RESUMO
Aromatic amino acid decarboxylases (AAADs) are pyridoxal-5'-phosphate (PLP)-dependent enzymes that catalyze the decarboxylation of aromatic amino acid l-amino acids. In plants, apart from canonical AAADs that catalyze the straightforward decarboxylation reaction, other members of the AAAD family function as aromatic acetaldehyde synthases (AASs) and catalyze more complex decarboxylation-dependent oxidative deamination. The interconversion between a canonical AAAD and an AAS can be achieved by a single tyrosine-phenylalanine mutation in the large catalytic loop of the enzymes. In this work, we report implicit ligand sampling (ILS) calculations of the canonical l-tyrosine decarboxylase from Papaver somniferum (PsTyDC) that catalyzes l-tyrosine decarboxylation and its Y350F mutant that instead catalyzes the decarboxylation-dependent oxidative deamination of the same substrate. Through comparative analysis of the resulting three-dimensional (3D) O2 free energy profiles, we evaluate the impact of the key tyrosine/phenylalanine mutation on oxygen accessibility to both the wild type and Y350F mutant of PsTyDC. Additionally, using molecular dynamics (MD) simulations of the l-tryptophan decarboxylase from Catharanthus roseus (CrTDC), we further investigate the dynamics of a large catalytic loop known to be indispensable to all AAADs. Results of our ILS and MD calculations shed new light on how key structural elements and loop conformational dynamics underlie the enzymatic functions of different members of the plant AAAD family.
Assuntos
Descarboxilases de Aminoácido-L-Aromático , Domínio Catalítico , Simulação de Dinâmica Molecular , Oxigênio , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Descarboxilases de Aminoácido-L-Aromático/genética , Descarboxilases de Aminoácido-L-Aromático/química , Oxigênio/metabolismo , Oxigênio/química , Papaver/enzimologia , Papaver/genética , Papaver/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Tirosina/metabolismo , Tirosina/química , Tirosina/genéticaRESUMO
Whole-genome duplication (WGD) leads to the duplication of both coding and non-coding sequences within an organism's genome, providing an abundant supply of genetic material that can drive evolution, ultimately contributing to plant adaptation and speciation. Although non-coding sequences contain numerous regulatory elements, they have been understudied compared to coding sequences. In order to address this gap, we explored the evolutionary patterns of regulatory sequences, coding sequences and transcriptomes using conserved non-coding elements (CNEs) as regulatory element proxies following the recent WGD event in opium poppy (Papaver somniferum). Our results showed similar evolutionary patterns in subgenomes of regulatory and coding sequences. Specifically, the biased or unbiased retention of coding sequences reflected the same pattern as retention levels in regulatory sequences. Further, the divergence of gene expression patterns mediated by regulatory element variations occurred at a more rapid pace than that of gene coding sequences. However, gene losses were purportedly dependent on relaxed selection pressure in coding sequences. Specifically, the rapid evolution of tissue-specific benzylisoquinoline alkaloid production in P. somniferum was associated with regulatory element changes. The origin of a novel stem-specific ACR, which utilized ancestral cis-elements as templates, is likely to be linked to the evolutionary trajectory behind the transition of the PSMT1-CYP719A21 cluster from high levels of expression solely in P. rhoeas root tissue to its elevated expression in P. somniferum stem tissue. Our findings demonstrate that rapid regulatory element evolution can contribute to the emergence of new phenotypes and provide valuable insights into the high evolvability of regulatory elements.
Assuntos
Papaver , Papaver/genética , Papaver/metabolismo , Duplicação Gênica , Genoma , Evolução MolecularRESUMO
Among plant-derived secondary metabolites are benzylisoquinoline alkaloids (BIAs) that play a vital role in medicine. The most conspicuous BIAs frequently found in opium poppy are morphine, codeine, thebaine, papaverine, sanguinarine, and noscapine. BIAs have provided abundant clinically useful drugs used in the treatment of various diseases and ailments With an increasing demand for these herbal remedies, genetic improvement of poppy plants appears to be essential to live up to the expectations of the pharmaceutical industry. With the advent of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated9 (Cas9), the field of metabolic engineering has undergone a paradigm shift in its approach due to its appealing attributes, such as the transgene-free editing capability, precision, selectivity, robustness, and versatility. The potentiality of the CRISPR system for manipulating metabolic pathways in opium poppy was demonstrated, but further investigations regarding the use of CRISPR in BIA pathway engineering should be undertaken to develop opium poppy into a bioreactor synthesizing BIAs at the industrial-scale levels. In this regard, the recruitment of RNA-guided genome editing for knocking out miRNAs, flower responsible genes, genes involved in competitive pathways, and base editing are described. The approaches presented here have never been suggested or applied in opium poppy so far.
Assuntos
Benzilisoquinolinas , Sistemas CRISPR-Cas , Edição de Genes , Papaver , Papaver/genética , Papaver/metabolismo , Benzilisoquinolinas/metabolismo , Engenharia Metabólica/métodos , Genoma de PlantaRESUMO
Protein engineering provides a powerful base for the circumvention of challenges tied with characteristics accountable for enzyme functions. CYP82Y1 introduces a hydroxyl group (-OH) into C1 of N-methylcanadine as the substrate to yield 1-hydroxy-N-methylcanadine. This chemical process has been found to be the gateway to noscapine biosynthesis. Owning to the importance of CYP82Y1 in this biosynthetic pathway, it has been selected as a target for enzyme engineering. The insertion of tags to the N- and C-terminal of CYP82Y1 was assessed for their efficiencies for improvement of the physiological performances of CYP82Y1. Although these attempts achieved some positive results, further strategies are required to dramatically enhance the CYP82Y1 activity. Here methods that have been adopted to achieve a functionally improved CYP82Y1 will be reviewed. In addition, the possibility of recruitment of other techniques having not yet been implemented in CYP82Y1 engineering, including the substitution of the residues located in the substrate recognition site, formation of the synthetic fusion proteins, and construction of the artificial lipid-based scaffold will be discussed. Given the fact that the pace of noscapine synthesis is constrained by the CYP82Y1-catalyzing step, the methods proposed here are capable of accelerating the rate of reaction performed by CYP82Y1 through improving its properties, resulting in the enhancement of noscapine accumulation.
Assuntos
Noscapina , Papaver , Noscapina/química , Noscapina/metabolismo , Papaver/genética , Papaver/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Metiltransferases/metabolismo , Vias BiossintéticasRESUMO
(S)-Norcoclaurine is synthesized in vivo through a metabolic pathway that ends with (S)-norcoclaurine synthase (NCS). The former constitutes the scaffold for the biosynthesis of all benzylisoquinoline alkaloids (BIAs), including many drugs such as the opiates morphine and codeine and the semi-synthetic opioids oxycodone, hydrocodone, and hydromorphone. Unfortunately, the only source of complex BIAs is the opium poppy, leaving the drug supply dependent on poppy crops. Therefore, the bioproduction of (S)-norcoclaurine in heterologous hosts, such as bacteria or yeast, is an intense area of research nowadays. The efficiency of (S)-norcoclaurine biosynthesis is strongly dependent on the catalytic efficiency of NCS. Therefore, we identified vital NCS rate-enhancing mutations through the rational transition-state macrodipole stabilization method at the Quantum Mechanics/Molecular Mechanics (QM/MM) level. The results are a step forward for obtaining NCS variants able to biosynthesize (S)-norcoclaurine on a large scale.
Assuntos
Alcaloides , Benzilisoquinolinas , Carbono-Nitrogênio Ligases , Papaver , Alcaloides/metabolismo , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Codeína , Papaver/genética , Papaver/metabolismoRESUMO
Papaver somniferum L. (opium poppy) is the original plant of heroin, which is a major narcotic drug, and this plant has brought great harm to human health. However, the ban on opium poppy cultivation and trafficking is facing great challenges because of abnormal profits. Therefore, rapid and accurate identification is important to address the abovementioned problems. In this study, eleven simple sequence repeats (SSR) markers and two single nucleotide polymorphism (SNP) markers were mined to distinguish opium poppy from other six Papaver species. These molecular markers were further verified through a large number of plant materials of these seven Papaver species. An excellent multiplex polymerase chain reaction (PCR) system that simultaneously amplifies the three of eleven SSR markers was developed, which effectively improves the efficiency and speed of identification. The present research is of great implication for identifying and investigating the illegal cultivation and trafficking of opium poppy.
Assuntos
Papaver , Marcadores Genéticos , Heroína , Repetições de Microssatélites , Papaver/classificação , Papaver/genética , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Plant glutathione S-transferases are an ancient protein superfamily having antioxidant activity. These proteins are primarily involved in diverse plant functions such as plant growth and development, secondary metabolism, signaling pathways and defense against biotic and abiotic stresses. The current study aimed to comprehensively identify and characterize the GST gene family in the medicinally important crop Papaver somniferum. A total of 93 GST proteins were identified belonging to eight GST classes and found to be majorly localized in the cytoplasm. All GST genes were found on eleven opium chromosomes. Gene duplication analysis showed segmental duplication as a key factor for opium GST gene family expansion under strong purifying selection. Phylogenetic analysis with gymnosperm, angiosperm and bryophyte revealed the evolution of GSTs earlier than their division into separate groups and also prior to the divergence of monocot and dicot. The secondary structure prediction showed the dominance of α-helices indicative of PsomGSTs as structurally stable and elastic proteins. Gene architecture showed the conservation of number of exons across the classes. MEME analysis revealed only a few class specific and many across class conserved motifs. Ser was found to be the active site residue of tau, phi, theta and zeta class and Cys was catalytic residue of DHAR, lambda and GHR class. Promoter analyses identified many cis-acting regulatory elements related to hormonal, cellular, stress and light response functions. Ser was the key phosphorylation site. Only three glycosylation sites were found across the 93 PsomGSTs. 3D structure prediction was also performed and was validated. Interactome analyses revealed the correlation of PsomGSTs with glutathione metabolizing proteins. Gene enrichment analysis and KEGG pathway analyzed the involvement of PsomGSTs in three major pathways i.e. glutathione metabolism, tyrosine metabolism and ascorbate metabolism. The outcome revealed high model quality of PsomGSTs. The results of the current study will be of potential significance to understand the functional and structural importance of the GST gene family in opium, a medicinally important crop.
Assuntos
Glutationa Transferase , Papaver , Glutationa Transferase/genética , Glutationa Transferase/química , Glutationa Transferase/metabolismo , Regulação da Expressão Gênica de Plantas , Papaver/genética , Papaver/metabolismo , Filogenia , Ópio , Plantas/genética , Glutationa/metabolismoRESUMO
Latex, a sticky emulsion produced by specialized cells called laticifers, is a crucial part of a plant's defense system against herbivory and pathogens. It consists of a broad spectrum of active compounds, which are beneficial not only for plants, but for human health as well, enough to mention the use of morphine or codeine from poppy latex. Here, we reviewed latex's general role in plant physiology and the significance of particular compounds (alkaloids and proteins) to its defense system with the example of Chelidonium majus L. from the poppy family. We further attempt to present latex chemicals used so far in medicine and then focus on functional studies of proteins and other compounds with potential pharmacological activities using modern techniques such as CRISPR/Cas9 gene editing. Despite the centuries-old tradition of using latex-bearing plants in therapies, there are still a lot of promising molecules waiting to be explored.
Assuntos
Anti-Infecciosos/química , Antineoplásicos/química , Chelidonium/metabolismo , Fatores Imunológicos/química , Látex/química , Alcaloides Opiáceos/química , Papaver/metabolismo , Compostos Fitoquímicos/química , Proteínas de Plantas/química , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Chelidonium/genética , Descoberta de Drogas/métodos , Edição de Genes/métodos , Herbivoria/efeitos dos fármacos , Humanos , Papaver/genética , Plantas Geneticamente ModificadasRESUMO
Sanguinarine is the main active component of the Papaver plants, and protopine-6-hydroxylase(P6 H), involved in the sanguinarine biosynthetic pathway, can oxidize protopine to 6-hydroxyprotopine. The investigation on the diversity of P6 H genes in the medicinal Papaver plants contributes to the acquirement of P6 H with high activity to increase the biosynthesis of sanguinarine. Five P6 H genes in P. somniferum, P. orientale, and P. rhoeas were discovered based on the re-sequencing data of the Papaver species, followed by bioinformatics analysis. With the elongation factor 1α(EF-1α), which exhibits stable expression in the root and stem, as the internal reference gene, the transcription levels of P6H genes in roots and stems of the Papaver plants were detected by real-time fluorescent quantitative PCR. As indicated by the re-sequencing results, there were two genotypes of P6H in P. somniferum and P. orientale, respectively, and only one in P. rhoeas. The bioinformatics analysis showed that the P6 H proteins of the three Papaver plants contained the conserved domain cl12078, which is the characteristic of p450 supergene family, and transmembrane regions. The existence of signal peptide remained verification. Real-time fluorescent quantitative PCR results revealed that the transcription level of P6 H in roots of P. somniferum was about 1.44 times of that in stems(α=0.05). The present study confirmed genetic diversity of P6 H in the three medicinal Papaver plants, which lays a basis for the research on the biosynthesis pathway and mechanism of sanguinarine in Papaver species.
Assuntos
Alcaloides de Berberina , Papaver , Benzofenantridinas , Sistema Enzimático do Citocromo P-450/genética , Variação Genética , Papaver/genéticaRESUMO
Pollen tube growth is essential for plant reproduction. Their rapid extension using polarized tip growth provides an exciting system for studying this specialized type of growth. Self-incompatibility (SI) is a genetically controlled mechanism to prevent self-fertilization. Mechanistically, one of the best-studied SI systems is that of Papaver rhoeas (poppy). This utilizes two S-determinants: stigma-expressed PrsS and pollen-expressed PrpS. Interaction of cognate PrpS-PrsS triggers a signalling network, causing rapid growth arrest and programmed cell death (PCD) in incompatible pollen. We previously demonstrated that transgenic Arabidopsis thaliana pollen expressing PrpS-green fluorescent protein (GFP) can respond to Papaver PrsS with remarkably similar responses to those observed in incompatible Papaver pollen. Here we describe recent advances using these transgenic plants combined with genetically encoded fluorescent probes to monitor SI-induced cellular alterations, including cytosolic calcium, pH, the actin cytoskeleton, clathrin-mediated endocytosis (CME), and the vacuole. This approach has allowed us to study the SI response in depth, using multiparameter live-cell imaging approaches that were not possible in Papaver. This lays the foundations for new opportunities to elucidate key mechanisms involved in SI. Here we establish that CME is disrupted in self-incompatible pollen. Moreover, we reveal new detailed information about F-actin remodelling in pollen tubes after SI.
Assuntos
Arabidopsis , Papaver , Arabidopsis/genética , Papaver/genética , Proteínas de Plantas , Pólen/genética , PolinizaçãoRESUMO
Noscapine biosynthesis in opium poppy involves three characterized O-methyltransferases (OMTs) and a fourth responsible for the 4'-methoxyl on the phthalide isoquinoline scaffold. The first three enzymes are homodimers, whereas the latter is a heterodimer encoded by two linked genes (OMT2 and OMT3). Neither OMT2 nor OMT3 form stable homodimers, but yield a substrate-specific heterodimer when their genes are co-expressed in Escherichia coli. The only substrate, 4'-O-desmethyl-3-O-acetylpapaveroxine, is a seco-berbine pathway intermediate that undergoes ester hydrolysis subsequent to 4'-O-methylation leading to the formation of narcotine hemiacetal. In the absence of 4'-O-methylation, a parallel pathway yields narcotoline hemiacetal. Dehydrogenation produces noscapine and narcotoline from the corresponding hemiacetals. Phthalide isoquinoline intermediates with a 4'-hydroxyl (i.e. narcotoline and narcotoline hemiacetal), or the corresponding 1-hydroxyl on protoberberine intermediates, were not accepted. Norcoclaurine 6OMT, which shares 81% amino acid sequence identity with OMT3, also formed a functionally similar heterodimer with OMT2. Suppression of OMT2 transcript levels in opium poppy increased narcotoline accumulation, whereas reduced OMT3 transcript abundance caused no detectable change in the alkaloid phenotype. Opium poppy chemotype Marianne accumulates high levels of narcotoline and showed no detectable OMT2:OMT3 activity. Compared with the active subunit from the Bea's Choice chemotype, Marianne OMT2 exhibited a single S122Y mutation in the dimerization domain that precluded heterodimer formation based on homology models. Both subunits contributed to the formation of the substrate-binding domain, although site-directed mutagenesis revealed OMT2 as the active subunit. The occurrence of physiologically relevant OMT heterodimers increases the catalytic diversity of enzymes derived from a smaller number of gene products.
Assuntos
Metiltransferases/metabolismo , Noscapina/metabolismo , Papaver/metabolismo , Proteínas de Plantas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genes de Plantas/genética , Redes e Vias Metabólicas , Metilação , Metiltransferases/genética , Microrganismos Geneticamente Modificados , Papaver/enzimologia , Papaver/genética , Proteínas de Plantas/genéticaRESUMO
Protein phosphorylation regulates numerous cellular processes. Identifying the substrates and protein kinases involved is vital to understand how these important posttranslational modifications modulate biological function in eukaryotic cells. Pyrophosphatases catalyze the hydrolysis of inorganic phosphate (PPi) to inorganic phosphate Pi, driving biosynthetic reactions; they are essential for low cytosolic inorganic phosphate. It was suggested recently that posttranslational regulation of Family I soluble inorganic pyrophosphatases (sPPases) may affect their activity. We previously demonstrated that two pollen-expressed sPPases, Pr-p26.1a and Pr-p26.1b, from the flowering plant Papaver rhoeas were inhibited by phosphorylation. Despite the potential significance, there is a paucity of data on sPPase phosphorylation and regulation. Here, we used liquid chromatographic tandem mass spectrometry to map phosphorylation sites to the otherwise divergent amino-terminal extensions on these pollen sPPases. Despite the absence of reports in the literature on mapping phosphorylation sites on sPPases, a database survey of various proteomes identified a number of examples, suggesting that phosphorylation may be a more widely used mechanism to regulate these enzymes. Phosphomimetic mutants of Pr-p26.1a/b significantly and differentially reduced PPase activities by up to 2.5-fold at pH 6.8 and 52% in the presence of Ca2+ and hydrogen peroxide over unmodified proteins. This indicates that phosphoregulation of key sites can inhibit the catalytic responsiveness of these proteins in concert with key intracellular events. As sPPases are essential for many metabolic pathways in eukaryotic cells, our findings identify the phosphorylation of sPPases as a potential master regulatory mechanism that could be used to attenuate metabolism.
Assuntos
Pirofosfatase Inorgânica/metabolismo , Papaver/enzimologia , Proteínas de Plantas/metabolismo , Pólen/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Cálcio/metabolismo , Cálcio/farmacologia , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Peróxido de Hidrogênio/farmacologia , Concentração de Íons de Hidrogênio , Pirofosfatase Inorgânica/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Mutação , Oxidantes/farmacologia , Papaver/genética , Fosforilação , Filogenia , Proteínas de Plantas/genética , Pólen/genética , Proteínas Quinases/classificação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Solubilidade , Especificidade por Substrato , Espectrometria de Massas em TandemRESUMO
The Papaver spp. (Papaver rhoeas (Corn poppy) and Papaver nudicaule (Iceland poppy)) genera are ornamental and medicinal plants that are used for the isolation of alkaloid drugs. In this study, we generated 700 Mb of transcriptome sequences with the PacBio platform. They were assembled into 120,926 contigs, and 1185 (82.2%) of the benchmarking universal single-copy orthologs (BUSCO) core genes were completely present in our assembled transcriptome. Furthermore, using 128 Gb of Illumina sequences, the transcript expression was assessed at three stages of Papaver plant development (30, 60, and 90 days), from which we identified 137 differentially expressed transcripts. Furthermore, three co-occurrence heat maps are generated from 51 different plant genomes along with the Papaver transcriptome, i.e., secondary metabolite biosynthesis, isoquinoline alkaloid biosynthesis (BIA) pathway, and cytochrome. Sixty-nine transcripts in the BIA pathway along with 22 different alkaloids (quantified with LC-QTOF-MS/MS) were mapped into the BIA KEGG map (map00950). Finally, we identified 39 full-length cytochrome transcripts and compared them with other genomes. Collectively, this transcriptome data, along with the expression and quantitative metabolite profiles, provides an initial recording of secondary metabolites and their expression related to Papaver plant development. Moreover, these profiles could help to further detail the functional characterization of the various secondary metabolite biosynthesis and Papaver plant development associated problems.
Assuntos
Perfilação da Expressão Gênica , Papaver/genética , Plantas Medicinais/genética , Vias Biossintéticas/genética , Citocromos/genética , Citocromos/metabolismo , Regulação da Expressão Gênica de Plantas , Isoquinolinas/metabolismo , Anotação de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metabolismo Secundário/genéticaRESUMO
Papaver rhoeas L. and P. orientale L., which belong to the family Papaveraceae, are used as ornamental and medicinal plants. The chloroplast genome has been used for molecular markers, evolutionary biology, and barcoding identification. In this study, the complete chloroplast genome sequences of P. rhoeas and P. orientale are reported. Results show that the complete chloroplast genomes of P. rhoeas and P. orientale have typical quadripartite structures, which are comprised of circular 152,905 and 152,799-bp-long molecules, respectively. A total of 130 genes were identified in each genome, including 85 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Sequence divergence analysis of four species from Papaveraceae indicated that the most divergent regions are found in the non-coding spacers with minimal differences among three Papaver species. These differences include the ycf1 gene and intergenic regions, such as rpoB-trnC, trnD-trnT, petA-psbJ, psbE-petL, and ccsA-ndhD. These regions are hypervariable regions, which can be used as specific DNA barcodes. This finding suggested that the chloroplast genome could be used as a powerful tool to resolve the phylogenetic positions and relationships of Papaveraceae. These results offer valuable information for future research in the identification of Papaver species and will benefit further investigations of these species.
Assuntos
Cloroplastos/genética , Genoma de Cloroplastos/genética , Papaver/genética , Estrutura Molecular , Filogenia , RNA de Transferência/genética , Análise de Sequência de DNA , Sequenciamento Completo do GenomaRESUMO
Benzylisoquinoline alkaloids are a large group of plant-specialized metabolites displaying an array of biological and pharmacological properties associated with numerous structural scaffolds and diverse functional group modification. N-Methylation is one of the most common tailoring reactions, yielding tertiary and quaternary pathway intermediates and products. Two N-methyltransferases accepting (i) early 1-benzylisoquinoline intermediates possessing a secondary amine and leading to the key branch-point intermediate (S)-reticuline and (ii) downstream protoberberines containing a tertiary amine and forming quaternary intermediates destined for phthalideisoquinolines and antimicrobial benzo[c]phenanthridines were previously characterized. We report the isolation and characterization of a phylogenetically related yet functionally distinct N-methyltransferase (NMT) from opium poppy (Papaver somniferum) that primarily accepts 1-benzylisoquinoline and aporphine substrates possessing a tertiary amine. The preferred substrates were the R and S conformers of reticuline and the aporphine (S)-corytuberine, which are proposed intermediates in the biosynthesis of magnoflorine, a quaternary aporphine alkaloid common in plants. Suppression of the gene encoding reticuline N-methyltransferase (RNMT) using virus-induced gene silencing in opium poppy resulted in a significant decrease in magnoflorine accumulation and a concomitant increase in corytuberine levels in roots. RNMT transcript levels were also most abundant in roots, in contrast to the distribution of transcripts encoding other NMTs, which occur predominantly in aerial plant organs. The characterization of a third functionally unique NMT involved in benzylisoquinoline alkaloid metabolism will facilitate the establishment of structure-function relationships among a large group of related enzymes.
Assuntos
Aporfinas/metabolismo , Benzilisoquinolinas/metabolismo , Metiltransferases/metabolismo , Papaver/enzimologia , Sequência de Aminoácidos , Vias Biossintéticas , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/isolamento & purificação , Papaver/química , Papaver/genética , Papaver/metabolismo , Filogenia , Alinhamento de SequênciaRESUMO
We have characterized four sequential enzymes that transform 1-hydroxy-N-methylcanadine to narcotoline hemiacetal, completing our elucidation of noscapine biosynthesis in opium poppy. Two cytochromes P450 catalyze hydroxylations at C13 and C8 on the protoberberine scaffold, the latter step inducing ring opening and the formation of an aldehyde moiety. Acetylation at C13 before C8 hydroxylation introduces a protective group subsequently hydrolyzed by a carboxylesterase, which triggers rearrangement to a cyclic hemiacetal.
Assuntos
Noscapina/metabolismo , Papaver/enzimologia , Proteínas de Plantas/metabolismo , Acetilação , Berberina/análogos & derivados , Berberina/química , Berberina/metabolismo , Vias Biossintéticas , Ciclização , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Hidroxilação , Noscapina/química , Papaver/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por SubstratoRESUMO
The gateway to morphine biosynthesis in opium poppy (Papaver somniferum) is the stereochemical inversion of (S)-reticuline since the enzyme yielding the first committed intermediate salutaridine is specific for (R)-reticuline. A fusion between a cytochrome P450 (CYP) and an aldo-keto reductase (AKR) catalyzes the S-to-R epimerization of reticuline via 1,2-dehydroreticuline. The reticuline epimerase (REPI) fusion was detected in opium poppy and in Papaver bracteatum, which accumulates thebaine. In contrast, orthologs encoding independent CYP and AKR enzymes catalyzing the respective synthesis and reduction of 1,2-dehydroreticuline were isolated from Papaver rhoeas, which does not accumulate morphinan alkaloids. An ancestral relationship between these enzymes is supported by a conservation of introns in the gene fusions and independent orthologs. Suppression of REPI transcripts using virus-induced gene silencing in opium poppy reduced levels of (R)-reticuline and morphinan alkaloids and increased the overall abundance of (S)-reticuline and its O-methylated derivatives. Discovery of REPI completes the isolation of genes responsible for known steps of morphine biosynthesis.
Assuntos
Aldeído Redutase/metabolismo , Carboidratos Epimerases/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Morfina/biossíntese , Papaver/metabolismo , Proteínas de Plantas/metabolismo , Aldeído Redutase/genética , Aldo-Ceto Redutases , Alcaloides/biossíntese , Alcaloides/química , Sequência de Bases , Benzilisoquinolinas/química , Benzilisoquinolinas/metabolismo , Bromoviridae/genética , Bromoviridae/metabolismo , Carboidratos Epimerases/antagonistas & inibidores , Carboidratos Epimerases/genética , Sistema Enzimático do Citocromo P-450/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Éxons , Fusão Gênica , Íntrons , Ligases/genética , Ligases/metabolismo , Dados de Sequência Molecular , Morfinanos/química , Morfinanos/metabolismo , Morfina/química , Fases de Leitura Aberta , Ópio/química , Ópio/metabolismo , Oxirredução , Papaver/genética , Proteínas de Plantas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , EstereoisomerismoRESUMO
Resistance to 2,4-D (2,4-diclorophenoxyacetic acid) herbicide is increasing in various dicotyledonous weed species, including Papaver rhoeas, a weed infesting Southern European wheat crops. Non-target-site resistance to this herbicide is governed by a range of genes involved in herbicide stress response. To enable reliable measurement of gene expression levels in herbicide-resistant and susceptible plants it is necessary to normalize qPCR data using internal control genes with stable expression. In an attempt to find the best reference genes, the stability of seven candidate reference genes was assessed in plants resistant and susceptible to 2,4-D, subjected or not to herbicide stress. Using three statistical algorithms (geNorm, BestKeeper and NormFinder), the overall results revealed that glyceraldehyde-3-phosphate dehydrogenase, actin and ubiquitin were the most stable reference genes. The normalization expression levels of GH3 (indole-3-acetic acid amido synthetase) and GST3 (glutathione S-transferase) which are two genes up-regulated following 2,4-D treatment, were determined to verify the stability of these selected reference genes. A sudden increase in GH3 and GST3 expression was already detected 5h after herbicide application, confirming their involvement in plant response to 2,4-D. The validation results confirmed the applicability and accuracy of these reference genes. This study identified and validated reference genes in the non-model weed species P. rhoeas and these will facilitate gene expression analysis studies aimed at identifying functional genes associated with non-target-site resistance.
Assuntos
Ácido 2,4-Diclorofenoxiacético/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Herbicidas/toxicidade , Papaver/genética , Plantas Daninhas/genética , Papaver/efeitos dos fármacos , Proteínas de Plantas/genética , Plantas Daninhas/efeitos dos fármacos , Estresse Fisiológico/genéticaRESUMO
Poppy seeds (Papaver somniferum L.) belong to tasty food ingredients however, they should be considered also as valuable source of biologically active compounds. Content of selected metabolites, antioxidant and proteinase inhibitory activities were analyzed in vitro in extracts from seeds of fifteen poppy genotypes. Considerable variation in all parameters was detected within the set of analyzed poppy genotypes. The genotype Major expressed the highest antioxidant activity determined by all four methodological approaches (DPPH, ABTS, FRAP, RP). The genotype MS 423 exhibited the highest inhibitory activities against trypsin, thrombin and collagenase. Very specific position among all had the genotype Redy. Its grain extract reached significantly high levels in 9 out of 14 measured parameters (TPC, TFC, TTC, TAC, FRAP, RP, inhibitory activities against trypsin, thrombin, collagenase). Edible grains of poppy are valuable source of natural compounds which may be beneficial in pathological states associated with oxidative stress or increased proteinase activities.