Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 865
Filtrar
1.
Annu Rev Genet ; 53: 313-326, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31424970

RESUMO

Caenorhabditis elegans has long been a laboratory model organism with no known natural pathogens. In the past ten years, however, natural viruses have been isolated from wild-caught C. elegans (Orsay virus) and its relative Caenorhabditis briggsae (Santeuil virus, Le Blanc virus, and Melnik virus). All are RNA positive-sense viruses related to Nodaviridae; they infect intestinal cells and are horizontally transmitted. The Orsay virus capsid structure has been determined and the virus can be reconstituted by transgenesis of the host. Recent use of the Orsay virus has enabled researchers to identify evolutionarily conserved proviral and antiviral genes that function in nematodes and mammals. These pathways include endocytosis through SID-3 and WASP; a uridylyltransferase that destabilizes viral RNAs by uridylation of their 3' end; ubiquitin protein modifications and turnover; and the RNA interference pathway, which recognizes and degrades viral RNA.


Assuntos
Caenorhabditis elegans/virologia , Interações Hospedeiro-Patógeno/genética , Nodaviridae/fisiologia , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , RNA de Helmintos/metabolismo , Tropismo Viral
2.
Cell ; 147(6): 1248-56, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22119442

RESUMO

Induced expression of the Flock House virus in the soma of C. elegans results in the RNAi-dependent production of virus-derived, small-interfering RNAs (viRNAs), which in turn silence the viral genome. We show here that the viRNA-mediated viral silencing effect is transmitted in a non-Mendelian manner to many ensuing generations. We show that the viral silencing agents, viRNAs, are transgenerationally transmitted in a template-independent manner and work in trans to silence viral genomes present in animals that are deficient in producing their own viRNAs. These results provide evidence for the transgenerational inheritance of an acquired trait, induced by the exposure of animals to a specific, biologically relevant physiological challenge. The ability to inherit such extragenic information may provide adaptive benefits to an animal.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/virologia , Herança Extracromossômica , Nodaviridae/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/imunologia , Genoma Viral , Nodaviridae/metabolismo , Interferência de RNA
3.
J Virol ; 98(3): e0182023, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38329331

RESUMO

Multi-segmented viruses often multimerize their genomic segments to ensure efficient and stoichiometric packaging of the correct genetic cargo. In the bipartite Nodaviridae family, genome heterodimerization is also observed and conserved among different species. However, the nucleotide composition and biological function for this heterodimer remain unclear. Using Flock House virus as a model system, we developed a next-generation sequencing approach ("XL-ClickSeq") to probe heterodimer site sequences. We identified an intermolecular base-pairing site which contributed to heterodimerization in both wild-type and defective virus particles. Mutagenic disruption of this heterodimer site exhibited significant deficiencies in genome packaging and encapsidation specificity to viral genomic RNAs. Furthermore, the disruption of this intermolecular interaction directly impacts the thermostability of the mature virions. These results demonstrate that the intermolecular RNA-RNA interactions within the encapsidated genome of an RNA virus have an important role on virus particle integrity and thus may impact its transmission to a new host.IMPORTANCEFlock House virus is a member of Nodaviridae family of viruses, which provides a well-studied model virus for non-enveloped RNA virus assembly, cell entry, and replication. The Flock House virus genome consists of two separate RNA molecules, which can form a heterodimer upon heating of virus particles. Although similar RNA dimerization is utilized by other viruses (such as retroviruses) as a packaging mechanism and is conserved among Nodaviruses, the role of heterodimerization in the Nodavirus replication cycle is unclear. In this research, we identified the RNA sequences contributing to Flock House virus genome heterodimerization and discovered that such RNA-RNA interaction plays an essential role in virus packaging efficiency and particle integrity. This provides significant insight into how the interaction of packaged viral RNA may have a broader impact on the structural and functional properties of virus particles.


Assuntos
Dimerização , Genoma Viral , Nodaviridae , RNA Viral , Termodinâmica , Empacotamento do Genoma Viral , Vírion , Animais , Pareamento de Bases/genética , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Nodaviridae/química , Nodaviridae/genética , Nodaviridae/crescimento & desenvolvimento , Infecções por Vírus de RNA/transmissão , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/virologia , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Empacotamento do Genoma Viral/genética , Vírion/química , Vírion/genética , Vírion/metabolismo
4.
J Virol ; 98(9): e0090124, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39194240

RESUMO

Nervous necrosis virus (NNV) is a highly neurotropic virus that poses a persistent threat to the survival of multiple fish species. However, its inimitable neuropathogenesis remains largely elusive. To rummage potential partners germane to the nervous system, we investigated the interaction between red-spotted grouper NNV (RGNNV) and grouper brain by immunoprecipitation coupled with mass spectrometry and discerned Nectin1 as a novel host factor subtly involved in viral early invasion events. Nectin1 was abundant in neural tissues and implicated in the inception of tunnel nanotubes triggered by RGNNV. Its overexpression not only dramatically potentiated the replication dynamics of RGNNV in susceptible cells, but also empowered non-sensitive cells to expeditiously capture free virions within 2 min. This potency was impervious to low temperatures but was dose-dependently suppressed by soluble protein or specific antibody of Nectin1 ectodomain, indicating Nectin1 as an attachment receptor for RGNNV. Mechanistically, efficient hijacking of virions by Nectin1 strictly depended on intricate linkages to different modules of viral capsid protein, especially the direct binding between the IgC1 loop and P-domain. More strikingly, despite abortive proliferation in Nectin1-reconstructed CHSE-214 cells, a non-sensitive cell, RGNNV could gain access to the intracellular compartment by capitalizing on Nectin1, thereby inducing canonical cytoplasmic vacuolation. Altogether, our findings delineate a candidate entrance for RGNNV infiltration into the nervous system, which may shed unprecedented insights into the exploration and elucidation of RGNNV pathogenesis.IMPORTANCENervous necrosis virus (NNV) is one of the most virulent pathogens in the aquaculture industry, which inflicts catastrophic damage to ecology, environment, and economy annually around the world. Nevertheless, its idiosyncratic invasion and latency mechanisms pose enormous hardships to epidemic prevention and control. In this study, deploying grouper brain as a natural screening library, a single-transmembrane glycoprotein, Nectin1, was first identified as an emergent functional receptor for red-spotted grouper NNV (RGNNV) that widely allocated in nervous tissues and directly interacted with viral capsid protein through distinct Ig-like loops to bridge virus-host crosstalk, apprehend free virions, and concomitantly propel viral entry. Our findings illuminate the critical role of Nectin1 in RGNNV attachment and entry and provide a potential target for future clinical intervention strategies in the therapeutic race against RGNNV.


Assuntos
Doenças dos Peixes , Nectinas , Nodaviridae , Infecções por Vírus de RNA , Internalização do Vírus , Animais , Nectinas/metabolismo , Nodaviridae/fisiologia , Doenças dos Peixes/virologia , Doenças dos Peixes/metabolismo , Infecções por Vírus de RNA/virologia , Infecções por Vírus de RNA/metabolismo , Infecções por Vírus de RNA/veterinária , Replicação Viral , Ligação Viral , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Encéfalo/virologia , Encéfalo/metabolismo , Vírion/metabolismo , Linhagem Celular
5.
J Virol ; 98(7): e0068624, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38888343

RESUMO

Nervous necrosis virus (NNV), an aquatic RNA virus belonging to Betanodavirus, infects a variety of marine and freshwater fishes, leading to massive mortality of cultured larvae and juveniles and substantial economic losses. The enzyme cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) is widely recognized as a central component in the innate immune response to cytosolic DNA derived from different pathogens. However, little is known about the response of cGAS to aquatic RNA viruses. This study found that Epinephelus coioides cGAS (EccGAS) overexpression inhibited NNV replication, whereas EccGAS silencing promoted NNV replication. The anti-NNV activity of EccGAS was involved in interferon (IFN) signaling activation including tumor necrosis factor receptor-associated factor family member-associated NF-kappa-B activator-binding kinase 1 (TBK1) phosphorylation, interferon regulatory factor 3 (IRF3) nuclear translocation, and the subsequent induction of IFNc and ISGs. Interestingly, NNV employed its capsid protein (CP) or Protein A (ProA) to negatively or positively modulate EccGAS-mediated IFN signaling by simultaneously targeting EccGAS. CP interacted with EccGAS via the arm-P, S-P, and SD structural domains and promoted its polyubiquitination with K48 and K63 linkages in an EcUBE3C (the ubiquitin ligase)-dependent manner, ultimately leading to EccGAS degradation. Conversely, ProA bound to EccGAS and inhibited its ubiquitination and degradation. In regulating EccGAS protein content, CP's inhibitory action was more pronounced than ProA's protective effect, allowing successful NNV replication. These novel findings suggest that NNV CP and ProA dynamically modulate the EccGAS-mediated IFN signaling pathway to facilitate the immune escape of NNV. Our findings shed light on a novel mechanism of virus-host interaction and provide a theoretical basis for the prevention and control of NNV.IMPORTANCEAs a well-known DNA sensor, cGAS is a pivotal component in innate anti-viral immunity to anti-DNA viruses. Although there is growing evidence regarding the function of cGAS in the resistance to RNA viruses, the mechanisms by which cGAS participates in RNA virus-induced immune responses in fish and how aquatic viruses evade cGAS-mediated immune surveillance remain elusive. Here, we investigated the detailed mechanism by which EccGAS positively regulates the anti-NNV response. Furthermore, NNV CP and ProA interacted with EccGAS, regulating its protein levels through ubiquitin-proteasome pathways, to dynamically modulate the EccGAS-mediated IFN signaling pathway and facilitate viral evasion. Notably, NNV CP was identified to promote the ubiquitination of EccGAS via ubiquitin ligase EcUBE3C. These findings unveil a novel strategy for aquatic RNA viruses to evade cGAS-mediated innate immunity, enhancing our understanding of virus-host interactions.


Assuntos
Proteínas do Capsídeo , Doenças dos Peixes , Evasão da Resposta Imune , Imunidade Inata , Nodaviridae , Nucleotidiltransferases , Infecções por Vírus de RNA , Transdução de Sinais , Replicação Viral , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/imunologia , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/imunologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/metabolismo , Interferons/metabolismo , Interferons/imunologia , Bass/imunologia , Bass/virologia , Bass/metabolismo , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia
6.
J Virol ; 97(4): e0006523, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37017532

RESUMO

The establishment of the Orsay virus-Caenorhabditis elegans infection model has enabled the identification of host factors essential for virus infection. Argonautes are RNA interacting proteins evolutionary conserved in the three domains of life that are key components of small RNA pathways. C. elegans encodes 27 argonautes or argonaute-like proteins. Here, we determined that mutation of the argonaute-like gene 1, alg-1, results in a greater than 10,000-fold reduction in Orsay viral RNA levels, which could be rescued by ectopic expression of alg-1. Mutation in ain-1, a known interactor of ALG-1 and component of the RNA-induced silencing complex, also resulted in a significant reduction in Orsay virus levels. Viral RNA replication from an endogenous transgene replicon system was impaired by the lack of ALG-1, suggesting that ALG-1 plays a role during the replication stage of the virus life cycle. Orsay virus RNA levels were unaffected by mutations in the ALG-1 RNase H-like motif that ablate the slicer activity of ALG-1. These findings demonstrate a novel function of ALG-1 in promoting Orsay virus replication in C. elegans. IMPORTANCE All viruses are obligate intracellular parasites that recruit the cellular machinery of the host they infect to support their own proliferation. We used Caenorhabditis elegans and its only known infecting virus, Orsay virus, to identify host proteins relevant for virus infection. We determined that ALG-1, a protein previously known to be important in influencing worm life span and the expression levels of thousands of genes, is required for Orsay virus infection of C. elegans. This is a new function attributed to ALG-1 that was not recognized before. In humans, it has been shown that AGO2, a close relative protein to ALG-1, is essential for hepatitis C virus replication. This demonstrates that through evolution from worms to humans, some proteins have maintained similar functions, and consequently, this suggests that studying virus infection in a simple worm model has the potential to provide novel insights into strategies used by viruses to proliferate.


Assuntos
Proteínas de Caenorhabditis elegans , Nodaviridae , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/virologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Nodaviridae/genética , Nodaviridae/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Replicação Viral/genética , Infecções por Vírus de RNA/virologia , Mutação
7.
J Virol ; 97(1): e0174822, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36633407

RESUMO

Nervous necrosis virus (NNV), a formidable pathogen in marine and freshwater fish, has inflicted enormous financial tolls on the aquaculture industry worldwide. Although capsid protein (CP) is the sole structural protein with pathogenicity and antigenicity, public information on immunodominant regions remains extremely scarce. Here, we employed neutralizing monoclonal antibodies (MAbs) specific for red-spotted grouper NNV (RGNNV) CNPgg2018 in combination with partially overlapping truncated proteins and peptides to identify two minimal B-cell epitope clusters on CP, 122GYVAGFL128 and 227SLYNDSL233. Site-directed mutational analysis confirmed residues Y123, G126, and L128 and residues L228, Y229, N230, D231, and L233 as the critical residues responsible for the direct interaction with ligand, respectively. According to homologous modeling and bioinformatic evaluation, 122GYVAGFL128 is harbored at the groove of the CP junction with strict conservation among all NNV isolates, while 227SLYNDSL233 is localized in proximity to the tip of a viral protrusion having relatively high evolutionary dynamics in different genotypes. Additionally, 227SLYNDSL233 was shown to be a receptor-binding site, since the corresponding polypeptide could moderately suppress RGNNV multiplication by impeding virion entry. In contrast, 122GYVAGFL128 seemed dedicated only to stabilizing viral native conformation and not to assisting initial virus attachment. Altogether, these findings contribute to a novel understanding of the antigenic distribution pattern of NNV and the molecular basis for neutralization, thus advancing the development of biomedical products, especially epitope-based vaccines, against NNV. IMPORTANCE NNV is a common etiological agent associated with neurological virosis in multiple aquatic organisms, causing significant hazards to the host. However, licensed drugs or vaccines to combat NNV infection are very limited to date. Toward the advancement of broad-spectrum prophylaxis and therapeutics against NNV, elucidating the diversity of immunodominant regions within it is undoubtedly essential. Here, we identified two independent B-cell epitopes on NNV CP, followed by the confirmation of critical amino acid residues participating in direct interaction. These two sites were distributed on the shell and protrusion domains of the virion, respectively, and mediated the neutralization exerted by MAbs via drastically distinct mechanisms. Our work promotes new insights into NNV antigenicity as well as neutralization and, more importantly, offers promising targets for the development of antiviral countermeasures.


Assuntos
Bass , Doenças dos Peixes , Nodaviridae , Infecções por Vírus de RNA , Animais , Bass/virologia , Proteínas do Capsídeo/metabolismo , Epitopos de Linfócito B/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Epitopos Imunodominantes , Necrose , Nodaviridae/fisiologia , Infecções por Vírus de RNA/imunologia
8.
J Virol ; 97(6): e0053323, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37255438

RESUMO

Ubiquitination, as one of the most prevalent posttranslational modifications of proteins, enables a tight control of host immune responses. Many viruses hijack the host ubiquitin system to regulate host antiviral responses for their survival. Here, we found that the fish pathogen nervous necrosis virus (NNV) recruited Lateolabrax japonicus E3 ubiquitin ligase ring finger protein 34 (LjRNF34) to inhibit the RIG-I-like receptor (RLR)-mediated interferon (IFN) response via ubiquitinating Lateolabrax japonicus TANK-binding kinase 1 (LjTBK1) and interferon regulatory factor 3 (LjIRF3). Ectopic expression of LjRNF34 greatly enhanced NNV replication and prevented IFN production, while deficiency of LjRNF34 led to the opposite effect. Furthermore, LjRNF34 targeted LjTBK1 and LjIRF3 via its RING domain. Of note, the interactions between LjRNF34 and LjTBK1 or LjIRF3 were conserved in different cellular models derived from fish. Mechanically, LjRNF34 promoted K27- and K48-linked ubiquitination and degradation of LjTBK1 and LjIRF3, which in turn diminished LjTBK1-induced translocation of LjIRF3 from the cytoplasm to the nucleus. Ultimately, NNV capsid protein (CP) was found to bind with LjRNF34, CP induced LjTBK1 and LjIRF3 degradation, and IFN suppression depended on LjRNF34. Our finding demonstrates a novel mechanism by which NNV CP evaded host innate immunity via LjRNF34 and provides a potential drug target for the control of NNV infection. IMPORTANCE Ubiquitination plays an essential role in the regulation of innate immune responses to pathogens. NNV, a type of RNA virus, is the causal agent of a highly destructive disease in a variety of marine and freshwater fish. A previous study reported NNV could hijack the ubiquitin system to manipulate the host's immune responses; however, how NNV utilizes ubiquitination to facilitate its own replication is not well understood. Here, we identified a novel distinct role of E3 ubiquitin ligase LjRNF34 as an IFN antagonist to promote NNV infection. NNV capsid protein utilized LjRNF34 to target LjTBK1 and LjIRF3 for K27- and K48-linked ubiquitination and degradation. Importantly, the interactions between LjRNF34 and CP, LjTBK1, or LjIRF3 are conserved in different cellular models derived from fish, suggesting it is a general immune evasion strategy exploited by NNV to target the IFN response via RNF34.


Assuntos
Proteínas do Capsídeo , Proteínas de Peixes , Imunidade Inata , Infecções por Vírus de RNA , Animais , Proteínas do Capsídeo/genética , Fator Regulador 3 de Interferon/metabolismo , Necrose , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Peixes , Proteínas de Peixes/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Nodaviridae , Infecções por Vírus de RNA/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia
9.
Fish Shellfish Immunol ; 145: 109345, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154761

RESUMO

Type I interferon (IFN) plays a crucial role in the antiviral immune response. Nervous necrosis virus (NNV) and Micropterus salmoides rhabdovirus (MSRV) are the most important viruses in cultured larvae and juveniles, causing great economic losses to fish farming. To better understand the antiviral activities and immunoregulatory role of IFN from orange-spotted grouper (Epinephelus coioides), EcIFNh was cloned from NNV infected sample. EcIFNh has an open reading frame (ORF) of 552 bp and encodes a polypeptide of 183 amino acids. Phylogenetic tree analysis showed that EcIFNh was clustered into the IFNh branch. The tissue distribution analysis revealed that EcIFNh was highly expressed in the liver and brain of healthy orange-spotted grouper. The mRNA levels of EcIFNh were significantly upregulated after poly (I:C) stimulation and NNV or MSRV infection. Furthermore, the promoter of EcIFNh was characterized and significantly activated by EcMDA5, EcMAVS, EcSTING, EcIRF3, and EcIRF7 in the luciferase activity assays. We found that EcIFNh overexpression resisted the replication of NNV and MSRV, while EcIFNh silencing facilitated NNV replication in GB cells. In addition, EcIFNh recombinant protein (rEcIFNh) enhanced the immune response by inducing the expression of ISGs in vivo and in vitro, suggesting the potential application of rEcIFNh for anti-NNV and anti-MSRV. Taken together, our research may offer the foundation for virus-IFN system interaction in orange-spotted grouper.


Assuntos
Bass , Doenças dos Peixes , Nodaviridae , Infecções por Vírus de RNA , Rhabdoviridae , Animais , Filogenia , Proteínas de Peixes/genética , Poli I-C/farmacologia , Necrose , Nodaviridae/fisiologia , Imunidade Inata
10.
Fish Shellfish Immunol ; 144: 109295, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101589

RESUMO

The leopard coral grouper (Plectropomus leopardus), which has become increasingly popular in consumption due to its bright body color and great nutritional, holds a high economic and breeding potential. However, in recent years, the P.leopardus aquaculture industry has been impeded by the nervous necrosis virus (NNV) outbreak, leading to widespread mortality among fry and juvenile grouper. However, the genetic basis of resistance to NNV in P. leopardus remains to be investigated. In the present study, we conducted a genome-wide association analysis (GWAS) on 100 resistant and 100 susceptible samples to discover variants and potential genes linked with NNV resistance. For this study, 157,926 high-quality single nucleotide polymorphisms (SNPs) based on whole genome resequencing were discovered, and eighteen SNPs loci linked to disease resistance were discovered. We annotated six relevant candidate genes, including sik2, herc2, pip5k1c, npr1, mybpc3, and arhgap9, which showed important roles in lipid metabolism, oxidative stress, and neuronal survival. In the brain tissues of resistant and susceptible groups, candidate genes against NNV infection showed significant differential expression. The results indicate that regulating neuronal survival or pathways involved in lipid metabolism may result in increased resistance to NNV. Understanding the molecular mechanisms that lead to NNV resistance will be beneficial for the growth of the P. leopardus breeding sector. Additionally, the identified SNPs could be employed as biomarkers of disease resistance in P. leopardus, which will facilitate the selective breeding of grouper.


Assuntos
Antozoários , Bass , Nodaviridae , Infecções por Vírus de RNA , Animais , Bass/genética , Estudo de Associação Genômica Ampla/veterinária , Polimorfismo de Nucleotídeo Único , Resistência à Doença/genética , Nodaviridae/fisiologia , Infecções por Vírus de RNA/veterinária
11.
Fish Shellfish Immunol ; 153: 109847, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39168292

RESUMO

Viral nervous necrosis (VNN) presents a significant challenge to aquaculture due to its potential for causing mass fish mortality and resulting in substantial economic losses. Therefore, the urgent need to find antiviral drugs is paramount. This study found that oleanolic acid (OA) exhibited anti-nervous necrosis virus (NNV) activity both in vivo and in vitro. The RT-qPCR results demonstrated that OA at 10.95 µM had an inhibition rate of 99.97 %. The prevention experiments also showed that OA pretreatment effectively inhibited the replication of NNV. Furthermore, the results of indirect immunofluorescence and flow cytometry suggest that OA's anti-NNV effect may be due to its ability to inhibit NNV-induced apoptosis. The in vivo study revealed a 30 % survival rate in the OA treatment group, compared to only 10 % in the control group. Additionally, RT-qPCR results demonstrated that OA treatment upregulated immune gene expression in grouper and effectively suppressed NNV replication in the host. This study demonstrates the potential of OA as an antiviral therapeutic agent for NNV. It exerts its antiviral effect by upregulating immune gene expression. These findings provide valuable insights into the development of novel antiviral treatment strategies.


Assuntos
Antivirais , Doenças dos Peixes , Nodaviridae , Ácido Oleanólico , Infecções por Vírus de RNA , Animais , Nodaviridae/fisiologia , Nodaviridae/efeitos dos fármacos , Ácido Oleanólico/farmacologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Doenças dos Peixes/tratamento farmacológico , Antivirais/farmacologia , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia , Bass/imunologia , Replicação Viral/efeitos dos fármacos
12.
Fish Shellfish Immunol ; 146: 109408, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307301

RESUMO

Small ubiquitin-like modifier (SUMO) is a reversible post-translational modification that regulates various biological processes in eukaryotes. Ubiquitin-conjugating enzyme 9 (UBC9) is the sole E2-conjugating enzyme responsible for SUMOylation and plays an important role in essential cellular functions. Here, we cloned the UBC9 gene from sea perch (Lateolabrax japonicus) (LjUBC9) and investigated its role in regulating the IFN response during red-spotted grouper nervous necrosis virus (RGNNV) infection. The LjUBC9 gene consisted of 477 base pairs and encoded a polypeptide of 158 amino acids with an active site cysteine residue and a UBCc domain. Phylogenetic analysis showed that LjUBC9 shared the closest evolutionary relationship with UBC9 from Paralichthys olivaceus. Tissue expression profile analysis demonstrated that LjUBC9 was significantly increased in multiple tissues of sea perch following RGNNV infection. Further experiments showed that overexpression of LjUBC9 significantly increased the mRNA and protein levels of RGNNV capsid protein in LJB cells infected with RGNNV, nevertheless knockdown of LjUBC9 had the opposite effect, suggesting that LjUBC9 exerted a pro-viral effect during RGNNV infection. More importantly, we found that the 93rd cysteine is crucial for its pro-viral effect. Additionally, dual luciferase assays revealed that LjUBC9 prominently attenuated the promoter activities of sea perch type Ⅰ interferon (IFN) in RGNNV-infected cells, and overexpression of LjUBC9 markedly suppressed the transcription of key genes associated with RLRs-IFN pathway. In summary, these findings elucidate that LjUBC9 impairs the RLRs-IFN response, resulting in enhanced RGNNV infection.


Assuntos
Bass , Doenças dos Peixes , Interferon Tipo I , Nodaviridae , Percas , Infecções por Vírus de RNA , Animais , Percas/genética , Imunidade Inata/genética , Filogenia , Enzimas de Conjugação de Ubiquitina/genética , Cisteína , Proteínas de Peixes/química , Interferon Tipo I/genética , Nodaviridae/fisiologia , Bass/genética , Bass/metabolismo
13.
Fish Shellfish Immunol ; 146: 109424, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311091

RESUMO

The suppressor of cytokine signaling (SOCS) proteins family have twelve members including eight known mammalian SOCS members (CISH, SOCS1-7) and four new discovery members (SOCS3b, SOCS5b, SOCS8 and SOCS9) that is regarded as a classic feedback inhibitor of cytokine signaling. Although the function of the mammalian SOCS proteins have been well studied, little is known about the roles of SOCS in fish during viral infection. In this study, the molecular characteristics of SOCS9 from orange-spotted grouper (Epinephelus coioides, EcSOCS9) is investigated. The EcSOCS9 protein encoded 543 amino acids with typical SH2 (389-475aa) and SOCS_box (491-527aa), sharing high identities with reported fish SOCS9. EcSOCS9 was expressed in all detected tissues and highly expressed in kidney. After red-spotted grouper nervous necrosis virus (RGNNV) infection, the expression of EcSOCS9 was significantly induced in vitro. Furthermore, EcSOCS9 overexpression enhanced RGNNV replication, promoted virus-induced mitophagy that evidenced by the increased level of LC3-Ⅱ, BCL2, PGAM5 and decreased level of BNIP3 and FUNDC1. Besides, EcSOCS9 overexpression suppressed the expression levels of ATP6, CYB, ND4, ATP level and induced ROS level. The expression levels of interferon (IFN) related factors (IRF1, IRF3, IRF7, P53), inflammatory factors (IL1-ß, IL8, TLR2, TNF-α) and IFN-3, ISRE, NF-κB, AP1 activities were also reduced by overexpressing EcSOCS9. These date suggests that EcSOCS9 impacts RGNNV infection through modulating mitophagy, regulating the expression levels of IFN- related and inflammatory factors, which will expand our understanding of fish immune responses during viral infection.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Nodaviridae , Infecções por Vírus de RNA , Viroses , Animais , Imunidade Inata/genética , Regulação da Expressão Gênica , Sequência de Aminoácidos , Alinhamento de Sequência , Interferons/metabolismo , Proteínas de Peixes/química , Nodaviridae/fisiologia , Infecções por Vírus de DNA/veterinária , Mamíferos/metabolismo
14.
Fish Shellfish Immunol ; 153: 109822, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39117128

RESUMO

T-cell/transmembrane immunoglobulin and mucin domain-containing (TIM) protein family has attracted particular attention because of their broad immune functions and the response to viral infections. TIM-1, a member of the TIM family, has been demonstrated to play an important role in viral infections. However, its roles during fish nodavirus infection still remained largely unknown. In this study, a homolog of TIM-1 from orange-spotted grouper (Epinephelus coioides) (EcTIM-1) was identified, and characterized. EcTIM-1 encoded a 217-amino acids protein, containing one Immunoglobulin domain. Homology analysis showed that EcTIM-1 shared 98.62 % and 42.99 % identity to giant grouper (E. lanceolatus) and human (Homo sapiens). Quantitative Real-time PCR analyses indicated that EcTIM-1 was expressed in all examined tissues, with higher expression in liver, spleen, skin, and heart, and was significantly up-regulated in response to red-spotted grouper nervous necrosis virus (RGNNV) infection. EcTIM-1 was distributed in the cytoplasm, and partly co-localized with Golgi apparatus and lysosomes in vitro. The ectopic expression of EcTIM-1 promoted RGNNV replication by increasing the level of viral genes transcription and protein synthesis. Besides, overexpression of EcTIM-1 decreased the luciferase activity of type I interferon (IFN1), interferon stimulated response elements (ISRE) and nuclear factor kappa-B (NF-κB) promoters, as well as the transcription of pro-inflammatory factors and interferon related genes. EcTIM-1 significantly suppressed the luciferase activity of IFN1, ISRE and NF-κB promoters evoked by Epinephelus coioides melanoma differentiation-associated gene 5 (EcMDA5), mitochondrial antiviral signaling protein (EcMAVS), stimulator of IFN genes (EcSTING) or TANK-binding kinase 1 (EcTBK1). Collectively, EcTIM-1 negatively regulated interferon and inflammatory response to promote RGNNV infection. These results provide a basis for a better understanding of the innate immune response of TIM-1 in fish.


Assuntos
Bass , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Nodaviridae , Filogenia , Infecções por Vírus de RNA , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/veterinária , Nodaviridae/fisiologia , Bass/imunologia , Bass/genética , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Inflamação/imunologia , Inflamação/veterinária , Inflamação/genética , Sequência de Aminoácidos , Perfilação da Expressão Gênica/veterinária , Alinhamento de Sequência/veterinária
15.
Fish Shellfish Immunol ; 152: 109803, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096980

RESUMO

Nervous necrosis virus (NNV) capsid protein plays an important role in producing viral particles without any genetic elements. Thus, NNV is a promising candidate for vaccine development and is widely used for constructing vaccines, including DNA, recombinant proteins, and virus-like particles (VLPs). Our study aimed to investigate the potential of NNV capsid protein (NNV) and NNV capsid protein fused to enhanced green fluorescent protein (NNV-EGFP) through VLP formation and whether their application can induce specific antibody responses against certain antigens. We focused on producing DNA and recombinant protein vaccines consisting of the genes for NNV, EGFP, and NNV-EGFP. The approach using NNV-EGFP allowed NNV to act as a carrier or inducer while EGFP was incorporated as part of the capsid protein, thereby enhancing the immune response. In vitro studies demonstrated that all DNA vaccines expressed in HINAE cells resulted in varying protein expression levels, with particularly low levels observed for pNNV and pNNV-EGFP. Consequently, structural proteins derived from HINAE cells could not be observed using transmission electron microscopy (TEM). In contrast, recombinant proteins of NNV and NNV-EGFP were expressed through the Escherichia coli expression system. TEM revealed that rNNV was assembled into VLPs with an approximate size of 30 nm, whereas rNNV-EGFP presented particles ranging from 10 nm to 50 nm in size. For the vaccination test, DNA vaccination marginally induced specific antibody responses in Japanese flounder compared to unvaccinated fish. Meanwhile, NNV and NNV-EGFP recombinant vaccines enhanced a greater anti-NNV antibody response than the others, whereas antibody responses against EGFP were also marginal. These results indicate that NNV capsid protein-based antigens, presenting as particles, play an important role in eliciting a specific anti-NNV antibody response and have the potential to improve fish immune responses.


Assuntos
Proteínas do Capsídeo , Doenças dos Peixes , Nodaviridae , Vacinas Virais , Animais , Nodaviridae/imunologia , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/prevenção & controle , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Desenvolvimento de Vacinas , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem
16.
Fish Shellfish Immunol ; 151: 109715, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909637

RESUMO

Red-spotted grouper nervous necrosis virus (RGNNV) is a major viral pathogen of grouper and is able to antagonize interferon responses through multiple strategies, particularly evading host immune responses by inhibiting interferon responses. Ovarian tumor (OTU) family proteins are an important class of DUBs and the underlying mechanisms used to inhibit interferon pathway activation are unknown. In the present study, primers were designed based on the transcriptome data, and the ovarian tumor (OTU) domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) and OTUB2 genes of Epinephelus coioides (EcOTUB1 and EcOTUB2) were cloned and characterized. The homology alignment showed that both EcOTUB1 and EcOTUB2 were most closely related to E. lanceolatus with 98 % identity. Both EcOTUB1 and EcOTUB2 were distributed to varying degrees in grouper tissues, and the transcript levels were significantly up-regulated following RGNNV stimulation. Both EcOTUB1 and EcOTUB2 promoted replication of RGNNV in vitro, and inhibited the promoter activities of interferon stimulated response element (ISRE), nuclear transcription factors kappaB (NF-κB) and IFN3, and the expression levels of interferon related genes and proinflammatory factors. Co-immunoprecipitation experiments showed that both EcOTUB1 and EcOTUB2 could interact with TRAF3 and TRAF6, indicating that EcOTUB1 and EcOTUB2 may play important roles in interferon signaling pathway. The results will provide a theoretical reference for the development of novel disease prevention and control techniques.


Assuntos
Bass , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Nodaviridae , Infecções por Vírus de RNA , Replicação Viral , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Imunidade Inata/genética , Nodaviridae/fisiologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/veterinária , Bass/imunologia , Filogenia , Regulação da Expressão Gênica/imunologia , Sequência de Aminoácidos , Alinhamento de Sequência/veterinária , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/imunologia , Perfilação da Expressão Gênica/veterinária
17.
Fish Shellfish Immunol ; 152: 109772, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019125

RESUMO

Aquaculture is a prosperous economic sector threatened by viral infections. Among the viruses threatening fish culture, Betanodavirus (NNV) is extremely important in the Mediterranean Sea affecting to highly traded species as European sea bass. In this context, application of antimicrobial peptides (AMPs) has arisen as a potential biotechnological tool. The aim of this work was to evaluate the therapeutic application of two European sea bass-derived AMPs, NK-lysin (Nkl) and dicentracin (Dic), against NNV infections. Synthetic Dic peptide was able to significantly reduce NNV-induced mortalities while Nkl failed to do so. Although neither Dic nor Nkl peptides were able to alter the transcriptional levels of NNV and the number of infected cells, Nkl seemed to increase the viral load per cell. Interestingly, both Nkl and Dic peptides showed immunomodulatory roles. For instance, our data revealed an interplay among different AMPs, at both gene and protein levels. Otherwise, Nkl and Dic peptides provoked an anti-inflammatory balance upon NNV infection, as well as the recruitment of macrophages and B cells to the target site of the infection, the brain. In conclusion, Dic can be proposed as a therapeutic candidate to combat NNV.


Assuntos
Bass , Doenças dos Peixes , Nodaviridae , Infecções por Vírus de RNA , Nodaviridae/fisiologia , Animais , Bass/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/virologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/tratamento farmacológico , Proteolipídeos/farmacologia , Proteolipídeos/imunologia , Proteínas de Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/farmacologia , Proteínas de Peixes/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química
18.
Fish Shellfish Immunol ; 151: 109646, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38810712

RESUMO

To achieve insights in antiviral immune defense of the central nervous system (CNS), we investigated T cells and CD45 cells in the marine fish model Dicentrarchus labrax infected with the CNS-tropic virus betanodavirus. By employing markers for pan-T cells (mAb DLT15) and CD45-cells (mAb DLT22) in immunofluorescence (IIF) of leukocytes from brain, we obtained 3,7 ± 2.3 % of T cells and 7.3 ± 3.2 % of CD45+ cells. Both IIF and immunoelectron microscopy confirmed a leukocyte/glial morphology for the immunoreactive cells. Quantitative immunohistochemistry (qIHC) of brain/eye sections showed 1.9 ± 0.8 % of T+ cells and 2 ± 0.9 % of CD45+ cells in the brain, and 3.6 ± 1.9 % and 4.1 ± 2.2 % in the eye, respectively. After in vivo RGNNV infection the number of T cells/CD45+ leukocytes in the brain increased to 8.3 ± 2.1 % and 11.6 ± 4.4 % (by IIF), and 26.1 ± 3.4 % and 45.6 ± 5.9 % (by qIHC), respectively. In the eye we counted after infection 8.5 ± 4.4 % of T cells and 10.2 ± 5.8 % of CD45 cells. Gene transcription analysis of brain mRNA revealed a strong increase of gene transcripts coding for: antiviral proteins Mx and ISG-12; T-cell related CD3ε/δ, TcRß, CD4, CD8α, CD45; and for immuno-modulatory cytokines TNFα, IL-2, IL-10. A RAG-1 gene product was also present and upregulated, suggesting somatic recombination in the fish brain. Similar transcription data were obtained in the eye, albeit with differences. Our findings provide first evidence for a recruitment and involvement of T cells and CD45+ leukocytes in the fish eye-brain axis during antiviral responses and suggest similarities in the CNS immune defense across evolutionary distant vertebrates.


Assuntos
Bass , Doenças dos Peixes , Antígenos Comuns de Leucócito , Nodaviridae , Infecções por Vírus de RNA , Linfócitos T , Animais , Nodaviridae/fisiologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Bass/imunologia , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia , Antígenos Comuns de Leucócito/metabolismo , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/imunologia , Linfócitos T/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Encéfalo/virologia , Encéfalo/imunologia
19.
Fish Shellfish Immunol ; 151: 109718, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909635

RESUMO

Receptors of type I interferon (IFNR) play a vital role in the antiviral immune response. However, little is known about the negative regulatory role of the IFNR. Nervous necrosis virus (NNV) is one of the most significant viruses in cultured fish, resulting in great economic losses for the aquaculture industry. In this study, two orange-spotted grouper (Epinephelus coioides) cytokine receptor family B (CRFB) members, EcCRFB3 and EcCRFB4 were cloned and characterized from NNV infected grouper brain (GB) cells. The open reading frame (ORF) of EcCRFB3 consists of 852 bp encoding 283 amino acids, while EcCRFB4 has an ORF of 990 bp encoding 329 amino acids. The mRNA levels of EcCRFB3 or EcCRFB4 were significantly upregulated after NNV infection and the stimulation of poly (I:C) or NNV-encoded Protein A. In addition, EcCRFB3 or EcCRFB4 overexpression facilitated NNV replication, whereas EcCRFB3 or EcCRFB4 silencing resisted NNV replication. Overexpressed EcCRFB3 or EcCRFB4 inhibited the expression of IFN-I-induced ISGs. Taken together, our research provides the first evidence in fish demonstrating the role of IFNRs to regulate the IFN signaling pathway negatively. Our findings enrich the understanding of the functions of IFNRs and reveal a novel escape mechanism of NNV.


Assuntos
Sequência de Aminoácidos , Bass , Doenças dos Peixes , Proteínas de Peixes , Regulação da Expressão Gênica , Imunidade Inata , Nodaviridae , Infecções por Vírus de RNA , Replicação Viral , Animais , Nodaviridae/fisiologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/veterinária , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Bass/imunologia , Bass/genética , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Filogenia , Alinhamento de Sequência/veterinária , Receptores de Citocinas/genética , Receptores de Citocinas/imunologia , Perfilação da Expressão Gênica/veterinária , Interferons/imunologia , Interferons/genética
20.
Fish Shellfish Immunol ; 150: 109650, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788912

RESUMO

Nectins are adhesion molecules that play a crucial role in the organization of epithelial and endothelial junctions and function as receptors for the entry of herpes simplex virus. However, the role of Nectin4 remains poorly understood in fish. In this study, nectin4 gene was cloned from medaka (OlNectin4). OlNectin4 was located on chromosome 18 and contained 11 exons, with a total genome length of 25754 bp, coding sequences of 1689 bp, coding 562 amino acids and a molecular weight of 65.5 kDa. OlNectin4 contained four regions, including an Immunoglobulin region, an Immunoglobulin C-2 Type region, a Transmembrane region and a Coiled coil region. OlNectin4 shared 47.18 % and 25.00 % identity to Paralichthys olivaceus and Mus musculus, respectively. In adult medaka, the transcript of nectin4 was predominantly detected in gill. During red spotted grouper nervous necrosis virus (RGNNV) infection, overexpression of OlNectin4 in GE cells significantly increased viral gene transcriptions. Meanwhile, Two mutants named OlNectin4△4 (+4 bp) and OlNectin4△7 (-7 bp) medaka were established using CRISPR-Cas9 system. Nectin4-KO medaka had higher mortality than WT after infected with RGNNV. Moreover, the expression of RGNNV RNA2 gene in different tissues of the Nectin4-KO were higher than WT medaka after challenged with RGNNV. The brain and eye of Nectin4-KO medaka which RGNNV mainly enriched, exhibited significantly higher expression of interferon signaling genes than in WT. Taken together, the OlNectin4 plays a complex role against RGNNV infection by inducing interferon responses for viral clearance.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Nectinas , Nodaviridae , Oryzias , Infecções por Vírus de RNA , Animais , Oryzias/genética , Oryzias/imunologia , Nodaviridae/fisiologia , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/imunologia , Nectinas/genética , Nectinas/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Filogenia , Sequência de Aminoácidos , Imunidade Inata/genética , Alinhamento de Sequência/veterinária , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA