Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Ecotoxicol Environ Saf ; 282: 116730, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39024944

RESUMO

Microplastics pollution and salinity intrusion in freshwater ecosystem is one of the worldwide climate change consequences those have negative impacts on the physiology of aquatic organisms. Hence, a 15-day experiment was carried out where Nile tilapia (Oreochromis niloticus) was exposed to different salinity gradients i.e. 0 ‰, 3 ‰, 6 ‰, 9 ‰, and 12 ‰ alone and along with 10 mg/L polyamide microplastics (PA-MP) in order to measure its effects on the hematology, gill, and intestinal morphology. The results exhibited that all the fish treated with PA-MP ingested microplastics and the quantity of accumulation was significantly greater in higher salinity gradients (9 ‰ and 12 ‰). In addition, the PA-MP treated fish showed increased glucose level and at the same time reduced hemoglobin concentration with the increase of salinity. The percentages of abnormalities in erythrocytes both cellular (twin, teardrop and spindle shaped) and nuclear (notched nuclei, nuclear bridge and karyopyknosis) significantly enhanced with PA-MP exposure again in higher salinity treatments (9 ‰ and 12 ‰). The principal component analysis (PCA) exhibited that the addition of 10 mg/L PA-MP negatively affected the hematology of Nile tilapia than that of salinity treatments alone. Besides, the exposure of PA-MP in 9 ‰ and 12 ‰ salinity gradients escalated the severity of histological damages in gills and intestine. Overall, this experiment affirms that the increase of salinity enhanced the microplastics ingestion and toxicity in Nile tilapia, therefore, PA-MP possibly is addressed as additional physiological stressors along with increased salinity gradients in environment.


Assuntos
Ciclídeos , Brânquias , Microplásticos , Nylons , Salinidade , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Ciclídeos/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/patologia , Brânquias/metabolismo , Nylons/toxicidade , Intestinos/efeitos dos fármacos
2.
Ecotoxicol Environ Saf ; 283: 116855, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39128453

RESUMO

Globally, monitoring of the surface waters is largely limited to the physico-chemical analysis of water in rivers and lakes. Sediment state in the aquatic systems including sediment chemical content or the structure and diversity of benthic communities or ecotoxicological studies with natural sediments remains largely overlooked by the monitoring programs. Hence we assessed the potential toxicity of three riverine sediments on the life-cycle traits (emergence and reproduction) of midge Chironomus riparius via an ecotoxicological testing method over two generations (according to OECD test 233 guidelines). In addition, the riverine sediments were spiked with polyamide (nylon) microplastic particles (1 g kg-1) to analyze an additive effect of microplastic on the sediment toxicity. As model river systems, three rivers (Karchaghbyur, Gavaraget, Argichi) in the Lake Sevan basin (Armenia) were selected. Results of ecotoxicity testing were compared with the indices of water quality (derived from the physico-chemical analysis) and the indices of the ecological status of the rivers (derived from the analysis of benthic communities). The results of testing demonstrated an unexpectedly low emergence of midges after the first generation exposed to the sediment of the river having ''good ecological status'' - the Argichi. Sediments of the Karchaghbyur and Gavaraget rivers impeded the emergence and reproduction of midges after the second generation. An addition of polyamide particles to the sediments did not significantly affect the life-cycle traits of C. riparius indicating the primary effect of the sediments' condition. The discrepancy of biotesting result with that of the other two methods (which indicated ''average water quality'' and "good ecological status") underlies the importance of designing more comprehensive monitoring programs for better assessment and protection of aquatic systems and resources.


Assuntos
Chironomidae , Monitoramento Ambiental , Sedimentos Geológicos , Larva , Rios , Poluentes Químicos da Água , Animais , Chironomidae/efeitos dos fármacos , Rios/química , Sedimentos Geológicos/química , Monitoramento Ambiental/métodos , Larva/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Microplásticos/toxicidade , Microplásticos/análise , Qualidade da Água , Reprodução/efeitos dos fármacos , Nylons/toxicidade , Lagos/química
3.
Part Fibre Toxicol ; 20(1): 16, 2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-37088832

RESUMO

BACKGROUND: Exposure to micro- and nanoplastic particles (MNPs) in humans is being identified in both the indoor and outdoor environment. Detection of these materials in the air has made inhalation exposure to MNPs a major cause for concern. One type of plastic polymer found in indoor and outdoor settings is polyamide, often referred to as nylon. Inhalation of combustion-derived, metallic, and carbonaceous aerosols generate pulmonary inflammation, cardiovascular dysfunction, and systemic inflammation. Additionally, due to the additives present in plastics, MNPs may act as endocrine disruptors. Currently there is limited knowledge on potential health effects caused by polyamide or general MNP inhalation. OBJECTIVE: The purpose of this study is to assess the toxicological consequences of a single inhalation exposure of female rats to polyamide MNP during estrus by means of aerosolization of MNP. METHODS: Bulk polyamide powder (i.e., nylon) served as a representative MNP. Polyamide aerosolization was characterized using particle sizers, cascade impactors, and aerosol samplers. Multiple-Path Particle Dosimetry (MPPD) modeling was used to evaluate pulmonary deposition of MNPs. Pulmonary inflammation was assessed by bronchoalveolar lavage (BAL) cell content and H&E-stained tissue sections. Mean arterial pressure (MAP), wire myography of the aorta and uterine artery, and pressure myography of the radial artery was used to assess cardiovascular function. Systemic inflammation and endocrine disruption were quantified by measurement of proinflammatory cytokines and reproductive hormones. RESULTS: Our aerosolization exposure platform was found to generate particles within the micro- and nano-size ranges (thereby constituting MNPs). Inhaled particles were predicted to deposit in all regions of the lung; no overt pulmonary inflammation was observed. Conversely, increased blood pressure and impaired dilation in the uterine vasculature was noted while aortic vascular reactivity was unaffected. Inhalation of MNPs resulted in systemic inflammation as measured by increased plasma levels of IL-6. Decreased levels of 17ß-estradiol were also observed suggesting that MNPs have endocrine disrupting activity. CONCLUSIONS: These data demonstrate aerosolization of MNPs in our inhalation exposure platform. Inhaled MNP aerosols were found to alter inflammatory, cardiovascular, and endocrine activity. These novel findings will contribute to a better understanding of inhaled plastic particle toxicity.


Assuntos
Nylons , Pneumonia , Humanos , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Nylons/toxicidade , Microplásticos , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Dilatação , Aerossóis e Gotículas Respiratórios , Pneumonia/induzido quimicamente , Pulmão , Inflamação/induzido quimicamente , Tamanho da Partícula , Líquido da Lavagem Broncoalveolar
4.
Environ Sci Technol ; 54(21): 13888-13898, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33078945

RESUMO

Microplastics (MPs) are ubiquitous in the environment and pose substantial threats to the water ecosystem. However, the impact of natural aging of MPs on their toxicity has rarely been considered. This study found that visible light irradiation with hydrogen peroxide at environmentally relevant concentration for 90 days significantly altered the physicochemical properties and mitigated the toxicity of polyamide (PA) fragments to infantile zebrafish. The size of PA particles was reduced from ∼8.13 to ∼6.37 µm, and nanoparticles were produced with a maximum yield of 5.03%. The end amino groups were volatilized, and abundant oxygen-containing groups (e.g., hydroxyl and carboxyl) and carbon-centered free radicals were generated, improving the hydrophilicity and colloidal stability of degraded MPs. Compared with pristine PA, the depuration of degraded MPs mediated by multixenobiotics resistance was much quicker, leading to markedly lower bioaccumulation in fish and weaker inhibition on musculoskeletal development. By integrating transcriptomics and transgenic zebrafish [Tg(lyz:EGFP)] tests, differences in macrophages-triggered proinflammatory effects, apoptosis via IL-17 signaling pathway, and antioxidant damages were identified as the underlying mechanisms for the attenuated toxicity of degraded MPs. This work highlights the importance of natural degradation on the toxicity of MPs, which has great implications for risk assessment of MPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Apoptose , Ecossistema , Larva , Macrófagos , Nylons/toxicidade , Estresse Oxidativo , Plásticos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
5.
Ecotoxicol Environ Saf ; 190: 110070, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31841892

RESUMO

Microplastic polyamide 66 (PA66) was used to explore its mechanism of influence on the contaminants removal from aerobic granular sludge (AGS) and the corresponding change to the microbial community. Results showed that the removal pollution efficiency of the experimental groups with PA66 were inhibited during the early treatment stage. However, as the experiment progressed, the removal efficiencies of chemical oxygen demand (COD) (92.66%, 93.10%, 93.11%, 93.79%) and ammonia nitrogen (94.25%, 94.58%, 95.61%, 94.73%) were similar in the addition 0 g/L (A), 0.1 g/L (B), 0.2 g/L (C) and 0.5 g/L (D) PA66 beakers at the last 10 days. On the first day, the intensity of fluorescence peaks representing tryptophan protein-like and aromatic protein-like substances of loosely-bound extracellular polymeric substances (LB-EPS) indicated that the PA66 microplastic caused damage to the sludge structure, and the intensity of fluorescence peaks representing fulvic acid-like and humic acid-like substances were stronger than those in the control beaker (A). Microbial community analysis showed that the main phyla were Firmicutes (49.11%, 59.77%, 44.33%, 41.21%), Proteobacteria (26.44%, 11.96%, 31.44%, 19.4%) and Bacteroidetes (9.24%, 13.05%, 11.89%, 14.71%) in the four beakers. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, genes representing [T] Signal transduction mechanisms illustrated that adding PA66 microplastic resulted in more signaling molecules in the AGS.


Assuntos
Microbiota/efeitos dos fármacos , Microplásticos/toxicidade , Nylons/toxicidade , Esgotos/microbiologia , Amônia/análise , Benzopiranos/análise , Análise da Demanda Biológica de Oxigênio , Substâncias Húmicas/análise , Nitrogênio/análise , Esgotos/química , Eliminação de Resíduos Líquidos
6.
Ecotoxicol Environ Saf ; 188: 109882, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31698175

RESUMO

Microplastics attract widespread attention, including for their potential to transport toxic chemicals in the form of plasticisers and associated hydrophobic organic chemicals, such as polybrominated diphenyl ethers (PBDEs). The aims of this study were to investigate how nylon (polyamide) microplastics may affect PBDE accumulation in snails, and the acute effects of nylon particles and PBDEs on survival, weight change and inherent microbiome diversity and community composition of the pond snail Lymnaea stagnalis. Snails were exposed for 96 h to BDEs-47, 99, 100 and 153 in the presence and absence of 1% w/w nylon microplastics in quartz sand sediment. No mortality was observed over the exposure period. Snails not exposed to microplastics lost significantly more weight compared to those exposed to microplastics. Increasing PBDE concentration in the sediment resulted in an increased PBDE body burden in the snails, however microplastics did not significantly influence total PBDE uptake. Based on individual congeners, uptake of BDE 47 by snails was significantly reduced in the presence of microplastics. The diversity and composition of the snail microbiome was not significantly altered by the presence of PBDEs nor by the microplastics, singly or combined. Significant effects on a few individual operational taxonomic units (OTUs) occurred when comparing the highest PBDE concentration with the control treatment, but in the absence of microplastics only. Overall within these acute experiments, only subtle effects on weight loss and slight microbiome alterations occurred. These results therefore highlight that L. stagnalis are resilient to acute exposures to microplastics and PBDEs, and that microplastics are unlikely to influence HOC accumulation or the microbiome of this species over short timescales.


Assuntos
Éteres Difenil Halogenados/metabolismo , Lymnaea/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Microplásticos/toxicidade , Poluentes Químicos da Água/metabolismo , Animais , Carga Corporal (Radioterapia) , Exposição Ambiental/análise , Retardadores de Chama/análise , Retardadores de Chama/metabolismo , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/análise , Éteres Difenil Halogenados/toxicidade , Lymnaea/metabolismo , Lymnaea/microbiologia , Nylons/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
7.
Pharm Dev Technol ; 23(7): 689-696, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28368674

RESUMO

PEGylated PAMAM-G4 dendrimers with substitution percentages of 50% and intermediate size PEG chains (0.55 and 2.0 kDa) were synthesized and evaluated as solubility enhancers and potential supramolecular carriers for the poorly soluble drug Silybin (SIL). Aqueous solubility profiles revealed that the PEGylated system with 2.0 kDa chains induced a five-fold solubility increase for SIL and the largest drug-loading capacity within the systems under study with an average complex stoichiometry of 71:1 according to the Higuchi-Connors formulation for multiple binding sites. The supramolecular interaction between SIL and PEGylated PAMAM-G4 dendrimers was confirmed by 2D-NOESY experiments, which evidenced the simultaneous complexation of the drug in both PAMAM-G4 branches and outermost PEG chains. In vitro release studies showed that 2.0 kDa PEG chains induced a more extended release time compared with 0.5 kDa PEG chains. This result was attributed to the enhancement of PEG assistance to SIL complexation in systems with longer PEG chains, which are able to self-penetrate into dendrimer cavities and cooperate in the stabilization of SIL complexes, thus delaying the release of SIL from the supramolecular host. These results are valuable for the future design and development of novel PAMAM-based systems for SIL complexation and delivery.


Assuntos
Antioxidantes/administração & dosagem , Dendrímeros/química , Portadores de Fármacos/química , Nylons/química , Polietilenoglicóis/química , Silimarina/administração & dosagem , Antioxidantes/química , Sobrevivência Celular/efeitos dos fármacos , Dendrímeros/toxicidade , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Células HEK293 , Humanos , Nylons/toxicidade , Polietilenoglicóis/toxicidade , Silibina , Silimarina/química , Solubilidade
8.
Nucleic Acids Res ; 42(18): 11546-59, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25249630

RESUMO

Pyrrole-imidazole polyamides targeted to the androgen response element were cytotoxic in multiple cell lines, independent of intact androgen receptor signaling. Polyamide treatment induced accumulation of S-phase cells and of PCNA replication/repair foci. Activation of a cell cycle checkpoint response was evidenced by autophosphorylation of ATR, the S-phase checkpoint kinase, and by recruitment of ATR and the ATR activators RPA, 9-1-1, and Rad17 to chromatin. Surprisingly, ATR activation was accompanied by only a slight increase in single-stranded DNA, and the ATR targets RPA2 and Chk1, a cell cycle checkpoint kinase, were not phosphorylated. However, ATR activation resulted in phosphorylation of the replicative helicase subunit MCM2, an ATR effector. Polyamide treatment also induced accumulation of monoubiquitinated FANCD2, which is recruited to stalled replication forks and interacts transiently with phospho-MCM2. This suggests that polyamides induce replication stress that ATR can counteract independently of Chk1 and that the FA/BRCA pathway may also be involved in the response to polyamides. In biochemical assays, polyamides inhibit DNA helicases, providing a plausible mechanism for S-phase inhibition.


Assuntos
Replicação do DNA/efeitos dos fármacos , Imidazóis/toxicidade , Nylons/toxicidade , Pirróis/toxicidade , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Estresse Fisiológico , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular , Quinase do Ponto de Checagem 2/metabolismo , Quebras de DNA , DNA Helicases/metabolismo , Reparo do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Humanos , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Antígeno Nuclear de Célula em Proliferação/análise , Proteína de Replicação A/metabolismo , Estresse Fisiológico/genética , Ubiquitinação
9.
Biomacromolecules ; 16(11): 3491-8, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26367020

RESUMO

Safe delivery systems that can not only encapsulate hydrophobic drug molecules, but also release them in response to specific triggers are important in several therapeutic and biomedical applications. In this paper, we have designed a nanogel based on molecules that are generally recognized as safe (GRAS). We have shown that the resultant polymeric nanogels exhibit responsive molecular release and also show high in vitro cellular viability on HEK 293T, HeLa, MCF 7, and A549 cell lines. The toxicity of these nanogels was further evaluated with a highly sensitive assay using mouse preimplantation embryo development, where blastocysts were formed after 4 days of in vitro culture, and live pups were born when morulae/early blastocysts were transferred to the uteri of surrogate recipients. Our results indicate that these nanogels are nontoxic during mammalian development and do not alter normal growth or early embryo success rate.


Assuntos
Blastocisto/efeitos dos fármacos , Nylons/química , Polietilenoglicóis/química , Polietilenoimina/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Feminino , Células HEK293 , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Camundongos , Nanogéis , Nylons/toxicidade , Polietilenoglicóis/toxicidade , Polietilenoimina/toxicidade
10.
Nucleic Acids Res ; 40(5): 2345-56, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22080545

RESUMO

Pyrrole-imidazole (Py-Im) hairpin polyamides are a class of programmable, sequence-specific DNA binding oligomers capable of disrupting protein-DNA interactions and modulating gene expression in living cells. Methods to control the cellular uptake and nuclear localization of these compounds are essential to their application as molecular probes or therapeutic agents. Here, we explore modifications of the hairpin γ-aminobutyric acid turn unit as a means to enhance cellular uptake and biological activity. Remarkably, introduction of a simple aryl group at the turn potentiates the biological effects of a polyamide targeting the sequence 5'-WGWWCW-3' (W =A/T) by up to two orders of magnitude. Confocal microscopy and quantitative flow cytometry analysis suggest this enhanced potency is due to increased nuclear uptake. Finally, we explore the generality of this approach and find that aryl-turn modifications enhance the uptake of all polyamides tested, while having a variable effect on the upper limit of polyamide nuclear accumulation. Overall this provides a step forward for controlling the intracellular concentration of Py-Im polyamides that will prove valuable for future applications in which biological potency is essential.


Assuntos
Imidazóis/química , Nylons/química , Pirróis/química , Transporte Biológico , Linhagem Celular , DNA/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica , Humanos , Microscopia de Fluorescência , Nylons/síntese química , Nylons/metabolismo , Nylons/toxicidade , Receptores Citoplasmáticos e Nucleares/metabolismo
11.
Int J Toxicol ; 33(4 Suppl): 47S-60S, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25568165

RESUMO

The Cosmetic Ingredient Review Expert Panel (Panel) reviewed the safety of nylon polymers, which function in cosmetics primarily as bulking and opacifying agents. The Panel reviewed relevant animal and human data related to these large polymers and determined that they are not likely to penetrate the skin. Whatever residual monomers may be present were not present at a sufficient level to cause any reactions in test subjects at the maximum ingredient use concentration. Accordingly, the Panel concluded that these ingredients are safe in the present practices of use and concentration.


Assuntos
Cosméticos/toxicidade , Dermatite Irritante/etiologia , Doenças da Boca/induzido quimicamente , Nylons/toxicidade , Doenças Peritoneais/induzido quimicamente , Adulto , Animais , Qualidade de Produtos para o Consumidor , Cães , Feminino , Cobaias , Humanos , Masculino , Camundongos , Coelhos , Ratos , Ratos Wistar , Medição de Risco , Estados Unidos
12.
Mol Pharm ; 10(1): 249-60, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23163881

RESUMO

Dendrimers have been described as one of the most tunable and therefore potentially applicable nanoparticles both for diagnostics and therapy. Recently, in order to realize drug delivery agents, most of the effort has been dedicated to the development of dendrimers that could internalize into the cells and target specific intracellular compartments in vitro and in vivo. Here, we describe cell internalization properties and diffusion of G4 and G4-C12 modified PAMAM dendrimers in primary neuronal cultures and in the CNS of live animals. Confocal imaging on primary neurons reveals that dendrimers are able to cross the cell membrane and reach intracellular localization following endocytosis. Moreover, functionalization of PAMAMs has a dramatic effect on their ability to diffuse in the CNS tissue in vivo and penetrate living neurons as shown by intraparenchymal or intraventricular injections. 100 nM G4-C12 PAMAM dendrimer already induces dramatic apoptotic cell death of neurons in vitro. On the contrary, G4 PAMAM does not induce apoptotic cell death of neural cells in the sub-micromolar range of concentration and induces low microglia activation in brain tissue after a week. Our detailed description of dendrimer distribution patterns in the CNS will facilitate the design of tailored nanomaterials in light of future clinical applications.


Assuntos
Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dendrímeros/química , Dendrímeros/farmacocinética , Nylons/química , Nylons/farmacocinética , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Dendrímeros/toxicidade , Difusão , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Nylons/toxicidade , Córtex Visual/efeitos dos fármacos , Córtex Visual/metabolismo
13.
Acta Odontol Scand ; 71(5): 1267-72, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23998515

RESUMO

OBJECTIVE: This study investigated the long-term cytotoxic response of thermoplastic polyamide and conventional polymethyle metacrylate (PMMA) denture base materials. MATERIALS AND METHODS: Twenty discs were prepared for each polyamide, heat and cold cured PMMA denture base resins (totally 60) and divided into four sub-groups (n = 5). Cytotoxicity was assessed with the direct cell contact method using cell viability and neutral red (NR) uptake assay. Each sub-group was tested at initial and after being aged for 24 h, 1 week and 8 weeks with artificial saliva according to ISO 10993 standards. RESULTS: There were no significantly difference among the materials and control groups after initial, 24 h and 1 week testing. In 24 h testing, only Deflex was more toxic according to the Control group (p < 0.05). After 8 weeks of aging with artificial saliva, all materials were significantly cytotoxic when compared to the control group. QC20 was more toxic than Deflex and SC Cold Cure (p < 0.05). There were significant differences between the 8 week aging group and the initial, 24 h and 1 week testing for all materials (p < 0.05). CONCLUSIONS: Cytotoxicity of all tested denture base materials increased significantly after the long-term aging. Therefore, long-term aging may be useful to determine a dental material's toxicity. Polyamide denture base material had a similar toxicity profile with conventional heat- and cold-cured PMMA.


Assuntos
Bases de Dentadura , Fibroblastos/efeitos dos fármacos , Nylons/toxicidade , Polimetil Metacrilato/toxicidade , Células Cultivadas , Fibroblastos/citologia , Humanos , Técnicas In Vitro
14.
Bioconjug Chem ; 23(4): 751-7, 2012 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-22435888

RESUMO

A poly(N,N-dimethylaminoethylmethacrylate) (PDMAEMA) homopolymer with both thermoresponsive and cationic characteristics was applied to a vector for use in deposition transfection. PDMAEMA with a molecular weight of 2.5 × 10(5) g mol(-1) was synthesized by photoinduced radical polymerization. Polyplexes approximately 750 nm in size were formed by mixing PDMAEMA with luciferase-encoding plasmid DNA. The polyplexes had a lower critical solution temperature (LCST) of approximately 30 °C. In addition, they exhibited excellent adsorption and durability on a polystyrene surface, as confirmed by a surface chemical compositional analysis. When HeLa cells and primary cells were cultured on a substrate coated with the polyplexes, high transgene expression and cell viability of more than 90% were obtained at low charge ratios (PDMAEMA/plasmid DNA ratio) ranging from 2 to 8. In addition, transgene expression was sustained for over 2 weeks post-transfection whereas decreased expression was observed 5 days post-transfection when the conventional solution-mediated transfection method was used. Thus, high and sustained transgene expression as well as high cell viability can be realized by using small amounts of PDMAEMA as a deposition transfection material.


Assuntos
DNA/química , DNA/genética , Portadores de Fármacos/química , Metacrilatos/química , Nylons/química , Tensoativos/química , Temperatura , Transfecção/métodos , Animais , Sobrevivência Celular/efeitos dos fármacos , Cães , Portadores de Fármacos/toxicidade , Células HeLa , Humanos , Metacrilatos/toxicidade , Nylons/toxicidade , Tensoativos/toxicidade
15.
J Hazard Mater ; 426: 128094, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34952496

RESUMO

Nylon has been widely used all over the world, and most of it eventually enters the aquatic environment in the form of microplastics (MPs). However, the impact of Nylon MPs on aquatic ecosystem remains largely unknown. Thus, the long-term biological effects and toxicity mechanism of Nylon MPs on Microcystis aeruginosa (M. aeruginosa) were explored in this study. Results demonstrated that Nylon MPs had a dose-dependent growth inhibition of M. aeruginosa at the initial stage, and the maximum inhibition rate reached to 47.62% at the concentration of 100 mg/L. Meanwhile, Nylon MPs could obstruct photosynthesis electron transfer, reduce phycobiliproteins synthesis, destroy algal cell membrane, enhance the release of extracellular polymeric substances, and induce oxidative stress. Furthermore, transcriptomic analysis indicated that Nylon MPs dysregulated the expression of genes involved in tricarboxylic acid cycle, photosynthesis, photosynthesis-antenna proteins, oxidative phosphorylation, carbon fixation in photosynthetic organisms, and porphyrin and chlorophyll metabolism. According to the results of transcriptomic and biochemical analysis, the growth inhibition of M. aeruginosa is inferred to be regulated by three pathways: photosynthesis, oxidative stress, and energy metabolism. Our findings provide new insights into the toxicity mechanism of Nylon MPs on freshwater microalgae and valuable data for risk assessment of MPs.


Assuntos
Microcystis , Poluentes Químicos da Água , Ecossistema , Transporte de Elétrons , Microplásticos , Nylons/toxicidade , Estresse Oxidativo , Fotossíntese , Plásticos , Poluentes Químicos da Água/toxicidade
16.
Environ Int ; 158: 106922, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34628252

RESUMO

The safety of microplastics (MPs) and associated health effects has been one of the major concerns worldwide. However, the role of photoaging toward the risk of MPs in water ecosystems remains inconclusive yet. In this study, the size of polyamide (PA, ∼32.50 µm) MPs was obviously decreased after photoaging in water containing fulvic acid (FA) and humic acid (HA) (∼19.75 and âˆ¼24.30 µm, respectively). Nanoplastics were formed (4.65% and 2.03%, respectively) and hydrophilia and colloidal stability was improved due to the formation of oxygen-containing functional groups. FA-aged PA exhibited higher inhibition on body length and weight of developing zebrafish than HA-aged and pristine PA. Photoaged MPs in intestine were more difficult to be depurated by zebrafish, leading to the disappearance of intestinal folding, shedding of more enterocytes, and emaciation of intestinal microvilli. Dietary lipid digestion in larvae was inhibited by aged PA due to oxidative stress-triggered lipid peroxidation and inhibition of lipase activities and bile acids secretion. Exposure of photoaged MPs down-regulated genes (cd36, dgat1a, dgat2, mttp, etc.) associated with triglyceride resynthesis and transportation, resulting in lipid maladsorption and growth inhibition. Our findings highlight the potential negative effects of environmentally aged MPs on diet digestion and nutrient assimilation in fish.


Assuntos
Envelhecimento da Pele , Poluentes Químicos da Água , Animais , Ecossistema , Intestinos/química , Lipídeos , Microplásticos , Nylons/toxicidade , Plásticos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
17.
Bioorg Med Chem ; 19(19): 5896-902, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21903400

RESUMO

To investigate the effect of elongating base-pair (bp) recognition sequences, we synthesized N-methylpyrrole-N-methylimidazole (PI) polyamide conjugates with eight-bp recognition (3-5). The DNA alkylating activities of conjugates 3-5 were evaluated by high-resolution denaturing polyacrylamide gel electrophoresis with a 208-bp DNA fragment. Conjugates 3-5 showed high alkylating activities at nanomolar concentrations. We then addressed the following issue about PI conjugates. Generally, PI polyamide conjugates hardly dissolve in aqueous solution. To improve the aqueous solubility, by the introduction of hydrophilic groups, we synthesized PI polyamide conjugates that were modified with a seco-CBI moiety (6-11). Conjugates 9-11 that were modified by methoxypolyethylene glycol (PEG) 750 acquired moderate solubility and stability in aqueous solution. In addition, conjugates 10 and 11 had high cytotoxicity against A549 and DU145.


Assuntos
Antineoplásicos Alquilantes/química , Nylons/química , Polietilenoglicóis/química , Antineoplásicos Alquilantes/síntese química , Antineoplásicos Alquilantes/toxicidade , Pareamento de Bases/efeitos dos fármacos , Linhagem Celular Tumoral , Desenho de Fármacos , Eletroforese em Gel de Poliacrilamida , Humanos , Imidazóis/química , Nylons/síntese química , Nylons/toxicidade , Pirróis/química , Solubilidade , Água/química
18.
Environ Pollut ; 287: 117334, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34000673

RESUMO

The relevance of the environmental hazard evaluation of virgin plastics particles is problematic, as plastics almost never occur in a virgin state after being discarded into the environment. However, the producers or importers must evaluate the environmental effect of their products as they are produced. Many plastic types e.g., polyamide, polyethylene are already under pre-registration, according to the database of the European Chemicals Agency (ECHA), in order to restrict the placing on the market of polymers (as defined by Article 3(5) of EU's REACH regulation (Registration, Evaluation, Authorization & Restriction of Chemicals), as a substance or in a mixture (ECHA, 2019). However, the hazard of microplastics could not be evaluated without relevant data on its (eco)toxic effects. In this work, the long-term toxicity of virgin polyamide microplastic (PA-MP) (size from 0 to 180 µm) and UV-weathered virgin PA-MP was investigated in the controlled life cycle experiments conducted in accordance with the OECD guidelines for testing of chemicals using Chironomus riparius (OECD test 218). In addition, a three-generation test was conducted to understand the trans-generational toxicity potential of virgin PA-MP. After UV irradiation (26 d) the buoyancy and color of the particles was changed and the share of smaller particles (of a few micrometer size range) increased. The exposure of C. riparius larvae to UV-weathered PA-MP (1000 mg kg-1) during their life cycle (28 d), negatively affected their development and subsequent emergence as adults. However, the exposure to virgin PA-MP throughout the life cycle and also over three consecutive generations did not significantly reduced the number of emerged adults. From the point of view of environmental hazard, the virgin polyamide plastics have probably no long-term hazard to chironomids. While it may not be relevant as environmental pollutant in the strict sense, UV-weathering may turn it hazardous.


Assuntos
Chironomidae , Poluentes Químicos da Água , Animais , Microplásticos , Nylons/toxicidade , Plásticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
19.
J Am Chem Soc ; 132(23): 7957-67, 2010 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-20481635

RESUMO

Non-natural oligomers have recently shown promise as functional analogues of lung surfactant proteins B and C (SP-B and SP-C), two helical and amphiphilic proteins that are critical for normal respiration. The generation of non-natural mimics of SP-B and SP-C has previously been restricted to step-by-step, sequence-specific synthesis, which results in discrete oligomers that are intended to manifest specific structural attributes. Here we present an alternative approach to SP-B mimicry that is based on sequence-random copolymers containing cationic and lipophilic subunits. These materials, members of the nylon-3 family, are prepared by ring-opening polymerization of beta-lactams. The best of the nylon-3 polymers display promising in vitro surfactant activities in a mixed lipid film. Pulsating bubble surfactometry data indicate that films containing the most surface-active polymers attain adsorptive and dynamic-cycling properties that surpass those of discrete peptides intended to mimic SP-B. Attachment of an N-terminal octadecanoyl unit to the nylon-3 copolymers, inspired by the post-translational modifications found in SP-C, affords further improvements by reducing the percent surface area compression to reach low minimum surface tension. Cytotoxic effects of the copolymers are diminished relative to that of an SP-B-derived peptide and a peptoid-based mimic. The current study provides evidence that sequence-random copolymers can mimic the in vitro surface-active behavior of lung surfactant proteins in a mixed lipid film. These findings raise the possibility that random copolymers might be useful for developing a lung surfactant replacement, which is an attractive prospect given that such polymers are easier to prepare than are sequence-specific oligomers.


Assuntos
Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Fenômenos Biofísicos , Nylons/química , Nylons/metabolismo , Proteína B Associada a Surfactante Pulmonar/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , Animais , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/toxicidade , Desenho de Fármacos , Camundongos , Células NIH 3T3 , Nylons/síntese química , Nylons/toxicidade , Ácido Palmítico/química , Fosfatidilgliceróis/química , Proteína B Associada a Surfactante Pulmonar/química , Estereoisomerismo , Propriedades de Superfície
20.
Toxicol In Vitro ; 63: 104714, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31706036

RESUMO

Due to the increasing need of new treatment options against bacterial lung infections, novel antimicrobial peptides (AMPs) are under development. Local bioavailability and less systemic exposure lead to the inhalation route of administration. Combining AMPs with nanocarriers (NCs) into nanosystems (NSs) might be a technique for improved results. An air-liquid interface (ALI) in vitro inhalation model was set up including a human alveolar lung cell line (A549) and an optimized exposure system (P.R.I.T.® ExpoCube®) to predict acute local lung toxicity. The approach including aerosol controls (cupper-II-sulfate and lactose) delivered lowest observable adverse effect levels (LOAELs). Different combinations of AMPs (AA139, M33) and NCs (polymeric nanoparticles (PNPs), micelles and liposomes) were tested under ALI and submerged in vitro conditions. Depending on the nature of AMP and NCs, packing of AMPs into NSs reduced the AMP-related toxicity. Large differences were found between the LOAELs determined by submerged or ALI testing with the ALI approach indicating higher sensitivity of the ALI model. Since aerosol droplet exposure is in vivo relevant, it is assumed that ALI based results represents the more significant source than submerged testing for in vivo prediction of local acute lung toxicity. In accordance with the current state-of-the-art view, this study shows that ALI in vitro inhalation models are promising tools to further develop in vitro methods in the field of inhalation toxicology.


Assuntos
Antibacterianos/toxicidade , Nanopartículas/toxicidade , Peptídeos/toxicidade , Células A549 , Aerossóis , Antibacterianos/administração & dosagem , Infecções Bacterianas/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Humanos , Lipossomos , Pulmão/efeitos dos fármacos , Pneumopatias/tratamento farmacológico , Metacrilatos/administração & dosagem , Metacrilatos/toxicidade , Micelas , Nanopartículas/administração & dosagem , Nylons/toxicidade , Peptídeos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA