RESUMO
Interspecies fertilization is rare, partly due to species separation enforced at the molecular level. In this issue, Raj et al. now reveal the crystal structures of mollusk egg coat protein, VERL, complexed with cognate sperm protein lysin. Given that VERL is structurally similar to mammalian ZP2, the mechanism elucidating species-specific gamete recognition likely exists in mammals.
Assuntos
Proteínas do Ovo/química , Receptores de Superfície Celular/química , Animais , Fertilização , Masculino , Moluscos , EspermatozoidesRESUMO
Fish and other aquatic foods (blue foods) present an opportunity for more sustainable diets1,2. Yet comprehensive comparison has been limited due to sparse inclusion of blue foods in environmental impact studies3,4 relative to the vast diversity of production5. Here we provide standardized estimates of greenhouse gas, nitrogen, phosphorus, freshwater and land stressors for species groups covering nearly three quarters of global production. We find that across all blue foods, farmed bivalves and seaweeds generate the lowest stressors. Capture fisheries predominantly generate greenhouse gas emissions, with small pelagic fishes generating lower emissions than all fed aquaculture, but flatfish and crustaceans generating the highest. Among farmed finfish and crustaceans, silver and bighead carps have the lowest greenhouse gas, nitrogen and phosphorus emissions, but highest water use, while farmed salmon and trout use the least land and water. Finally, we model intervention scenarios and find improving feed conversion ratios reduces stressors across all fed groups, increasing fish yield reduces land and water use by up to half, and optimizing gears reduces capture fishery emissions by more than half for some groups. Collectively, our analysis identifies high-performing blue foods, highlights opportunities to improve environmental performance, advances data-poor environmental assessments, and informs sustainable diets.
Assuntos
Aquicultura , Ecossistema , Monitoramento Ambiental , Alimentos Marinhos , Desenvolvimento Sustentável , Animais , Aquicultura/tendências , Mudança Climática , Dieta , Ecologia , Política Ambiental , Pesqueiros , Abastecimento de Alimentos/métodos , Gases de Efeito Estufa , Humanos , Moluscos , Nitrogênio , Fósforo , Alimentos Marinhos/provisão & distribuição , Alga Marinha , Desenvolvimento Sustentável/tendênciasRESUMO
Warmer temperatures and higher sea level than today characterized the Last Interglacial interval [Pleistocene, 128 to 116 thousand years ago (ka)]. This period is a remarkable deep-time analog for temperature and sea-level conditions as projected for 2100 AD, yet there has been no evidence of fossil assemblages in the equatorial Atlantic. Here, we report foraminifer, metazoan (mollusks, bony fish, bryozoans, decapods, and sharks among others), and plant communities of coastal tropical marine and mangrove affinities, dating precisely from a ca. 130 to 115 ka time interval near the Equator, at Kourou, in French Guiana. These communities include ca. 230 recent species, some being endangered today and/or first recorded as fossils. The hyperdiverse Kourou mollusk assemblage suggests stronger affinities between Guianese and Caribbean coastal waters by the Last Interglacial than today, questioning the structuring role of the Amazon Plume on tropical Western Atlantic communities at the time. Grassland-dominated pollen, phytoliths, and charcoals from younger deposits in the same sections attest to a marine retreat and dryer conditions during the onset of the last glacial (ca. 110 to 50 ka), with a savanna-dominated landscape and episodes of fire. Charcoals from the last millennia suggest human presence in a mosaic of modern-like continental habitats. Our results provide key information about the ecology and biogeography of pristine Pleistocene tropical coastal ecosystems, especially relevant regarding the-widely anthropogenic-ongoing global warming.
Assuntos
Ecossistema , Moluscos , Humanos , Animais , Guiana Francesa , Plantas , Pólen , FósseisRESUMO
Global food demand is rising, and serious questions remain about whether supply can increase sustainably1. Land-based expansion is possible but may exacerbate climate change and biodiversity loss, and compromise the delivery of other ecosystem services2-6. As food from the sea represents only 17% of the current production of edible meat, we ask how much food we can expect the ocean to sustainably produce by 2050. Here we examine the main food-producing sectors in the ocean-wild fisheries, finfish mariculture and bivalve mariculture-to estimate 'sustainable supply curves' that account for ecological, economic, regulatory and technological constraints. We overlay these supply curves with demand scenarios to estimate future seafood production. We find that under our estimated demand shifts and supply scenarios (which account for policy reform and technology improvements), edible food from the sea could increase by 21-44 million tonnes by 2050, a 36-74% increase compared to current yields. This represents 12-25% of the estimated increase in all meat needed to feed 9.8 billion people by 2050. Increases in all three sectors are likely, but are most pronounced for mariculture. Whether these production potentials are realized sustainably will depend on factors such as policy reforms, technological innovation and the extent of future shifts in demand.
Assuntos
Pesqueiros/provisão & distribuição , Abastecimento de Alimentos/estatística & dados numéricos , Oceanos e Mares , Alimentos Marinhos/provisão & distribuição , Desenvolvimento Sustentável/tendências , Animais , Organismos Aquáticos/crescimento & desenvolvimento , Pesqueiros/economia , Peixes/crescimento & desenvolvimento , Abastecimento de Alimentos/economia , Humanos , Moluscos/crescimento & desenvolvimento , Alimentos Marinhos/economia , Desenvolvimento Sustentável/economia , Fatores de TempoRESUMO
Hemoglobin (Hb) has been identified in at least 14 molluscan taxa so far. Research spanning over 130 years on molluscan Hbs focuses on their genes, protein structures, functions, and evolution. Molluscan Hbs are categorized into single-, two-, and multiple-domain chains, including red blood cell, gill, and extracellular Hbs, based on the number of globin domains and their respective locations. These Hbs exhibit variation in assembly, ranging from monomeric and dimeric to higher-order multimeric forms. Typically, molluscan Hbs display moderately high oxygen affinity, weak cooperativity, and varying pH sensitivity. Hb's potential role in antimicrobial pathways could augment the immune defense of bivalves, which may be a complement to their lack of adaptive immunity. The role of Hb as a respiratory protein in bivalves likely originated from the substitution of hemocyanin. Molluscan Hbs demonstrate adaptive evolution in response to environmental changes via various strategies (e.g. increasing Hb types, multimerization, and amino acid residue substitutions at key sites), enhancing or altering functional properties for habitat adaptation. Concurrently, an increase in Hb assembly diversity, coupled with a downward trend in oxygen affinity, is observed during molluscan differentiation and evolution. Hb in Protobranchia, Heteroconchia, and Pteriomorphia bivalves originated from separate ancestors, with Protobranchia inheriting a relative ancient molluscan Hb gene. In bivalves, extracellular Hbs share a common origin, while gill Hbs likely emerged from convergent evolution. In summary, research on molluscan Hbs offers valuable insights into the origins, biological variations, and adaptive evolution of animal Hbs.
Assuntos
Hemoglobinas , Moluscos , Animais , Hemoglobinas/genética , Hemoglobinas/química , Hemoglobinas/metabolismo , Moluscos/genética , Moluscos/metabolismo , Oxigênio/metabolismoRESUMO
From mathematical models of growth to computer simulations of pigmentation, the study of shell formation has given rise to an abundant number of models, working at various scales. Yet, attempts to combine those models have remained sparse, due to the challenge of combining categorically different approaches. In this paper, we propose a framework to streamline the process of combining the molecular and tissue scales of shell formation. We choose these levels as a proxy to link the genotype level, which is better described by molecular models, and the phenotype level, which is better described by tissue-level mechanics. We also show how to connect observations on shell populations to the approach, resulting in collections of molecular parameters that may be associated with different populations of real shell specimens. The approach is as follows: we use a Quality-Diversity algorithm, a type of black-box optimization algorithm, to explore the range of concentration profiles emerging as solutions of a molecular model, and that define growth patterns for the mechanical model. At the same time, the mechanical model is simulated over a wide range of growth patterns, resulting in a variety of spine shapes. While time-consuming, these steps only need to be performed once and then function as look-up tables. Actual pictures of shell spines can then be matched against the list of existing spine shapes, yielding a potential growth pattern which, in turn, gives us matching molecular parameters. The framework is modular, such that models can be easily swapped without changing the overall working of the method. As a demonstration of the approach, we solve specific molecular and mechanical models, adapted from available theoretical studies on molluscan shells, and apply the multiscale framework to evaluate the characteristics of spines from three distinct populations of Turbo sazae.
Assuntos
Modelos Teóricos , Moluscos , Animais , Simulação por Computador , AlgoritmosAssuntos
Matemática , Moluscos , Cebolas , Animais , Cebolas/anatomia & histologia , Moluscos/anatomia & histologiaAssuntos
Estado de Consciência , Insetos , Animais , Estado de Consciência/fisiologia , Insetos/fisiologia , Répteis , Moluscos , PesquisadoresRESUMO
Some mollusc shells are formed from an amorphous calcium carbonate (ACC) compound, which further transforms into a crystalline material. The transformation mechanism is not fully understood but is however crucial to develop bioinspired synthetic biomineralization strategies or accurate marine biomineral proxies for geoscience. The difficulty arises from the simultaneous presence of crystalline and amorphous compounds in the shell, which complicates the selective experimental characterization of the amorphous fraction. Here, we use nanobeam X-ray total scattering together with an approach to separate crystalline and amorphous scattering contributions to obtain the spatially resolved atomic pair distribution function (PDF). We resolve three distinct amorphous calcium carbonate compounds, present in the shell of Pinctada margaritifera and attributed to: interprismatic periostracum, young mineralizing units, and mature mineralizing units. From this, we extract accurate bond parameters by reverse Monte Carlo (RMC) modeling of the PDF. This shows that the three amorphous compounds differ mostly in their Ca-O nearest-neighbor atom pair distance. Further characterization with conventional spectroscopic techniques unveils the presence of Mg in the shell and shows Mg-calcite in the final, crystallized shell. In line with recent literature, we propose that the amorphous-to-crystal transition is mediated by the presence of Mg. The transition occurs through the decomposition of the initial Mg-rich precursor into a second Mg-poor ACC compound before forming a crystal.
Assuntos
Pinctada , Animais , Carbonato de Cálcio/química , Moluscos , Raios XRESUMO
BACKGROUND: How novel phenotypes originate from conserved genes, processes, and tissues remains a major question in biology. Research that sets out to answer this question often focuses on the conserved genes and processes involved, an approach that explicitly excludes the impact of genetic elements that may be classified as clade-specific, even though many of these genes are known to be important for many novel, or clade-restricted, phenotypes. This is especially true for understudied phyla such as mollusks, where limited genomic and functional biology resources for members of this phylum have long hindered assessments of genetic homology and function. To address this gap, we constructed a chromosome-level genome for the gastropod Berghia stephanieae (Valdés, 2005) to investigate the expression of clade-specific genes across both novel and conserved tissue types in this species. RESULTS: The final assembled and filtered Berghia genome is comparable to other high-quality mollusk genomes in terms of size (1.05 Gb) and number of predicted genes (24,960 genes) and is highly contiguous. The proportion of upregulated, clade-specific genes varied across tissues, but with no clear trend between the proportion of clade-specific genes and the novelty of the tissue. However, more complex tissue like the brain had the highest total number of upregulated, clade-specific genes, though the ratio of upregulated clade-specific genes to the total number of upregulated genes was low. CONCLUSIONS: Our results, when combined with previous research on the impact of novel genes on phenotypic evolution, highlight the fact that the complexity of the novel tissue or behavior, the type of novelty, and the developmental timing of evolutionary modifications will all influence how novel and conserved genes interact to generate diversity.
Assuntos
Gastrópodes , Animais , Gastrópodes/genética , Filogenia , Evolução Molecular , Moluscos/genética , Cromossomos , Fenótipo , Expressão GênicaRESUMO
The glycoprotein-N-acetylgalactosamine ß1,3-galactosyltransferase, known as T-synthase (EC 2.4.1.122), plays a crucial role in the synthesis of the T-antigen, which is the core 1 O-glycan structure. This enzyme transfers galactose from UDP-Gal to GalNAc-Ser/Thr. The T-antigen has significant functions in animal development, immune response, and recognition processes. Molluscs are a successful group of animals that inhabit various environments, such as freshwater, marine, and terrestrial habitats. They serve important roles in ecosystems as filter feeders and decomposers but can also be pests in agriculture and intermediate hosts for human and cattle parasites. The identification and characterization of novel carbohydrate active enzymes, such as T-synthase, can aid in the understanding of molluscan glycosylation abilities and their adaptation and survival abilities. Here, the T-synthase enzymes from the snail Pomacea canaliculata and the oyster Crassostrea gigas are identified, cloned, expressed, and characterized, with a focus on structural elucidation. The synthesized enzymes display core 1 ß1,3-galactosyltransferase activity using pNP-α-GalNAc as substrate and exhibit similar biochemical parameters as previously characterised T-synthases from other species. While the enzyme from C. gigas shares the same structural parameters with the other enzymes characterised so far, the T-synthase from P. canaliculata lacks the consensus sequence CCSD, which was previously considered indispensable.
Assuntos
Ecossistema , Galactosiltransferases , Animais , Humanos , Bovinos , Sequência de Aminoácidos , Galactosiltransferases/metabolismo , Clonagem Molecular , Moluscos/metabolismo , Antígenos Virais de TumoresRESUMO
In animals, opsins and cryptochromes are major protein families that transduce light signals when bound to light-absorbing chromophores. Opsins are involved in various light-dependent processes, like vision, and have been co-opted for light-independent sensory modalities. Cryptochromes are important photoreceptors in animals, generally regulating circadian rhythm, they belong to a larger protein family with photolyases, which repair UV-induced DNA damage. Mollusks are great animals to explore questions about light sensing as eyes have evolved multiple times across, and within, taxonomic classes. We used molluscan genome assemblies from 80 species to predict protein sequences and examine gene family evolution using phylogenetic approaches. We found extensive opsin family expansion and contraction, particularly in bivalve xenopsins and gastropod Go-opsins, while other opsins, like retinochrome, rarely duplicate. Bivalve and gastropod lineages exhibit fluctuations in opsin repertoire, with cephalopods having the fewest number of opsins and loss of at least 2 major opsin types. Interestingly, opsin expansions are not limited to eyed species, and the highest opsin content was seen in eyeless bivalves. The dynamic nature of opsin evolution is quite contrary to the general lack of diversification in mollusk cryptochromes, though some taxa, including cephalopods and terrestrial gastropods, have reduced repertoires of both protein families. We also found complete loss of opsins and cryptochromes in multiple, but not all, deep-sea species. These results help set the stage for connecting genomic changes, including opsin family expansion and contraction, with differences in environmental, and biological features across Mollusca.
Assuntos
Criptocromos , Evolução Molecular , Animais , Filogenia , Criptocromos/genética , Moluscos/genética , Moluscos/metabolismo , Opsinas/genética , Opsinas/metabolismoRESUMO
Pif is a shell matrix protein (SMP) identified in the nacreous layer of Pinctada fucata (Pfu) comprised two proteins, Pif97 and Pif 80. Pif97 contains a von Willebrand factor A (VWA) and chitin-binding domains, whereas Pif80 can bind calcium carbonate crystals. The VWA domain is conserved in the SMPs of various mollusk species; however, their phylogenetic relationship remains obscure. Furthermore, although the VWA domain participates in protein-protein interactions, its role in shell formation has not been established. Accordingly, in the current study, we investigate the phylogenetic relationship between PfuPif and other VWA domain-containing proteins in major mollusk species. The shell-related proteins containing VWA domains formed a large clade (the Pif/BMSP family) and were classified into eight subfamilies with unique sequential features, expression patterns, and taxa diversity. Furthermore, a pull-down assay using recombinant proteins containing the VWA domain of PfuPif 97 revealed that the VWA domain interacts with five nacreous layer-related SMPs of P. fucata, including Pif 80 and nacrein. Collectively, these results suggest that the VWA domain is important in the formation of organic complexes and participates in shell mineralisation.
Assuntos
Quitina , Filogenia , Fator de von Willebrand , Animais , Quitina/metabolismo , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo , Fator de von Willebrand/química , Moluscos/genética , Moluscos/metabolismo , Domínios Proteicos , Ligação Proteica , Exoesqueleto/metabolismo , Sequência de Aminoácidos , Pinctada/genética , Pinctada/metabolismoRESUMO
Mollusks, as well as many other living organisms, have the ability to shape mineral crystals into unconventional morphologies and to assemble them into complex functional mineral-organic structures, an observation that inspired tremendous research efforts in scientific and technological domains. Despite these, a biochemical toolkit that accounts for the formation of the vast variety of the observed mineral morphologies cannot be identified yet. Herein, phase-field modeling of molluscan nacre formation, an intensively studied biomineralization process, is used to identify key physical parameters that govern mineral morphogenesis. Manipulating such parameters, various nacre properties ranging from the morphology of a single mineral building block to that of the entire nacreous assembly are reproduced. The results support the hypothesis that the control over mineral morphogenesis in mineralized tissues happens via regulating the physico-chemical environment, in which biomineralization occurs: the organic content manipulates the geometric and thermodynamic boundary conditions, which in turn, determine the process of growth and the form of the biomineral phase. The approach developed here has the potential of providing explicit guidelines for the morphogenetic control of synthetically formed composite materials.
Assuntos
Nácar , Animais , Nácar/química , Minerais/química , Moluscos , Biomineralização , Fenômenos Físicos , Carbonato de Cálcio/químicaRESUMO
Long-term baseline data that allow tracking how predator-prey interactions have responded to intensifying human impacts are often lacking. Here, we assess temporal changes in benthic community composition and interactions between drilling predatory gastropods and their molluscan prey using the Holocene fossil record of the shallow northern Adriatic Sea, which is characterized by a long history of human transformation. Molluscan assemblages differ between the Isonzo and Po prodelta, but both show consistent temporal trends in the abundance of dominant species. Samples of mollusc prey collected at high stratigraphic resolution indicate that drilling frequencies have drastically declined in the Po prodelta since the mid-twentieth century, while a weaker trend in the more condensed sediments of the Isonzo prodelta is not statistically significant. The decrease in drilling predation intensity and the community turnover are linked to the loss of predatory gastropods and the increased relative abundance of less-preferred prey during the most recent decades. Our results align with data showing the substantial depletion of marine resources at higher trophic levels in the region and indicate that the strong simplification of the food web initiated in the late nineteenth century accelerated further since the mid-twentieth century.
Assuntos
Cadeia Alimentar , Fósseis , Comportamento Predatório , Animais , Gastrópodes/fisiologia , Humanos , Moluscos/fisiologia , Mar MediterrâneoRESUMO
Body size is a fundamental characteristic of animals that impacts every aspect of their biology from anatomical complexity to ecology. In Mollusca, Solenogastres has been considered important to understanding the group's early evolution as most morphology-based phylogenetic reconstructions placed it as an early branching molluscan lineage. Under this scenario, molluscs were thought to have evolved from a small, turbellarian-like ancestor and small (i.e., macrofaunal) body size was inferred to be plesiomorphic for Solenogastres. More recently, phylogenomic studies have shown that aplacophorans (Solenogastres + Caudofoveata) form a clade with chitons (Polyplacophora), which is sister to all other molluscs, suggesting a relatively large-bodied (i.e., megafaunal) ancestor for Mollusca. Meanwhile, recent investigations into aplacophoran phylogeny have called the assumption that the last common ancestor of Solenogastres was small-bodied into question, but sampling of meiofaunal species was limited, biasing these studies towards large-bodied taxa and leaving fundamental questions about solenogaster body size evolution unanswered. Here, we supplemented available data with transcriptomes from eight diverse meiofaunal species of Solenogastres and conducted phylogenomic analyses on datasets of up to 949 genes. Maximum likelihood analyses support the meiofaunal family Meiomeniidae as the sister group to all other solenogasters, congruent with earlier ideas of a small-bodied ancestor of Solenogastres. In contrast, Bayesian Inference analyses support the large-bodied family Amphimeniidae as the sister group to all other solenogasters. Investigation of phylogenetic signal by comparing site-wise likelihood scores for the two competing hypotheses support the Meiomeniidae-first topology. In light of these results, we performed ancestral character state reconstruction to explore the implications of both hypotheses on understanding of Solenogaster evolution and review previous hypotheses about body size evolution and its potential consequences for solenogaster biology. Both hypotheses imply that body size evolution has been highly dynamic over the course of solenogaster evolution and that their relatively static body plan has successfully allowed for evolutionary transitions between meio-, macro- and megafaunal size ranges.
Assuntos
Moluscos , Poliplacóforos , Animais , Filogenia , Teorema de Bayes , Moluscos/genética , Poliplacóforos/genética , TranscriptomaRESUMO
Goniodorididae is a family of small dorid nudibranchs distributed worldwide that feed on entoprocts, ascidians, and bryozoans. The evolutionary relationships between its taxa have been uncertain due to the limited taxa available for phylogenetic analyses; some genera being paraphyletic. The family includes a remarkable number of synonymized genera in which the species richness is unequally distributed, while some genera have dozens of species others are monospecific. Some clades are very uniform morphologically while others are considered highly variable. To increase backbone phylogenetic resolution a target enrichment approach of ultra-conserved elements was aimed at representative Goniodorididae species for the first time. Additionally, we increase species representation by including mitochondrial markers cytochrome c oxidase subunit I and ribosomal RNA 16S as well as nuclear Histone 3 and ribosomal RNA 18S from 109 Goniodorididae species, out of approximately 160 currently valid species. Maximum likelihood and Bayesian inference analyses were performed to infer the phylogeny of the family. As a result, two subfamilies and eleven genera were elucidated. The synonymized genera Bermudella, Cargoa, and Ceratodoris are here resurrected and a new genus, Naisdoris gen. nov., is described. The clades included taxa with shared prey preference, showing that trophic behavior could have driven species evolution and morphological uniqueness within the family Goniodorididae.
Assuntos
Gastrópodes , Animais , Filogenia , Teorema de Bayes , Moluscos/genética , RNA Ribossômico 16S/genéticaRESUMO
Small non-coding RNAs (sncRNAs) are non-coding RNA molecules that play various roles in metazoans. Among the sncRNAs, microRNAs (miRNAs) guide post-translational gene regulation during cellular development, proliferation, apoptosis, and differentiation, while PIWI-interacting RNAs (piRNAs) suppress transposon activity to safeguard the genome from detrimental insertion mutagenesis. While an increasing number of piRNAs are being identified in the soma and germlines of various organisms, they are scarcely reported in molluscs. To unravel the small RNA (sRNA) expression patterns and genomic function in molluscs, we generated a comprehensive sRNA dataset by sRNA sequencing (sRNA-seq) of eight mollusc species. Abundant miRNAs were identified and characterized in all investigated molluscs, and ubiquitous piRNAs were discovered in both somatic and gonadal tissues in six of the investigated molluscs, which are more closely associated with transposon silencing. Tens of piRNA clusters were also identified based on the genomic mapping results, which varied among different tissues and species. Our dataset serves as important reference data for future genomic and genetic studies on sRNAs in these molluscs and related species, especially in elucidating the ancestral state of piRNAs in bilaterians.
Assuntos
Moluscos , RNA Interferente Pequeno , Pequeno RNA não Traduzido , Animais , Moluscos/genética , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , MicroRNAs/genética , Elementos de DNA Transponíveis , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , TranscriptomaRESUMO
The rapid advancement of molecular research on macromolecules has contributed to the discovery of 'Lectin', a carbohydrate-binding protein which specifically interacts with receptors on the surface of glycans and regulates various cellular activities thereby stimulating immunological functions. Considering the wide variety of sources and immunological significance, research has led to the discovery of lectins in invertebrate molluscs. Such lectins in molluscs mediate active immune response as they lack adaptive immunity. Phylum Mollusca is identified with different types of lectins such as C-lectin, Galectin, P-lectin, I-lectin, and H-lectin, along with other immunologically significant lectin molecules such as F- lectin, R-lectin, ficolins, chitinase like lectin etc., all of these with specific ligand binding and structural diversity. Molluscan C-type lectins are the most functional ones that increase the activity of phagocytic cells through specific carbohydrate binding of antigenic ligands and haemocyte adhesion thereby enhancing the immune response. Helix pomatia agglutinin and Helix aspersa agglutinin are the two H-lectins that were identified within molluscs that could even target cancer-progressing cells through specific binding. Also, these lectins identified in molluscs are proven to be efficient in antibacterial and immunomodulatory functions. These insights attract researchers to identify novel lectins in molluscs and their characterization that play a key role in protection against diseases. This review discusses the structural features of mollusc lectins, their specific binding, molecular interactions and their immunological applications.
Assuntos
Gastrópodes , Moluscos , Animais , Ficolinas , Galectinas , Imunidade AdaptativaRESUMO
Microscopic epibionts on molluscan shells are a component of the biodiversity of intertidal coastal areas. Because molluscan shells are discrete habitats for the epibiont community, and the molluscan basibionts belong to the local community, epibiont diversity can be evaluated hierarchically by basibiont categories including species. To evaluate the structure of epibiont diversity and effects of taxonomic resolution on the evaluation, epibionts on molluscan shells and inert surfaces were investigated at three geographically distant sites in Japan. In total, 94 species-level taxonomic units of epibionts were obtained from 31 basibiont molluscan species and inert surfaces (plastics and rock chips). The density and the species richness at the site of the lowest latitude were significantly lower than those at the other sites. The epibiont community differed between the three sites, although the major portion of the epibionts were diatoms. Between-site diversity contributed most of the total diversity of the species richness and Simpson diversity in the five levels of the hierarchical partitioning: sample (individual basibiont), basibiont species (molluscan species), surface group (bivalves, chitons + limpets, and globose gastropods), site, and the total. The taxonomic resolution did not markedly affect the variability of communities between the three sites, although the taxon richness was reduced to 51 in the genus-level analysis. The lower taxonomic resolution (genus level); however, increased the contribution of the within-sample and decreased the contribution of ß diversities at the higher hierarchies, leading to a possible overestimation of biotic homogenization between the communities.