Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 612
Filtrar
1.
Nat Immunol ; 20(5): 571-580, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936493

RESUMO

Fine control of macrophage activation is needed to prevent inflammatory disease, particularly at barrier sites such as the lungs. However, the dominant mechanisms that regulate the activation of pulmonary macrophages during inflammation are poorly understood. We found that alveolar macrophages (AlvMs) were much less able to respond to the canonical type 2 cytokine IL-4, which underpins allergic disease and parasitic worm infections, than macrophages from lung tissue or the peritoneal cavity. We found that the hyporesponsiveness of AlvMs to IL-4 depended upon the lung environment but was independent of the host microbiota or the lung extracellular matrix components surfactant protein D (SP-D) and mucin 5b (Muc5b). AlvMs showed severely dysregulated metabolism relative to that of cavity macrophages. After removal from the lungs, AlvMs regained responsiveness to IL-4 in a glycolysis-dependent manner. Thus, impaired glycolysis in the pulmonary niche regulates AlvM responsiveness during type 2 inflammation.


Assuntos
Inflamação/imunologia , Pulmão/imunologia , Ativação de Macrófagos/imunologia , Macrófagos Alveolares/imunologia , Animais , Inflamação/genética , Inflamação/metabolismo , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-4/metabolismo , Larva/imunologia , Larva/fisiologia , Pulmão/metabolismo , Pulmão/patologia , Ativação de Macrófagos/genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/parasitologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mucina-5B/genética , Mucina-5B/imunologia , Mucina-5B/metabolismo , Nippostrongylus/imunologia , Nippostrongylus/fisiologia , Proteína D Associada a Surfactante Pulmonar/genética , Proteína D Associada a Surfactante Pulmonar/imunologia , Proteína D Associada a Surfactante Pulmonar/metabolismo , Infecções por Strongylida/genética , Infecções por Strongylida/imunologia , Infecções por Strongylida/parasitologia
2.
Am J Hum Genet ; 111(8): 1700-1716, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38991590

RESUMO

The secreted mucins MUC5AC and MUC5B are large glycoproteins that play critical defensive roles in pathogen entrapment and mucociliary clearance. Their respective genes contain polymorphic and degenerate protein-coding variable number tandem repeats (VNTRs) that make the loci difficult to investigate with short reads. We characterize the structural diversity of MUC5AC and MUC5B by long-read sequencing and assembly of 206 human and 20 nonhuman primate (NHP) haplotypes. We find that human MUC5B is largely invariant (5,761-5,762 amino acids [aa]); however, seven haplotypes have expanded VNTRs (6,291-7,019 aa). In contrast, 30 allelic variants of MUC5AC encode 16 distinct proteins (5,249-6,325 aa) with cysteine-rich domain and VNTR copy-number variation. We group MUC5AC alleles into three phylogenetic clades: H1 (46%, ∼5,654 aa), H2 (33%, ∼5,742 aa), and H3 (7%, ∼6,325 aa). The two most common human MUC5AC variants are smaller than NHP gene models, suggesting a reduction in protein length during recent human evolution. Linkage disequilibrium and Tajima's D analyses reveal that East Asians carry exceptionally large blocks with an excess of rare variation (p < 0.05) at MUC5AC. To validate this result, we use Locityper for genotyping MUC5AC haplogroups in 2,600 unrelated samples from the 1000 Genomes Project. We observe a signature of positive selection in H1 among East Asians and a depletion of the likely ancestral haplogroup (H3). In Europeans, H3 alleles show an excess of common variation and deviate from Hardy-Weinberg equilibrium (p < 0.05), consistent with heterozygote advantage and balancing selection. This study provides a generalizable strategy to characterize complex protein-coding VNTRs for improved disease associations.


Assuntos
Alelos , Variação Genética , Haplótipos , Repetições Minissatélites , Mucina-5AC , Mucina-5B , Filogenia , Humanos , Mucina-5B/genética , Animais , Mucina-5AC/genética , Mucina-5AC/metabolismo , Repetições Minissatélites/genética , Variações do Número de Cópias de DNA , Primatas/genética
3.
Am J Respir Crit Care Med ; 210(4): 401-423, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38573068

RESUMO

Recent genetic and genomic advancements have elucidated the complex etiology of idiopathic pulmonary fibrosis (IPF) and other progressive fibrotic interstitial lung diseases (ILDs), emphasizing the contribution of heritable factors. This state-of-the-art review synthesizes evidence on significant genetic contributors to pulmonary fibrosis (PF), including rare genetic variants and common SNPs. The MUC5B promoter variant is unusual, a common SNP that markedly elevates the risk of early and established PF. We address the utility of genetic variation in enhancing understanding of disease pathogenesis and clinical phenotypes, improving disease definitions, and informing prognosis and treatment response. Critical research gaps are highlighted, particularly the underrepresentation of non-European ancestries in PF genetic studies and the exploration of PF phenotypes beyond usual interstitial pneumonia/IPF. We discuss the role of telomere length, often critically short in PF, and its link to progression and mortality, underscoring the genetic complexity involving telomere biology genes (TERT, TERC) and others like SFTPC and MUC5B. In addition, we address the potential of gene-by-environment interactions to modulate disease manifestation, advocating for precision medicine in PF. Insights from gene expression profiling studies and multiomic analyses highlight the promise for understanding disease pathogenesis and offer new approaches to clinical care, therapeutic drug development, and biomarker discovery. Finally, we discuss the ethical, legal, and social implications of genomic research and therapies in PF, stressing the need for sound practices and informed clinical genetic discussions. Looking forward, we advocate for comprehensive genetic testing panels and polygenic risk scores to improve the management of PF and related ILDs across diverse populations.


Assuntos
Genômica , Fibrose Pulmonar Idiopática , Mucina-5B , Medicina de Precisão , Humanos , Medicina de Precisão/métodos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/terapia , Mucina-5B/genética , Predisposição Genética para Doença/genética , Fibrose Pulmonar/genética , Fibrose Pulmonar/terapia , Polimorfismo de Nucleotídeo Único/genética
4.
Am J Respir Crit Care Med ; 210(3): 298-310, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38315959

RESUMO

Rationale: Progressive lung function loss is recognized in chronic obstructive pulmonary disease (COPD); however, no study concurrently evaluates how accelerated lung function decline relates to mucus properties and the microbiome in COPD. Objectives: Longitudinal assessment of mucus and microbiome changes accompanying accelerated lung function decline in patients COPD. Methods: This was a prospective, longitudinal assessment of the London COPD cohort exhibiting the greatest FEV1 decline (n = 30; accelerated decline; 156 ml/yr FEV1 loss) and with no FEV1 decline (n = 28; nondecline; 49 ml/yr FEV1 gain) over time. Lung microbiomes from paired sputum (total 116 specimens) were assessed by shotgun metagenomics and corresponding mucus profiles evaluated for biochemical and biophysical properties. Measurements and Main Results: Biochemical and biophysical mucus properties are significantly altered in the accelerated decline group. Unsupervised principal component analysis showed clear separation, with mucus biochemistry associated with accelerated decline, whereas biophysical mucus characteristics contributed to interindividual variability. When mucus and microbes are considered together, an accelerated decline mucus-microbiome association emerges, characterized by increased mucin (MUC5AC [mucin 5AC] and MUC5B [mucin 5B]) concentration and the presence of Achromobacter and Klebsiella. As COPD progresses, mucus-microbiome shifts occur, initially characterized by low mucin concentration and transition from viscous to elastic dominance accompanied by the commensals Veillonella, Gemella, Rothia, and Prevotella (Global Initiative for Chronic Obstructive Lung Disease [GOLD] A and B) before transition to increased mucus viscosity, mucins, and DNA concentration together with the emergence of pathogenic microorganisms including Haemophilus, Moraxella, and Pseudomonas (GOLD E). Conclusions: Mucus-microbiome associations evolve over time with accelerated lung function decline, symptom progression, and exacerbations affording fresh therapeutic opportunities for early intervention.


Assuntos
Microbiota , Muco , Doença Pulmonar Obstrutiva Crônica , Escarro , Humanos , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Prospectivos , Escarro/microbiologia , Muco/microbiologia , Estudos Longitudinais , Progressão da Doença , Mucina-5B/metabolismo , Volume Expiratório Forçado , Mucina-5AC/metabolismo , Londres
5.
Am J Respir Cell Mol Biol ; 70(6): 437-445, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38363828

RESUMO

The recent European Respiratory Society statement on familial pulmonary fibrosis supports the need for genetic testing in the care of patients and their relatives. However, no solution (i.e., a concrete test) was provided to implement genetic testing in daily practice. Herein, we tabulated and standardized the nomenclature of 128 genetic variants in 20 genes implicated in adult-onset pulmonary fibrosis. The objective was to develop a laboratory-developed test (LDT) on the basis of standard Sanger sequencing to capture all known familial pulmonary fibrosis-associated variants. Targeted DNA fragments were amplified using harmonized PCR conditions to perform the LDT in a single 96-well plate. The new genetic test was evaluated in 62 sporadic cases of idiopathic pulmonary fibrosis. As expected in this population, we observed a low yield of disease-causing mutations. More important, 100% of targeted variants by the LDT were successfully evaluated. Furthermore, four variants of uncertain significance with in silico-predicted deleterious scores were identified in three patients, suggesting novel pathogenic variants in genes known to cause idiopathic pulmonary fibrosis. Finally, the MUC5B promoter variant rs35705950 was strongly enriched in these patients with a minor allele frequency of 41.1% compared with 10.6% in a matched population-based cohort (n = 29,060), leading to an estimation that this variant may explain up to 35% of the population-attributable risk. This LDT provides a solution for rapid clinical translation. Technical laboratory details are provided so that specialized pulmonary centers can implement the LDT in house to expedite the clinical recommendations of expert panels.


Assuntos
Predisposição Genética para Doença , Testes Genéticos , Fibrose Pulmonar Idiopática , Mucina-5B , Humanos , Fibrose Pulmonar Idiopática/genética , Masculino , Feminino , Testes Genéticos/métodos , Mucina-5B/genética , Pessoa de Meia-Idade , Frequência do Gene , Mutação/genética , Idoso , Adulto , Regiões Promotoras Genéticas/genética
6.
Glycobiology ; 34(10)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39173029

RESUMO

Human sialic acid-binding immunoglobulin-like lectins (Siglecs) are expressed on subsets of immune cells. Siglec-8 is an immune inhibitory Siglec on eosinophils and mast cells, which are effectors in allergic disorders including eosinophilic esophagitis. Inhibition occurs when Siglec-8 is crosslinked by multivalent Siglec ligands in target tissues. Previously we discovered a high-affinity Siglec-8 sialoglycan ligand on human airways composed of terminally sialylated keratan sulfate chains carried on a single protein, DMBT1. Here we extend that approach to another allergic inflammatory target tissue, human esophagus. Lectin overlay histochemistry revealed that Siglec-8 ligands are expressed predominantly by esophageal submucosal glands, and are densely packed in submucosal ducts leading to the lumen. Expression is tissue-specific; esophageal glands express Siglec-8 ligand whereas nearby gastric glands do not. Extraction and resolution by gel electrophoresis revealed a single predominant human esophageal Siglec-8 ligand migrating at >2 MDa. Purification by size exclusion and affinity chromatography, followed by proteomic mass spectrometry, revealed the protein carrier to be MUC5B. Whereas all human esophageal submucosal cells express MUC5B, only a portion convert it to Siglec-8 ligand by adding terminally sialylated keratan sulfate chains. We refer to this as MUC5B S8L. Material from the esophageal lumen of live subjects revealed MUC5B S8L species ranging from ~1-4 MDa. We conclude that MUC5B in the human esophagus is a protein canvas on which Siglec-8 binding sialylated keratan sulfate chains are post-translationally added. These data expand understanding of Siglec-8 ligands and may help us understand their roles in allergic immune regulation.


Assuntos
Esôfago , Sulfato de Queratano , Lectinas , Mucina-5B , Humanos , Ligantes , Mucina-5B/metabolismo , Mucina-5B/genética , Lectinas/metabolismo , Lectinas/química , Sulfato de Queratano/metabolismo , Sulfato de Queratano/química , Esôfago/metabolismo , Antígenos CD/metabolismo , Antígenos CD/química , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos B
7.
J Mol Recognit ; 37(1): e3064, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37804135

RESUMO

Gel-forming mucin MUC5B is significantly deregulated in lung adenocarcinoma (LUAD), however, its role in tumor progression is not yet clearly understood. Here, we used an integrated computational-pipeline-initiated with gene expression analysis followed by network, functional-enrichment, O-linked glycosylation analyses, mutational profiling, and immune cell infiltration estimation to functionally characterize MUC5B gene in LUAD. Thereafter, clinical biomarker validation was supported by the overall survival (OA) and comparative expression profiling across clinical stages using computational algorithms. The gene expression profile of LUAD identified MUC5B to be significantly up-regulated (logFC: 2.36; p-value: 0.01). Network analysis on LUAD interactome screened MUC5B-related genes, having key enrichment in immune suppression and O-linked glycosylation with serine-threonine-rich tandem repeats being highly glycosylated. Furthermore, positive correlation of mutant MUC5B with immune cells in tumor microenvironment (TME) such as cancer-associated fibroblasts and myeloid-derived suppressor cells indicates TME-mediated tumor progression. The positive correlation with immune inhibitors suggested the enhanced tumor proliferation mediated by MUC5B. Structural stability due to genetic alterations identified overall rigid N-H-backbone dynamics (S2 : 0.756), indicating an overall stable mutant protein. Moreover, the low median OA (<50 months) with a hazard ratio of 1.4 and clinical profile of MUC5B gene showed high median expression corresponding to lymph node (N2) and tumor (T3) stages. Our study concludes by highlighting the functional role of O-glycosylated and mutant MUC5B in promoting LUAD by immune suppression. Further, clinical gene expression validation of MUC5B suggests its potential role as a diagnostic biomarker for LUAD metastasis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Detecção Precoce de Câncer , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Algoritmos , Glicosilação , Microambiente Tumoral/genética , Mucina-5B/genética
8.
J Immunol ; 208(5): 1272-1279, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35110420

RESUMO

Interstitial macrophages (IMs) are key regulators of allergic inflammation. We previously showed that the absence of semaphorin 3E (Sema3E) exacerbates asthma features in both acute and chronic asthma models. However, it has not been studied whether Sema3E, via its receptor plexinD1, regulates IM function in allergic asthma. Therefore, we investigated the role of plexinD1 deficiency on IMs in allergic asthma. We found that the absence of plexinD1 in IMs increased airway hyperresponsiveness, airway leukocyte numbers, allergen-specific IgE, goblet cell hyperplasia, and Th2/Th17 cytokine response in the house dust mite (HDM)-induced allergic asthma model. Muc5ac, Muc5b, and α-SMA genes were increased in mice with Plxnd1-deficient IMs compared with wild-type mice. Furthermore, plexinD1-deficient bone marrow-derived macrophages displayed reduced IL-10 mRNA expression, at both the baseline and following HDM challenge, compared with their wild-type counterpart mice. Our data suggest that Sema3E/plexinD1 signaling in IMs is a critical pathway that modulates airway inflammation, airway resistance, and tissue remodeling in the HDM murine model of allergic asthma. Reduced IL-10 expression by plexinD1-deficient macrophages may account for these enhanced allergic asthma features.


Assuntos
Asma/patologia , Dermatophagoides pteronyssinus/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Macrófagos/imunologia , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Semaforinas/genética , Actinas/genética , Actinas/metabolismo , Resistência das Vias Respiratórias/imunologia , Animais , Asma/imunologia , Modelos Animais de Doenças , Feminino , Células Caliciformes/imunologia , Imunoglobulina E/imunologia , Interleucina-10/genética , Contagem de Leucócitos , Leucócitos/imunologia , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Knockout , Mucina-5AC/genética , Mucina-5AC/metabolismo , Mucina-5B/genética , Mucina-5B/metabolismo , RNA Mensageiro/genética , Células Th17/imunologia , Células Th2/imunologia
9.
Am J Respir Crit Care Med ; 208(7): 791-801, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37523715

RESUMO

Rationale: In addition to rare genetic variants and the MUC5B locus, common genetic variants contribute to idiopathic pulmonary fibrosis (IPF) risk. The predictive power of common variants outside the MUC5B locus for IPF and interstitial lung abnormalities (ILAs) is unknown. Objectives: We tested the predictive value of IPF polygenic risk scores (PRSs) with and without the MUC5B region on IPF, ILA, and ILA progression. Methods: We developed PRSs that included (PRS-M5B) and excluded (PRS-NO-M5B) the MUC5B region (500-kb window around rs35705950-T) using an IPF genome-wide association study. We assessed PRS associations with area under the receiver operating characteristic curve (AUC) metrics for IPF, ILA, and ILA progression. Measurements and Main Results: We included 14,650 participants (1,970 IPF; 1,068 ILA) from six multi-ancestry population-based and case-control cohorts. In cases excluded from genome-wide association study, the PRS-M5B (odds ratio [OR] per SD of the score, 3.1; P = 7.1 × 10-95) and PRS-NO-M5B (OR per SD, 2.8; P = 2.5 × 10-87) were associated with IPF. Participants in the top PRS-NO-M5B quintile had ∼sevenfold odds for IPF compared with those in the first quintile. A clinical model predicted IPF (AUC, 0.61); rs35705950-T and PRS-NO-M5B demonstrated higher AUCs (0.73 and 0.7, respectively), and adding both genetic predictors to a clinical model yielded the highest performance (AUC, 0.81). The PRS-NO-M5B was associated with ILA (OR, 1.25) and ILA progression (OR, 1.16) in European ancestry participants. Conclusions: A common genetic variant risk score complements the MUC5B variant to identify individuals at high risk of interstitial lung abnormalities and pulmonary fibrosis.


Assuntos
Estudo de Associação Genômica Ampla , Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/genética , Fatores de Risco , Pulmão , Mucina-5B/genética , Predisposição Genética para Doença
10.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34548396

RESUMO

Elevated levels of MUC5AC, one of the major gel-forming mucins in the lungs, are closely associated with chronic obstructive lung diseases such as chronic bronchitis and asthma. It is not known, however, how the structure and/or gel-making properties of MUC5AC contribute to innate lung defense in health and drive the formation of stagnant mucus in disease. To understand this, here we studied the biophysical properties and macromolecular assembly of MUC5AC compared to MUC5B. To study each native mucin, we used Calu3 monomucin cultures that produced MUC5AC or MUC5B. To understand the macromolecular assembly of MUC5AC through N-terminal oligomerization, we expressed a recombinant whole N-terminal domain (5ACNT). Scanning electron microscopy and atomic force microscopy imaging indicated that the two mucins formed distinct networks on epithelial and experimental surfaces; MUC5B formed linear, infrequently branched multimers, whereas MUC5AC formed tightly organized networks with a high degree of branching. Quartz crystal microbalance-dissipation monitoring experiments indicated that MUC5AC bound significantly more to hydrophobic surfaces and was stiffer and more viscoelastic as compared to MUC5B. Light scattering analysis determined that 5ACNT primarily forms disulfide-linked covalent dimers and higher-order oligomers (i.e., trimers and tetramers). Selective proteolytic digestion of the central glycosylated region of the full-length molecule confirmed that MUC5AC forms dimers and higher-order oligomers through its N terminus. Collectively, the distinct N-terminal organization of MUC5AC may explain the more adhesive and unique viscoelastic properties of branched, highly networked MUC5AC gels. These properties may generate insight into why/how MUC5AC forms a static, "tethered" mucus layer in chronic muco-obstructive lung diseases.


Assuntos
Células Epiteliais/metabolismo , Mucina-5AC/química , Mucina-5AC/metabolismo , Mucina-5B/química , Mucina-5B/metabolismo , Mucosa Respiratória/metabolismo , Células Cultivadas , Células Epiteliais/citologia , Humanos , Mucosa Respiratória/citologia
11.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999930

RESUMO

Although SARS-CoV-2 induces mucin hypersecretion in the respiratory tract, hyposalivation/xerostomia has been reported by COVID-19 patients. We evaluate the submandibular gland (SMGs) pathogenesis in SARS-CoV-2-infected K18-hACE2 mice, focusing on the impact of infection on the mucin production and structural integrity of acini, ductal system, myoepithelial cells (MECs) and telocytes. The spike protein, the nucleocapsid protein, hACE2, actin, EGF, TNF-α and IL-1ß were detected by immunofluorescence, and the Egfr and Muc5b expression was evaluated. In the infected animals, significant acinar hypertrophy was observed in contrast to ductal atrophy. Nucleocapsid proteins and/or viral particles were detected in the SMG cells, mainly in the nuclear membrane-derived vesicles, confirming the nuclear role in the viral formation. The acinar cells showed intense TNF-α and IL-1ß immunoexpression, and the EGF-EGFR signaling increased, together with Muc5b upregulation. This finding explains mucin hypersecretion and acinar hypertrophy, which compress the ducts. Dying MECs and actin reduction were also observed, indicating failure of contraction and acinar support, favoring acinar hypertrophy. Viral assembly was found in the dying telocytes, pointing to these intercommunicating cells as viral transmitters in SMGs. Therefore, EGF-EGFR-induced mucin hypersecretion was triggered by SARS-CoV-2 in acinar cells, likely mediated by cytokines. The damage to telocytes and MECs may have favored the acinar hypertrophy, leading to ductal obstruction, explaining xerostomia in COVID-19 patients. Thus, acinar cells, telocytes and MECs may be viral targets, which favor replication and cell-to-cell viral transmission in the SMG, corroborating the high viral load in saliva of infected individuals.


Assuntos
COVID-19 , Receptores ErbB , SARS-CoV-2 , Glândula Submandibular , Xerostomia , COVID-19/patologia , COVID-19/virologia , COVID-19/metabolismo , Animais , Glândula Submandibular/virologia , Glândula Submandibular/patologia , Glândula Submandibular/metabolismo , SARS-CoV-2/fisiologia , Camundongos , Xerostomia/etiologia , Xerostomia/patologia , Xerostomia/virologia , Xerostomia/metabolismo , Receptores ErbB/metabolismo , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Mucina-5B/metabolismo , Células Acinares/patologia , Células Acinares/metabolismo , Células Acinares/virologia , Interleucina-1beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Modelos Animais de Doenças
12.
Allergol Int ; 73(3): 375-381, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692992

RESUMO

Mucus provides a protective barrier that is crucial for host defense in the lungs. However, excessive or abnormal mucus can have pathophysiological consequences in many pulmonary diseases, including asthma. Patients with asthma are treated with agents that relax airway smooth muscle and reduce airway inflammation, but responses are often inadequate. In part, this is due to the inability of existing therapeutic agents to directly target mucus. Accordingly, there is a critical need to better understand how mucus hypersecretion and airway plugging are affected by the epithelial cells that synthesize, secrete, and transport mucus components. This review highlights recent advances in the biology of mucin glycoproteins with a specific focus on MUC5AC and MUC5B, the chief macromolecular components of airway mucus. An improved mechanistic understanding of key steps in mucin production and secretion will help reveal novel potential therapeutic strategies.


Assuntos
Asma , Muco , Humanos , Asma/metabolismo , Asma/tratamento farmacológico , Muco/metabolismo , Animais , Terapia de Alvo Molecular , Mucinas/metabolismo , Mucina-5AC/metabolismo , Mucina-5B/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/imunologia
13.
Am J Respir Cell Mol Biol ; 68(1): 62-74, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108173

RESUMO

The gain-of-function minor allele of the MUC5B (mucin 5B, oligomeric mucus/gel-forming) promoter (rs35705950) is the strongest risk factor for idiopathic pulmonary fibrosis (IPF), a devastating fibrotic lung disease that leads to progressive respiratory failure in adults. We have previously demonstrated that Muc5b overexpression in mice worsens lung fibrosis after bleomycin exposure and have hypothesized that excess Muc5b promotes endoplasmic reticulum (ER) stress and apoptosis, stimulating fibrotic lung injury. Here, we report that ER stress pathway members ATF4 (activating transcription factor 4) and ATF6 coexpress with MUC5B in epithelia of the distal IPF airway and honeycomb cyst and that this is more pronounced in carriers of the gain-of-function MUC5B promoter variant. Similarly, in mice exposed to bleomycin, Muc5b expression is temporally associated with markers of ER stress. Using bulk and single-cell RNA sequencing in bleomycin-exposed mice, we found that pathologic ER stress-associated transcripts Atf4 and Ddit3 (DNA damage inducible transcript 3) were elevated in alveolar epithelia of SFTPC-Muc5b transgenic (SFTPC-Muc5bTg) mice relative to wild-type (WT) mice. Activation of the ER stress response inhibits protein translation for most genes by phosphorylation of Eif2α (eukaryotic translation initiation factor 2 alpha), which prevents guanine exchange by Eif2B and facilitates translation of Atf4. The integrated stress response inhibitor (ISRIB) facilitates interaction of phosphorylated Eif2α with Eif2B, overcoming translation inhibition associated with ER stress and reducing Atf4. We found that a single dose of ISRIB diminished Atf4 translation in SFTPC-Muc5bTg mice after bleomycin injury. Moreover, ISRIB resolved the exaggerated fibrotic response of SFTPC-Muc5bTg mice to bleomycin. In summary, we demonstrate that MUC5B and Muc5b expression is associated with pathologic ER stress and that restoration of normal translation with a single dose of ISRIB promotes lung repair in bleomycin-injured Muc5b-overexpressing mice.


Assuntos
Fibrose Pulmonar Idiopática , Mucina-5B , Camundongos , Animais , Mucina-5B/genética , Mucina-5B/metabolismo , Fator de Iniciação 2B em Eucariotos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Estresse do Retículo Endoplasmático , Bleomicina
14.
Physiol Rev ; 96(4): 1567-91, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27630174

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an incurable complex genetic disorder that is associated with sequence changes in 7 genes (MUC5B, TERT, TERC, RTEL1, PARN, SFTPC, and SFTPA2) and with variants in at least 11 novel loci. We have previously found that 1) a common gain-of-function promoter variant in MUC5B rs35705950 is the strongest risk factor (genetic and otherwise), accounting for 30-35% of the risk of developing IPF, a disease that was previously considered idiopathic; 2) the MUC5B promoter variant can potentially be used to identify individuals with preclinical pulmonary fibrosis and is predictive of radiologic progression of preclinical pulmonary fibrosis; and 3) MUC5B may be involved in the pathogenesis of pulmonary fibrosis with MUC5B message and protein expressed in bronchiolo-alveolar epithelia of IPF and the characteristic IPF honeycomb cysts. Based on these considerations, we hypothesize that excessive production of MUC5B either enhances injury due to reduced mucociliary clearance or impedes repair consequent to disruption of normal regenerative mechanisms in the distal lung. In aggregate, these novel considerations should have broad impact, resulting in specific etiologic targets, early detection of disease, and novel biologic pathways for use in the design of future intervention, prevention, and mechanistic studies of IPF.


Assuntos
Bronquíolos/fisiopatologia , Fibrose Pulmonar Idiopática/genética , Mucina-5B/genética , Depuração Mucociliar/genética , Alvéolos Pulmonares/fisiopatologia , Animais , Predisposição Genética para Doença , Humanos , Fibrose Pulmonar Idiopática/fisiopatologia , Mucosa Respiratória/fisiopatologia
15.
Ann Hum Genet ; 87(5): 248-253, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37537942

RESUMO

A variant in the mucin 5B gene (MUC5B) is strongly associated with the risk of idiopathic pulmonary fibrosis. However, the same variant is associated with increased survival time. Previous work suggested that this may be explained by index event bias, with the true effect being to decrease survival. Here, we reassessed this claim using more recent methods and datasets. We found that the statistical assumptions of the previous analysis did not hold, and instead, we applied recent methods of corrected weighted least squares, MR-RAPS and Slope-hunter to both the previous data and an updated consortium meta-analysis. However, these analyses did not yield robust evidence for increased or decreased survival. In simulations of a true effect of decreased survival, we did not observe any realistic scenario in which index event bias led to an observed effect of increased survival. We therefore regard as unsafe the claim that MUC5B has a true effect of decreased survival. Alternative explanations should be sought to explain the observed association with increased survival.


Assuntos
Fibrose Pulmonar Idiopática , Mucina-5B , Humanos , Mucina-5B/genética , Predisposição Genética para Doença , Fibrose Pulmonar Idiopática/genética
16.
Thorax ; 78(6): 566-573, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36690926

RESUMO

BACKGROUND: The MUC5B promoter variant (rs35705950) and telomere length are linked to pulmonary fibrosis and CT-based qualitative assessments of interstitial abnormalities, but their associations with longitudinal quantitative changes of the lung interstitium among community-dwelling adults are unknown. METHODS: We used data from participants in the Multi-Ethnic Study of Atherosclerosis with high-attenuation areas (HAAs, Examinations 1-6 (2000-2018)) and MUC5B genotype (n=4552) and telomere length (n=4488) assessments. HAA was defined as the per cent of imaged lung with attenuation of -600 to -250 Hounsfield units. We used linear mixed-effects models to examine associations of MUC5B risk allele (T) and telomere length with longitudinal changes in HAAs. Joint models were used to examine associations of longitudinal changes in HAAs with death and interstitial lung disease (ILD). RESULTS: The MUC5B risk allele (T) was associated with an absolute change in HAAs of 2.60% (95% CI 0.36% to 4.86%) per 10 years overall. This association was stronger among those with a telomere length below an age-adjusted percentile of 5% (p value for interaction=0.008). A 1% increase in HAAs per year was associated with 7% increase in mortality risk (rate ratio (RR)=1.07, 95% CI 1.02 to 1.12) for overall death and 34% increase in ILD (RR=1.34, 95% CI 1.20 to 1.50). Longer baseline telomere length was cross-sectionally associated with less HAAs from baseline scans, but not with longitudinal changes in HAAs. CONCLUSIONS: Longitudinal increases in HAAs were associated with the MUC5B risk allele and a higher risk of death and ILD.


Assuntos
Doenças Pulmonares Intersticiais , Pulmão , Adulto , Humanos , Pulmão/diagnóstico por imagem , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/complicações , Genótipo , Telômero/genética , Mucina-5B/genética
17.
Respir Res ; 24(1): 240, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777755

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) has an unknown aetiology and limited treatment options. A recent meta-analysis identified three novel causal variants in the TERT, SPDL1, and KIF15 genes. This observational study aimed to investigate whether the aforementioned variants cause clinical phenotypes in a well-characterised IPF cohort. METHODS: The study consisted of 138 patients with IPF who were diagnosed and treated at the Helsinki University Hospital and genotyped in the FinnGen FinnIPF study. Data on > 25 clinical parameters were collected by two pulmonologists who were blinded to the genetic data for patients with TERT loss of function and missense variants, SPDL1 and KIF15 missense variants, and a MUC5B variant commonly present in patients with IPF, or no variants were separately analysed. RESULTS: The KIF15 missense variant is associated with the early onset of the disease, leading to progression to early-age transplantation or death. In patients with the KIF15 variant, the median age at diagnosis was 54.0 years (36.5-69.5 years) compared with 72.0 years (65.8-75.3 years) in the other patients (P = 0.023). The proportion of KIF15 variant carriers was 9- or 3.6-fold higher in patients aged < 55 or 65 years, respectively. The variants for TERT and MUC5B had similar effects on the patient's clinical course, as previously described. No distinct phenotypes were observed in patients with the SPDL1 variant. CONCLUSIONS: Our study indicated the potential of KIF15 to be used in the genetic diagnostics of IPF. Further studies are needed to elucidate the biological mechanisms of KIF15 in IPF.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Pessoa de Meia-Idade , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/genética , Genótipo , Fenótipo , Mucina-5B/genética , Cinesinas/genética
18.
J Asthma ; 60(10): 1824-1835, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36946148

RESUMO

OBJECTIVE: Genome-wide association studies (GWASs) have identified single nucleotide polymorphisms (SNPs) in chr11p15.5 region associated with asthma and idiopathic interstitial pneumonias (IIPs). We sought to identify functional genes for asthma by combining SNPs and mRNA expression in bronchial epithelial cells (BEC) in the Severe Asthma Research Program (SARP). METHODS: Correlation analyses of mRNA expression of six candidate genes (AP2A2, MUC6, MUC2, MUC5AC, MUC5B, and TOLLIP) and asthma phenotypes were performed in the longitudinal cohort (n = 156) with RNAseq in BEC, and replicated in the cross-sectional cohort (n = 155). eQTL (n = 114) and genetic association analysis of asthma severity (426 severe vs. 531 non-severe asthma) were performed, and compared with previously published GWASs of IIPs and asthma. RESULTS: Higher expression of AP2A2 and MUC5AC and lower expression of MUC5B in BEC were correlated with asthma, asthma exacerbations, and T2 biomarkers (P < 0.01). SNPs associated with asthma and IIPs in previous GWASs were eQTL SNPs for MUC5AC, MUC5B, or TOLLIP, however, they were not in strong linkage disequilibrium. The risk alleles for asthma or protective alleles for IIPs were associated with higher expression of MUC5AC and lower expression of MUC5B. rs11603634, rs12788104, and rs28415845 associated with moderate-to-severe asthma or adult onset asthma in previous GWASs were not associated with asthma severity (P > 0.8). CONCLUSIONS: SNPs associated with asthma in chr11p15.5 region are not associated with asthma severity neither with IIPs. Higher expression of MUC5AC and lower expression of MUC5B are risk for asthma but protective for IIPs.


Assuntos
Asma , Humanos , Asma/genética , Estudo de Associação Genômica Ampla , Estudos Transversais , Fenótipo , RNA Mensageiro , Mucina-5B/genética , Mucina-5AC/genética
19.
Respirology ; 28(5): 455-464, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36571111

RESUMO

BACKGROUND AND OBJECTIVE: The minor T-allele of the MUC5B promoter polymorphism rs35705950 is strongly associated with idiopathic pulmonary fibrosis (IPF). However, conflicting results have been reported on the relationship between the MUC5B minor allele and survival and it is unknown whether a specific subgroup of IPF patients might benefit from MUC5B minor allele carriage. We investigated the association between MUC5B rs35705950, survival and patient characteristics in a real-world population of European IPF patients. METHODS: In this retrospective study, 1751 patients with IPF from 8 European centres were included. MUC5B rs35705950 genotype, demographics, clinical characteristics at diagnosis and survival data were analysed. RESULTS: In a multi-variate Cox proportional hazard model the MUC5B minor allele was a significant independent predictor of survival when adjusted for age, sex, high resolution computed tomography pattern, smoking behaviour and pulmonary function tests in IPF. MUC5B minor allele carriers were significantly older at diagnosis (p = 0.001). The percentage of MUC5B minor allele carriers increased significantly with age from 44% in patients aged <56 year, to 63% in patients aged >75. In IPF patients aged <56, the MUC5B minor allele was not associated with survival. In IPF patients aged ≥56, survival was significantly better for MUC5B minor allele carriers (45 months [CI: 42-49]) compared to non-carriers (29 months [CI: 26-33]; p = 4 × 10-12 ). CONCLUSION: MUC5B minor allele carriage associates with a better median transplant-free survival of 16 months in the European IPF population aged over 56 years. MUC5B genotype status might aid disease prognostication in clinical management of IPF patients.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Idoso , Estudos Retrospectivos , Fibrose Pulmonar Idiopática/genética , Polimorfismo Genético , Genótipo , Alelos , Mucina-5B/genética , Predisposição Genética para Doença
20.
Am J Respir Crit Care Med ; 206(9): 1081-1095, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776514

RESUMO

Rationale: MUC5AC (mucin 5AC, oligomeric gel-forming) and MUC5B (mucin 5B, oligomeric gel-forming) are the predominant secreted polymeric mucins in mammalian airways. They contribute differently to the pathogenesis of various muco-obstructive and interstitial lung diseases, and their genes are separately regulated, but whether they are packaged together or in separate secretory granules is not known. Objectives: To determine the packaging of MUC5AC and MUC5B within individual secretory granules in mouse and human airways under varying conditions of inflammation and along the proximal-distal axis. Methods: Lung tissue was obtained from mice stimulated to upregulate mucin production by the cytokines IL-1ß and IL-13 or by porcine pancreatic elastase. Human lung tissue was obtained from donated normal lungs, biopsy samples of transplanted lungs, and explanted lungs from subjects with chronic obstructive pulmonary disease. MUC5AC and MUC5B were labeled with antibodies from different animal species or, in mice only, by transgenic chimeric mucin-fluorescent proteins and imaged using widefield deconvolution or Airyscan fluorescence microscopy. Measurements and Main Results: In both mouse and human airways, most secretory granules contained both mucins interdigitating within the granules. Smaller numbers of granules contained MUC5B alone, and even fewer contained MUC5AC alone. Conclusions: MUC5AC and MUC5B are variably stored both in the same and in separate secretory granules of both mice and humans. The high fraction of granules containing both mucins under a variety of conditions makes it unlikely that their secretion can be differentially controlled as a therapeutic strategy. This work also advances knowledge of the packaging of mucins within secretory granules to understand mechanisms of epithelial stress in the pathogenesis of chronic lung diseases.


Assuntos
Mucina-5B , Doença Pulmonar Obstrutiva Crônica , Humanos , Camundongos , Animais , Suínos , Mucina-5AC , Pulmão/metabolismo , Vesículas Secretórias/metabolismo , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA