Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
1.
Nature ; 580(7802): 210-215, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269352

RESUMO

Biological materials, such as bones, teeth and mollusc shells, are well known for their excellent strength, modulus and toughness1-3. Such properties are attributed to the elaborate layered microstructure of inorganic reinforcing nanofillers, especially two-dimensional nanosheets or nanoplatelets, within a ductile organic matrix4-6. Inspired by these biological structures, several assembly strategies-including layer-by-layer4,7,8, casting9,10, vacuum filtration11-13 and use of magnetic fields14,15-have been used to develop layered nanocomposites. However, how to produce ultrastrong layered nanocomposites in a universal, viable and scalable manner remains an open issue. Here we present a strategy to produce nanocomposites with highly ordered layered structures using shear-flow-induced alignment of two-dimensional nanosheets at an immiscible hydrogel/oil interface. For example, nanocomposites based on nanosheets of graphene oxide and clay exhibit a tensile strength of up to 1,215 ± 80 megapascals and a Young's modulus of 198.8 ± 6.5 gigapascals, which are 9.0 and 2.8 times higher, respectively, than those of natural nacre (mother of pearl). When nanosheets of clay are used, the toughness of the resulting nanocomposite can reach 36.7 ± 3.0 megajoules per cubic metre, which is 20.4 times higher than that of natural nacre; meanwhile, the tensile strength is 1,195 ± 60 megapascals. Quantitative analysis indicates that the well aligned nanosheets form a critical interphase, and this results in the observed mechanical properties. We consider that our strategy, which could be readily extended to align a variety of two-dimensional nanofillers, could be applied to a wide range of structural composites and lead to the development of high-performance composites.


Assuntos
Materiais Biomiméticos/química , Materiais Biomiméticos/síntese química , Nanocompostos/química , Resistência à Tração , Módulo de Elasticidade , Grafite/química , Hidrogéis/química , Nácar/química
2.
Proc Natl Acad Sci U S A ; 119(31): e2118868119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35878024

RESUMO

Biological materials such as nacre have evolved microstructural design principles that result in outstanding mechanical properties. While nacre's design concepts have led to bio-inspired materials with enhanced fracture toughness, the microstructural features underlying the remarkable damping properties of this biological material have not yet been fully explored in synthetic composites. Here, we study the damping behavior of nacre-like composites containing mineral bridges and platelet asperities as nanoscale structural features within its brick-and-mortar architecture. Dynamic mechanical analysis was performed to experimentally elucidate the role of these features on the damping response of the nacre-like composites. By enhancing stress transfer between platelets and at the brick/mortar interface, mineral bridges and nano-asperities were found to improve the damping performance of the composite to levels that surpass many biological and man-made materials. Surprisingly, the improved properties are achieved without reaching the perfect organization of the biological counterparts. Our nacre-like composites display a loss modulus 2.4-fold higher than natural nacre and 1.4-fold more than highly dissipative natural fiber composites. These findings shed light on the role of nanoscale structural features on the dynamic mechanical properties of nacre and offer design concepts for the manufacturing of bio-inspired composites for high-performance damping applications.


Assuntos
Materiais Biomiméticos , Nácar , Minerais/química
3.
Proc Natl Acad Sci U S A ; 119(31): e2120021119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881808

RESUMO

Protein based composites, such as nacre and bone, show astounding evolutionary capabilities, including tunable physical properties. Inspired by natural composites, we studied assembly of atomistically thin inorganic sheets with genetically engineered polymeric proteins to achieve mechanically compliant and ultra-tough materials. Although bare inorganic nanosheets are brittle, we designed flexible composites with proteins, which are insensitive to flaws due to critical structural length scale (∼2 nm). These proteins, inspired by squid ring teeth, adhere to inorganic sheets via secondary structures (i.e., ß-sheets and α-helices), which is essential for producing high stretchability (59 ± 1% fracture strain) and toughness (54.8 ± 2 MJ/m3). We find that the mechanical properties can be optimized by adjusting the protein molecular weight and tandem repetition. These exceptional mechanical responses greatly exceed the current state-of-the-art stretchability for layered composites by over a factor of three, demonstrating the promise of engineering materials with reconfigurable physical properties.


