regulation of endometrial epithelial polarity through RhoA signaling upstream of actomyosin contractility in the acquisition of endometrial receptivity. Glucose levels impinge on this pathway through O-GlcNAcylation of MYPT1, which may impact endometrial receptivity to an implanting embryo in women with diabetes.NEW & NOTEWORTHY Understanding how glucose regulates endometrial function will support preconception guidance and/or the development of targeted interventions for individuals living with diabetes wishing to embark on pregnancy. We found that glucose can influence endometrial epithelial cell receptivity to embryo implantation by regulating posttranslational modification of proteins involved in the maintenance of cell polarity. Impaired or inappropriate endometrial receptivity could contribute to fertility and/or early pregnancy complications caused by poor glucose control.
Assuntos
Citoesqueleto , Implantação do Embrião , Endométrio , Glucose , Fosfatase de Miosina-de-Cadeia-Leve , Feminino , Implantação do Embrião/fisiologia , Humanos , Endométrio/metabolismo , Glucose/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Citoesqueleto/metabolismo , Quinases Associadas a rho/metabolismo , Células Epiteliais/metabolismo , Cadeias Leves de Miosina/metabolismo , Animais , Gravidez , Acetilglucosamina/metabolismo , Glicosilação , Polaridade Celular/fisiologia , Hexosaminas/metabolismo , Hexosaminas/biossíntese , Miosinas CardíacasRESUMO
Myosin heavy chain 7b (MYH7b) is an evolutionarily ancient member of the sarcomeric myosin family, which typically supports striated muscle function. However, in mammals, alternative splicing prevents MYH7b protein production in cardiac and most skeletal muscles and limits expression to a subset of specialized muscles and certain nonmuscle environments. In contrast, MYH7b protein is abundant in python cardiac and skeletal muscles. Although the MYH7b expression pattern diverges in mammals versus reptiles, MYH7b shares high sequence identity across species. So, it remains unclear how mammalian MYH7b function may differ from that of other sarcomeric myosins and whether human and python MYH7b motor functions diverge as their expression patterns suggest. Thus, we generated recombinant human and python MYH7b protein and measured their motor properties to investigate any species-specific differences in activity. Our results reveal that despite having similar working strokes, the MYH7b isoforms have slower actin-activated ATPase cycles and actin sliding velocities than human cardiac ß-MyHC. Furthermore, python MYH7b is tuned to have slower motor activity than human MYH7b because of slower kinetics of the chemomechanical cycle. We found that the MYH7b isoforms adopt a higher proportion of myosin heads in the ultraslow, super-relaxed state compared with human cardiac ß-MyHC. These findings are supported by molecular dynamics simulations that predict MYH7b preferentially occupies myosin active site conformations similar to those observed in the structurally inactive state. Together, these results suggest that MYH7b is specialized for slow and energy-conserving motor activity and that differential tuning of MYH7b orthologs contributes to species-specific biological roles.
Assuntos
Miosinas Cardíacas , Músculo Esquelético , Cadeias Pesadas de Miosina , Animais , Humanos , Mamíferos/metabolismo , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismoRESUMO
BACKGROUND: Cardiac-specific myosin light chain kinase (cMLCK), encoded by MYLK3, regulates cardiac contractility through phosphorylation of ventricular myosin regulatory light chain. However, the pathophysiological and therapeutic implications of cMLCK in human heart failure remain unclear. We aimed to investigate whether cMLCK dysregulation causes cardiac dysfunction and whether the restoration of cMLCK could be a novel myotropic therapy for systolic heart failure. METHODS: We generated the knock-in mice (Mylk3+/fs and Mylk3fs/fs) with a familial dilated cardiomyopathy-associated MYLK3 frameshift mutation (MYLK3+/fs) that had been identified previously by us (c.1951-1G>T; p.P639Vfs*15) and the human induced pluripotent stem cell-derived cardiomyocytes from the carrier of the mutation. We also developed a new small-molecule activator of cMLCK (LEUO-1154). RESULTS: Both mice (Mylk3+/fs and Mylk3fs/fs) showed reduced cMLCK expression due to nonsense-mediated messenger RNA decay, reduced MLC2v (ventricular myosin regulatory light chain) phosphorylation in the myocardium, and systolic dysfunction in a cMLCK dose-dependent manner. Consistent with this result, myocardium from the mutant mice showed an increased ratio of cardiac superrelaxation/disordered relaxation states that may contribute to impaired cardiac contractility. The phenotypes observed in the knock-in mice were rescued by cMLCK replenishment through the AAV9_MYLK3 vector. Human induced pluripotent stem cell-derived cardiomyocytes with MYLK3+/fs mutation reduced cMLCK expression by 50% and contractile dysfunction, accompanied by an increased superrelaxation/disordered relaxation ratio. CRISPR-mediated gene correction, or cMLCK replenishment by AAV9_MYLK3 vector, successfully recovered cMLCK expression, the superrelaxation/disordered relaxation ratio, and contractile dysfunction. LEUO-1154 increased human cMLCK activity ≈2-fold in the Vmax for ventricular myosin regulatory light chain phosphorylation without affecting the Km. LEUO-1154 treatment of human induced pluripotent stem cell-derived cardiomyocytes with MYLK3+/fs mutation restored the ventricular myosin regulatory light chain phosphorylation level and superrelaxation/disordered relaxation ratio and improved cardiac contractility without affecting calcium transients, indicating that the cMLCK activator acts as a myotrope. Finally, human myocardium from advanced heart failure with a wide variety of causes had a significantly lower MYLK3/PPP1R12B messenger RNA expression ratio than control hearts, suggesting an altered balance between myosin regulatory light chain kinase and phosphatase in the failing myocardium, irrespective of the causes. CONCLUSIONS: cMLCK dysregulation contributes to the development of cardiac systolic dysfunction in humans. Our strategy to restore cMLCK activity could form the basis of a novel myotropic therapy for advanced systolic heart failure.
Assuntos
Insuficiência Cardíaca Sistólica , Células-Tronco Pluripotentes Induzidas , Humanos , Camundongos , Animais , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Fosforilação , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Contração Miocárdica/fisiologia , RNA Mensageiro/genética , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismoRESUMO
'Genome-first' approaches to analyzing rare variants can reveal new insights into human biology and disease. Because pathogenic variants are often rare, new discovery requires aggregating rare coding variants into 'gene burdens' for sufficient power. However, a major challenge is deciding which variants to include in gene burden tests. Pathogenic variants in MYBPC3 and MYH7 are well-known causes of hypertrophic cardiomyopathy (HCM), and focusing on these 'positive control' genes in a genome-first approach could help inform variant selection methods and gene burdening strategies for other genes and diseases. Integrating exome sequences with electronic health records among 41 759 participants in the Penn Medicine BioBank, we evaluated the performance of aggregating predicted loss-of-function (pLOF) and/or predicted deleterious missense (pDM) variants in MYBPC3 and MYH7 for gene burden phenome-wide association studies (PheWAS). The approach to grouping rare variants for these two genes produced very different results: pLOFs but not pDM variants in MYBPC3 were strongly associated with HCM, whereas the opposite was true for MYH7. Detailed review of clinical charts revealed that only 38.5% of patients with HCM diagnoses carrying an HCM-associated variant in MYBPC3 or MYH7 had a clinical genetic test result. Additionally, 26.7% of MYBPC3 pLOF carriers without HCM diagnoses had clear evidence of left atrial enlargement and/or septal/LV hypertrophy on echocardiography. Our study shows the importance of evaluating both pLOF and pDM variants for gene burden testing in future studies to uncover novel gene-disease relationships and identify new pathogenic loss-of-function variants across the human genome through genome-first analyses of healthcare-based populations.
Assuntos
Miosinas Cardíacas , Cardiomiopatia Hipertrófica , Bancos de Espécimes Biológicos , Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Proteínas do Citoesqueleto/genética , Humanos , Mutação , Cadeias Pesadas de Miosina/genéticaRESUMO
BACKGROUND: The selective cardiac myosin activator omecamtiv mecarbil has been shown to improve cardiac function in patients with heart failure with a reduced ejection fraction. Its effect on cardiovascular outcomes is unknown. METHODS: We randomly assigned 8256 patients (inpatients and outpatients) with symptomatic chronic heart failure and an ejection fraction of 35% or less to receive omecamtiv mecarbil (using pharmacokinetic-guided doses of 25 mg, 37.5 mg, or 50 mg twice daily) or placebo, in addition to standard heart-failure therapy. The primary outcome was a composite of a first heart-failure event (hospitalization or urgent visit for heart failure) or death from cardiovascular causes. RESULTS: During a median of 21.8 months, a primary-outcome event occurred in 1523 of 4120 patients (37.0%) in the omecamtiv mecarbil group and in 1607 of 4112 patients (39.1%) in the placebo group (hazard ratio, 0.92; 95% confidence interval [CI], 0.86 to 0.99; P = 0.03). A total of 808 patients (19.6%) and 798 patients (19.4%), respectively, died from cardiovascular causes (hazard ratio, 1.01; 95% CI, 0.92 to 1.11). There was no significant difference between groups in the change from baseline on the Kansas City Cardiomyopathy Questionnaire total symptom score. At week 24, the change from baseline for the median N-terminal pro-B-type natriuretic peptide level was 10% lower in the omecamtiv mecarbil group than in the placebo group; the median cardiac troponin I level was 4 ng per liter higher. The frequency of cardiac ischemic and ventricular arrhythmia events was similar in the two groups. CONCLUSIONS: Among patients with heart failure and a reduced ejection, those who received omecamtiv mecarbil had a lower incidence of a composite of a heart-failure event or death from cardiovascular causes than those who received placebo. (Funded by Amgen and others; GALACTIC-HF ClinicalTrials.gov number, NCT02929329; EudraCT number, 2016-002299-28.).
Assuntos
Miosinas Cardíacas/metabolismo , Cardiotônicos/uso terapêutico , Insuficiência Cardíaca Sistólica/tratamento farmacológico , Ureia/análogos & derivados , Idoso , Idoso de 80 Anos ou mais , Miosinas Cardíacas/efeitos dos fármacos , Cardiotônicos/efeitos adversos , Cardiotônicos/farmacologia , Doenças Cardiovasculares/mortalidade , Feminino , Insuficiência Cardíaca Sistólica/metabolismo , Insuficiência Cardíaca Sistólica/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Contração Miocárdica/efeitos dos fármacos , Volume Sistólico , Ureia/efeitos adversos , Ureia/farmacologia , Ureia/uso terapêuticoRESUMO
Hypertrophic cardiomyopathy (HCM) is an inherited disease of the heart muscle that is dominated by variations in eight genes encoding sarcomere proteins. Although there are clinical or basic research reports that carrying double mutations can lead to more severe HCM phenotypes, there are also research reports that after reanalyzing the reported mutations, the severity of clinical symptoms in patients with double mutations did not significantly increase compared to patients with only one mutation. To determine whether double pathogenic mutations can aggravate the phenotype of hypertrophic cardiomyopathy in mice, we constructed mice carrying single pathogenic heterozygous mutation Myh6-R453C or Tnnt2-R92W and mice carrying both pathogenic heterozygous mutations. Our results showed that mice with double heterozygous mutations exhibited significant hypertrophic cardiomyopathy phenotypes at 4 weeks of age, and the degree of hypertrophy was significantly higher than that of single heterozygous mutant mice of the same age. Our study suggests that carrying the two pathogenic heterozygous mutations simultaneously can aggravate the phenotype of HCM in mice, which provides experimental evidence for the genotype-phenotype relationship of double pathogenic mutations and provides reference significance for clinical risk stratification of HCM patients.
Assuntos
Cardiomiopatia Hipertrófica , Heterozigoto , Mutação , Cadeias Pesadas de Miosina , Fenótipo , Troponina T , Animais , Humanos , Masculino , Camundongos , Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Cadeias Pesadas de Miosina/genética , Troponina T/genéticaRESUMO
During valvulogenesis, cytoskeletal, secretory and transcriptional events drive endocardial cushion growth and remodeling into thin fibrous leaflets. Genetic disorders play an important role in understanding valve malformations but only account for a minority of clinical cases. Mechanical forces are ever present, but how they coordinate molecular and cellular decisions remains unclear. In this study, we used osmotic pressure to interrogate how compressive and tensile stresses influence valve growth and shape maturation. We found that compressive stress drives a growth phenotype, whereas tensile stress increases compaction. We identified a mechanically activated switch between valve growth and maturation, by which compression induces cushion growth via BMP-pSMAD1/5, while tension induces maturation via pSer-19-mediated MLC2 contractility. The compressive stress acts through BMP signaling to increase cell proliferation and decrease cell contractility, and MEK-ERK is essential for both compressive stress and BMP mediation of compaction. We further showed that the effects of osmotic stress are conserved through the condensation and elongation stages of development. Together, our results demonstrate that compressive/tensile stress regulation of BMP-pSMAD1/5 and MLC2 contractility orchestrates valve growth and remodeling.
Assuntos
Biofísica , Crescimento e Desenvolvimento/fisiologia , Valvas Cardíacas/patologia , Estresse Mecânico , Animais , Fenômenos Biológicos , Miosinas Cardíacas , Proliferação de Células , Galinhas , Citocinas/metabolismo , Humanos , Cadeias Leves de Miosina , Fenótipo , Transdução de Sinais , Proteína Smad1 , Proteína Smad5RESUMO
Myosin heavy chain gene 7 (MYH7), a sarcomeric gene encoding the myosin heavy chain (myosin-7), has attracted considerable interest as a result of its fundamental functions in cardiac and skeletal muscle contraction and numerous nucleotide variations of MYH7 are closely related to cardiomyopathy and skeletal muscle myopathy. These disorders display significantly inter- and intra-familial variability, sometimes developing complex phenotypes, including both cardiomyopathy and skeletal myopathy. Here, we review the current understanding on MYH7 with the aim to better clarify how mutations in MYH7 affect the structure and physiologic function of sarcomere, thus resulting in cardiomyopathy and skeletal muscle myopathy. Importantly, the latest advances on diagnosis, research models in vivo and in vitro and therapy for precise clinical application have made great progress and have epoch-making significance. All the great advance is discussed here.