Assuntos
Materiais Biomiméticos , Proteínas , Materiais Biomiméticos/química , Engenharia Genética , Nácar/química , Polímeros/química , Conformação Proteica , Proteínas/química , Proteínas/genética , Sequências de Repetição em Tandem
4.
Small ; 20(5): e2304183, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37759411

RESUMO

Mollusks, as well as many other living organisms, have the ability to shape mineral crystals into unconventional morphologies and to assemble them into complex functional mineral-organic structures, an observation that inspired tremendous research efforts in scientific and technological domains. Despite these, a biochemical toolkit that accounts for the formation of the vast variety of the observed mineral morphologies cannot be identified yet. Herein, phase-field modeling of molluscan nacre formation, an intensively studied biomineralization process, is used to identify key physical parameters that govern mineral morphogenesis. Manipulating such parameters, various nacre properties ranging from the morphology of a single mineral building block to that of the entire nacreous assembly are reproduced. The results support the hypothesis that the control over mineral morphogenesis in mineralized tissues happens via regulating the physico-chemical environment, in which biomineralization occurs: the organic content manipulates the geometric and thermodynamic boundary conditions, which in turn, determine the process of growth and the form of the biomineral phase. The approach developed here has the potential of providing explicit guidelines for the morphogenetic control of synthetically formed composite materials.


Assuntos
Nácar , Animais , Nácar/química , Minerais/química , Moluscos , Biomineralização , Fenômenos Físicos , Carbonato de Cálcio/química
5.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33833057

RESUMO

Structural characterization of biologically formed materials is essential for understanding biological phenomena and their enviro-nment, and for generating new bio-inspired engineering concepts. For example, nacre-the inner lining of some mollusk shells-encodes local environmental conditions throughout its formation and has exceptional strength due to its nanoscale brick-and-mortar structure. This layered structure, comprising alternating transparent aragonite (CaCO3) tablets and thinner organic polymer layers, also results in stunning interference colors. Existing methods of structural characterization of nacre rely on some form of cross-sectional analysis, such as scanning or transmission electron microscopy or polarization-dependent imaging contrast (PIC) mapping. However, these techniques are destructive and too time- and resource-intensive to analyze large sample areas. Here, we present an all-optical, rapid, and nondestructive imaging technique-hyperspectral interference tomography (HIT)-to spatially map the structural parameters of nacre and other disordered layered materials. We combined hyperspectral imaging with optical-interference modeling to infer the mean tablet thickness and its disorder in nacre across entire mollusk shells from red and rainbow abalone (Haliotis rufescens and Haliotis iris) at various stages of development. We observed that in red abalone, unexpectedly, nacre tablet thickness decreases with age of the mollusk, despite roughly similar appearance of nacre at all ages and positions in the shell. Our rapid, inexpensive, and nondestructive method can be readily applied to in-field studies.


Assuntos
Exoesqueleto/química , Gastrópodes/metabolismo , Nácar/análise , Imagem Óptica/métodos , Exoesqueleto/metabolismo , Animais , Gastrópodes/citologia , Imagem Óptica/instrumentação , Imagem Óptica/normas , Sensibilidade e Especificidade
6.
Luminescence ; 39(3): e4688, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38444125

RESUMO

Nano-biocomposites of inorganic and organic components wereprepared to produce long-persistent phosphorescent artificial nacre-like materials. Biodegradable polylactic acid (PLA), graphene oxide (GO), and nanoparticles (13-20 nm) of lanthanide-doped aluminate pigment (NLAP) were used in a simple production procedure of an organic/inorganic hybrid nano-biocomposite. Both polylactic acid and GO nanosheets were chemically modified to form covalent and hydrogen bonding. The high toughness, good tensile strength, and great endurance of those bonds were achieved by their interactions at the interfaces. Long-persistent and reversible photoluminescence was shown by the prepared nacre substrates. Upon excitation at 365 nm, the nacre substrates generated an emission peak at 517 nm. When ultraviolet light was shone on luminescent nacres, they displayed a bright green colour. The high superhydrophobicity of the generated nacres was obtained without altering their mechanical characteristics.


Assuntos
Grafite , Nácar , Poliésteres
7.
J Struct Biol ; 215(2): 107956, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36934975

RESUMO

Molluscs rapidly repair the damaged shells to prevent further injury, which is vital for their survival after physical or biological aggression. However, it remains unclear how this process is precisely controlled. In this study, we applied scanning electronic microscope and histochemical analysis to examine the detailed shell regeneration process in the pearl oyster Pinctada fucata. It was found that the shell damage caused the mantle tissue to retract, which resulted in relocation of the partitioned mantle zones with respect to their correspondingly secreting shell layers. As a result, the relocated mantle tissue dramatically altered the shell morphology by initiating de novo precipitation of prismatic layers on the former nacreous layers, leading to the formation of sandwich-like "prism-nacre-prism-nacre" structure. Real-time PCR revealed the up-regulation of the shell matrix protein genes, which was confirmed by the thermal gravimetric analysis of the newly formed shell. The increased matrix secretion might have led to the change of CaCO3 precipitation dynamics which altered the mineral morphology and promoted shell formation. Taken together, our study revealed the close relationship between the physiological activities of the mantle tissue and the morphological change of the regenerated shells.


Assuntos
Nácar , Pinctada , Animais , Pinctada/metabolismo , Exoesqueleto/metabolismo , Minerais/metabolismo , Proteínas/metabolismo
8.
Acc Chem Res ; 55(11): 1492-1502, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35588442

RESUMO

Using a limited selection of ordinary components and at ambient temperature, nature has managed to produce a wide range of incredibly diverse materials with astonishingly elegant and complex architectures. Probably the most famous example is nacre, or mother-of-pearl, the inner lining of the shells of abalone and certain other mollusks. Nacre is 95% aragonite, a hard but brittle calcium carbonate mineral, that exhibits fracture toughness exceedingly greater than that of pure aragonite, when tested in the direction perpendicular to the platelets. No human-made composite outperforms its constituent materials by such a wide margin. Nature's unique ability to combine the desirable properties of components into a material that performs significantly better than the sum of its parts has sparked strong interest in bioinspired materials design.Inspired by this complex hierarchical architecture, many processing routes have been proposed to replicate one or several of these features. New processing techniques point to a number of laboratory successes that hold promise in mimicking nacre. We pioneered one of them, ice templating, in 2006. When a suspension of particles is frozen, particles are rejected by the growing ice crystals and concentrate in the space between the crystals. After the ice is freeze-dried, the resulting scaffold is a porous body that can eventually be pressed to increase the density and then be infiltrated with a second phase, providing multilayered, lamellar complex composites with a microstructure reminiscent of nacre. The composites exhibit a marked crack deflection during crack propagation, enhancing the damage resistance of the materials, offering an interesting trade-off of strength and toughness.Freezing as a path to build complex composites has turned out to be a rich line of research and development. Understanding and controlling the freezing routes and associated phenomena has become a multidisciplinary endeavor. A step forward in the complexity was achieved with the use of anisotropic particles. Ice-induced segregation and alignment of platelets can yield dense, inorganic composites (nacre-like alumina) with a complex architecture and microstructure, replicating several of the morphological features of nacre. Now, a different class of complex composites is quickly arising: engineered living materials, developed in the soft matter and biology communities. The material-agnostic nature of the freezing routes, the use of an aqueous system, the absence of organic solvents, and the low temperatures being used are all strong assets for the development of such complex composites. More complex building blocks, such as cells or bacteria, can be frozen. Understanding the fundamental mechanisms controlling the interactions between the ice crystals and the objects as well as the interactions between the soft objects themselves and their fate is essential in this context.In this Account, we highlight our efforts over the past decade to achieve the controlled synthesis of nacre-like composites and understand the associated processes and properties. We describe the unique hierarchical and chemical structure of nacre and the fabrication strategies for processing nacre-like composites. We also try to explain why natural materials work so well and see how we can implement these lessons in synthetic composites. Finally, we provide an outlook on the new trends and ongoing challenges in this field. We hope that this Account will inspire future developments in the field of ice templating and bioinspired materials.


Assuntos
Materiais Biomiméticos , Nácar , Carbonato de Cálcio/química , Congelamento , Gelo , Nácar/química
9.
J Nanobiotechnology ; 21(1): 259, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37550715

RESUMO

Autogenous bone grafting has long been considered the gold standard for treating critical bone defects. However, its use is plagued by numerous drawbacks, such as limited supply, donor site morbidity, and restricted use for giant-sized defects. For this reason, there is an increasing need for effective bone substitutes to treat these defects. Mollusk nacre is a natural structure with outstanding mechanical property due to its notable "brick-and-mortar" architecture. Inspired by the nacre architecture, our team designed and fabricated a nacre-mimetic cerium-doped layered nano-hydroxyapatite/chitosan layered composite scaffold (CeHA/CS). Hydroxyapatite can provide a certain strength to the material like a brick. And as a polymer material, chitosan can slow down the force when the material is impacted, like an adhesive. As seen in natural nacre, the combination of these inorganic and organic components results in remarkable tensile strength and fracture toughness. Cerium ions have been demonstrated exceptional anti-osteoclastogenesis capabilities. Our scaffold featured a distinct layered HA/CS composite structure with intervals ranging from 50 to 200 µm, which provided a conducive environment for human bone marrow mesenchymal stem cell (hBMSC) adhesion and proliferation, allowing for in situ growth of newly formed bone tissue. In vitro, Western-blot and qPCR analyses showed that the CeHA/CS layered composite scaffolds significantly promoted the osteogenic process by upregulating the expressions of osteogenic-related genes such as RUNX2, OCN, and COL1, while inhibiting osteoclast differentiation, as indicated by reduced TRAP-positive osteoclasts and decreased bone resorption. In vivo, calvarial defects in rats demonstrated that the layered CeHA/CS scaffolds significantly accelerated bone regeneration at the defect site, and immunofluorescence indicated a lowered RANKL/OPG ratio. Overall, our results demonstrate that CeHA/CS scaffolds offer a promising platform for bone regeneration in critical defect management, as they promote osteogenesis and inhibit osteoclast activation.


Assuntos
Quitosana , Nácar , Ratos , Humanos , Animais , Quitosana/farmacologia , Quitosana/química , Durapatita/farmacologia , Durapatita/química , Alicerces Teciduais/química , Nácar/farmacologia , Regeneração Óssea , Osteogênese , Transdução de Sinais , Diferenciação Celular , Engenharia Tecidual/métodos
10.
Nano Lett ; 22(21): 8711-8718, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36315062

RESUMO

The widespread use of X-rays has prompted a surge in demand for effective and wearable shielding materials. However, the Pb-containing materials currently used to shield X-rays are commonly bulky, hard, and biotoxic, severely limiting their applications in wearable scenarios. Inspired by the nacre, we report on ultralight, superelastic, and nontoxic X-ray shielding nanofibrous aerogels with microarch-engineered brick/mortar structure by combining polyurethane/Bi2O3 nanofibers (brick) and Gd2O3 nanosheets (mortar). The synergistic attenuation effect toward X-rays from the reflection of microarches and absorption of Bi/Gd elements significantly enhances the shielding efficiency of aerogels, and microarches/robust nanofibrous networks endow the materials with superelasticity. The resultant materials exhibit integrated properties of superior X-ray shielding efficiency (91-100%), ultralow density (52 mg cm-3), large stretchability of 800% reversible elongation, and high water vapor permeability (8.8 kg m-2 day-1). The fabrication of such novel aerogels paves the way for developing next-generation effective and wearable X-ray shielding materials.


Assuntos
Nácar , Nanofibras , Nácar/química , Nanofibras/química , Raios X , Biomimética , Bismuto
11.
J Struct Biol ; 214(2): 107854, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35421530

RESUMO

In the present study, we investigated the shell microstructures of the gastropod European abalone Haliotis tuberculata in order to clarify the complex spatial distribution of the different mineral phases. Our studies were carried out with a standardized methodology on thirty adult European abalone H. tuberculata (5-6 cm long) composed of 15 wild individuals and 15 individuals taken from the France Haliotis hatchery. The macroscopic (binocular) and microscopic observations coupled with Fourier Transform Infrared Spectroscopy (FTIR) and Raman vibrational analysis allowed to unambiguously detect, identify and localize calcite and aragonite. For the first time it has been shown that calcite is present in 100% of farmed and wild adult shell. The microstructural details of the calcite-aragonite interfaces were revealed by using both confocal micro-Raman mapping and Scanning Electron Microscopy (SEM) observations. Calcite zones are systematically found in the spherulitic layer without direct contact with the nacreous layer. The calcite area - nacreous layer interface is made of a thin spherulitic layer with variable thickness from a few micrometers to several millimeters. In order to contribute to a better understanding of the biomineralization process, a model explaining the hierarchical arrangement of the different phases of calcium carbonate is presented and discussed. Finally, it has been shown that these calcitic zones can be connected to each other within the shells and that their spatial distributions correspond to streaks perpendicular to the direction of length growth.


Assuntos
Gastrópodes , Nácar , Animais , Biomineralização , Carbonato de Cálcio/química , Gastrópodes/química , Humanos , Nácar/química , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Small ; 18(18): e2200461, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35384313

RESUMO

Two-dimensional (2D) lamellar membranes have attracted increasing attention for efficient water purification. However, the low water-permeability, structural failure in aqua and high production cost have significantly restricted their practical large-scale applications. Inspired by the structures of glomerular filtration barrier (GFB) and nacre, a high-performance biomimic membrane via supramolecular-mediated intercalation assembly is reported, where rod-shaped cyclodextrin (CD) functionalized attapulgite (ATP-CD) is intercalated into CD-modified graphene oxide (GO-CD) lamellar channels, followed by locking adjacent ATP-CD and GO-CD through tannic acid (TA) and CD supramolecular networks. The formed GFB-like heterostructure endows the membrane with excellent water transport capability and the bionic "brick and mortar" nacre configuration boosts its anti-swelling stability simultaneously. The heterostructured GO membranes (≈100 nm) fabricated in this way exhibit a good water permeability of 55.6 L m-2  h-1  bar-1 (≈20-fold higher than GO membrane) maintaining excellent dye rejection of >99% during 480 h immersion. Given the low-cost materials (ATP, CD, and TA) and the modification generality, this economic strategy can hopefully achieve large-scale membrane fabrication and afford high applicability, which promotes the practical engineering applications of such 2D material membranes.


Assuntos
Ciclodextrinas , Grafite , Nácar , Trifosfato de Adenosina , Grafite/química , Água
13.
Soft Matter ; 18(47): 9057-9068, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36416498

RESUMO

In recent years, graphene oxide (GO)-based multi-responsive actuators have attracted great interest due to their board application in soft robots, artificial muscles, and intelligent mechanics. However, most GO-based actuators suffer from low mechanical strength. Inspired by the natural nacre, a graphene oxide-bacterial cellulose (GO-BC) film with a "brick and mortar" structure is constructed. Compared with the pure GO film, the tensile strength of the GO-BC film is increased by about 2 times. Benefiting from the rich oxygen-containing functional groups of GO sheets and BC nanofibers, the cracked GO-BC films can be pasted together with the help of water, which can be used to construct GO-BC films with multi-dimensional complex structures. Subsequently, a GO-BC/polymer actuator capable of responding to various stimuli is successfully developed through a complementary strategy of "active layer and inert layer". Further, based on the water-assisted pasting properties of GO-BC films, a series of GO-BC/polymer actuators with 3D complex deformations can be fabricated by pasting together two or more GO-BC/polymer actuators. Finally, the potential applications of multi-response GO-BC/polymer actuators in flexible robots, artificial muscles, and smart devices are demonstrated through a series of applications such as bionic sunflowers, octopus-inspired soft tentacles, and smart curtains.


Assuntos
Nácar , Celulose , Água
14.
Luminescence ; 37(9): 1482-1491, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35859299

RESUMO

Nacre structure has aragonite polygonal tablets, tessellated to generate separate layers, and exhibits adjacent layers and tablets within a layer bonded by a biopolymer. Here, we report the development of a nacre-like organic/inorganic hybrid nanocomposite coating consisting of epoxy tablets as well as rare-earth-activated aluminate and graphene oxide tablet/tablet interfaces. The lanthanide-activated aluminate was prepared using a high temperature solid-state approach followed by top-down technology to provide the phosphor nanoparticles (PNPs). Graphene oxide nanosheets were prepared from graphite. The prepared epoxy/graphene/phosphor nanocomposites were applied onto mild steel. Covalent bonds were formed between epoxy polymer chains resin and the graphene oxide nanosheets. These interface interactions resulted in a tough surface, high tensile strength, and excellent durability. The use of phosphor in the nanoparticle form guaranteed that no agglomerations were produced throughout the hardening procedure by allowing better distribution of PNPs in the nacre-like matrix. The generated nacre-like substrates displayed reversible fluorescence. The excitation of the white coloured nacre-like coats at 367 nm resulted in a green emission band at 518 nm as designated by the Commission Internationale de l'éclairage (CIE) Laboratory and photoluminescence spectra. Various analysis methods were utilized to inspect the surface structure and elemental composition of the nacre-like coats. An improved hydrophobicity and mechanical characteristics were detected when increasing the phosphor concentration. Due to the astonishing characteristics of the prepared nacre-like composite paint, both ceramics and metals can benefit from the current simple strategy.


Assuntos
Grafite , Elementos da Série dos Lantanídeos , Nácar , Nanocompostos , Nanopartículas , Resinas Epóxi , Grafite/química , Nácar/química , Nanocompostos/química
15.
Nano Lett ; 21(7): 3254-3261, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33739112

RESUMO

Inspired by the hierarchically ordered "brick and mortar" (BM) architecture of natural nacre, in this study a rational assembly of boron nitride (BN) nanosheets was introduced into a mixture of trimethylolpropane triglycidyl ether (TTE) and soy protein isolate (SPI), and a strong and multifunctional SPI-based nanocomposite film with multinetwork structure was synthesized. At a low BN loading (<0.5%), the resulting multifunctional film was flexible, antiultraviolet, and nearly transparent and also displayed good thermal diffusion ability and exhibited an excellent combination of high tensile strength (36.4 MPa) and thermal conductivity (TC, 2.40 W·m-1·K-1), surpassing the performances of various types of petroleum-based plastics (displayed a tensile strength ranging from 1.9 to 21 MPa and TC ranging from 0.55-2.13 W·m-1·K-1), including nine different types of materials currently utilized for mobile phone shells, suggesting its vast potential in practical applications.


Assuntos
Telefone Celular , Nácar , Nanocompostos , Temperatura Alta , Proteínas de Soja
16.
Molecules ; 27(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35566000

RESUMO

Nacre is a biomaterial that has shown osteoinductive and osteoconductive properties in vitro and in vivo. These properties make nacre a material of interest for inducing bone regeneration. However, information is very limited regarding the introduction of nacre to dental implant surgery for promoting osteogenesis. This study investigated the potential of nacre powder for peri-implant bone regeneration in a porcine model. Ninety-six dental implants were placed into the tibia of twelve male domestic pigs. The dental implants were coated with nacre powder from the giant oyster before implantation. Implantations without nacre powder were used as control groups. Euthanization took place at 2, 4 and 6 weeks after implantation, after which we measured bone-to-implant contact (BIC) and bone volume density (BVD) of the implanted bone samples using micro-computed tomography (micro-CT), and examined the histology of the surrounding bone using histological sections stained with Stevenel's blue and Alizarin red S. The micro-CT analyses showed that the BIC of dental implantations with nacre powder were significantly higher than those without nacre powder, by 7.60%. BVD of implantations with nacre powder were significantly higher than those without nacre powder, by 12.48% to 13.66% in cortical bone, and by 3.37% to 6.11% in spongy bone. Histological study revealed more peri-implant bone regeneration toward the surface of the dental implants after implantation with nacre powder. This was consistent with the micro-CT results. This study demonstrates the feasibility of using nacre to promote peri-implant bone regeneration in dental implantation.


Assuntos
Implantes Dentários , Nácar , Animais , Masculino , Osseointegração , Pós , Propriedades de Superfície , Suínos , Titânio , Microtomografia por Raio-X/métodos
17.
Angew Chem Int Ed Engl ; 61(13): e202114140, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35044036

RESUMO

Layer-by-layer (LbL) assembly is a widely used technique for the self-assembly of layered nanocomposites from clay sheets, carbon nanotubes, graphene oxide, nanoparticles, and other materials. Other approaches for fabricating layered nanocomposites include vacuum-assisted filtration and blade coating. They are simpler than LbL assembly, but they all introduce voids into the layered structure, thereby reducing the performance of the resulting nanocomposites. A team from Beihang University evaluated the void structure in Ti3 C2 Tx MXene composites and found that the fundamental problem with voids can be solved by the sequential nanoscale bonding of MXEne platelets with sodium carboxymethyl cellulose combined with covalent bridging with borate ions, thereby opening a new path to self-assemble two-dimensional platelets into continuous high-performance layered nanocomposites.


Assuntos
Materiais Biomiméticos , Nácar , Nanocompostos , Nanotubos de Carbono , Materiais Biomiméticos/química , Biomimética , Humanos , Nácar/química , Nanocompostos/química , Nanotubos de Carbono/química
18.
Small ; 17(31): e2100542, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34174162

RESUMO

Electronic skins (e-skins) have attracted great attention for their applications in disease diagnostics, soft robots, and human-machine interaction. The integration of high sensitivity, low detection limit, large stretchability, and multiple stimulus response capacity into a single e-skin remains an enormous challenge. Herein, inspired by the structure of nacre, an ultra-stretchable and multifunctional e-skin with tunable strain detection range based on nacre-mimetic multi-layered silver nanowires /reduced graphene oxide /thermoplastic polyurethane mats is fabricated. The e-skin possesses extraordinary strain response performance with a tunable detection range (50 to 200% strain), an ultralow response limit (0.1% strain), a high sensitivity (gauge factor up to 1902.5), a fast response time (20 ms), and an excellent stability (stretching/releasing test of 11 000 cycles). These excellent response behaviors enable the e-skin to accurately monitor full-range human body motions. Additionally, the e-skin can detect relative humidity quickly and sensitively through a reversible physical adsorption/desorption of water vapor, and the assembled e-skin array exhibits excellent performance in noncontact sensing. The tunable and multifunctional e-skins show promising applications in motion monitoring and contact-noncontact human machine interaction.


Assuntos
Nácar , Nanofios , Dispositivos Eletrônicos Vestíveis , Eletrônica , Humanos , Movimento (Física)
19.
J Exp Biol ; 224(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34291802

RESUMO

The dorsal wings of the mother-of-pearl butterfly, Protogoniomorpha parhassus, display an angle-dependent pink, structural color. This effect is created by light interference in the lower lamina of the wing scales, which acts as an optical thin film. The scales feature extremely large windows that enhance the scale reflectance, because the upper lamina of ridges and cross-ribs is very sparse. Characteristic for thin film reflectors, the spectral shape of the reflected light strongly depends on the angle of light incidence, shifting from pink to yellow when changing the angles of illumination and observation from normal to skew, and also the degree of polarization strongly varies. The simultaneous spectral and polarization changes serve a possibly widespread, highly effective system among butterflies for intraspecific communication during flight.


Assuntos
Borboletas , Nácar , Animais , Cor , Feminino , Humanos , Iridescência , Mães , Pigmentação , Asas de Animais
20.
Fish Shellfish Immunol ; 113: 208-215, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33864946

RESUMO

The Smad protein family is an important medium for transducing BMP-Smads signals, and which have been proved that their important role in regulating shell biomineralization in Pinctada fucata martensii in our previous study. The members of TGF-ß superfamily were involved in innate immunity in vertebrates and invertebrates, and Smad regulatory networks construct a balanced immune system. However, little is known about the role of Smad1/5 in immunity in P. f. martensii. The present study shows that the tissue distribution and the expression profiles of Smad1/5 at developmental stages suggested its wide distribution and crucial role in development at embryonic stages other than larval stage; the increased expression of bone morphogenetic proteins 2 (BMP2), Smad4, Smad1/5 and MSX mRNAs at mantle tissue after LPS and Poly (I:C) challenged implied the potential immune role of Smad1/5 and BMP2-Smad signals to defense against bacterial and virus infections; the reduced expression of immune gene nuclear factor kappa-B (NF-κB), matrix metalloproteinase (MMP), interleukin 17 (IL-17), CuZn-superoxide dismutase (CuZn-SOD), tissue inhibitors of metalloproteinase (TIMP) and lipopolysaccharide-induced TNF-α factor (LITAF) mRNA following knockdown of Smad1/5 indicated that Smad1/5 can regulate their expression via BMP2-Smads pathway in the immunity process; the up-regulated expression of Smad1/5 and BMP2-Smad signals genes, and immune genes during wound healing indicated that Smad1/5 and BMP2-Smad signals genes may be involved in wound healing collaborated with immune genes via a different and complex Smads signaling pathway. These results indicated Smad1/5 could regulate innate immunity via BMP2-Smads signal pathway, and which provided new insights into the relationship between BMP2-Smads signal pathway and mantle immunity.


Assuntos
Imunidade Inata/genética , Pinctada/genética , Pinctada/imunologia , Transdução de Sinais/imunologia , Proteínas Smad/imunologia , Animais , Perfilação da Expressão Gênica , Nácar/imunologia , Proteínas Smad/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA