Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Eur J Neurol ; 31(8): e16367, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38859620

RESUMO

BACKGROUND AND PURPOSE: Hereditary spastic paraplegias (HSPs) comprise a group of inherited neurodegenerative disorders characterized by progressive spasticity and weakness. Botulinum toxin has been approved for lower limb spasticity following stroke and cerebral palsy, but its effects in HSPs remain underexplored. We aimed to characterize the effects of botulinum toxin on clinical, gait, and patient-reported outcomes in HSP patients and explore the potential of mobile digital gait analysis to monitor treatment effects and predict treatment response. METHODS: We conducted a prospective, observational, multicenter study involving ambulatory HSP patients treated with botulinum toxin tailored to individual goals. Comparing data at baseline, after 1 month, and after 3 months, treatment response was assessed using clinical parameters, goal attainment scaling, and mobile digital gait analysis. Machine learning algorithms were used for predicting individual goal attainment based on baseline parameters. RESULTS: A total of 56 patients were enrolled. Despite the heterogeneity of treatment goals and targeted muscles, botulinum toxin led to a significant improvement in specific clinical parameters and an improvement in specific gait characteristics, peaking at the 1-month and declining by the 3-month follow-up. Significant correlations were identified between gait parameters and clinical scores. With a mean balanced accuracy of 66%, machine learning algorithms identified important denominators to predict treatment response. CONCLUSIONS: Our study provides evidence supporting the beneficial effects of botulinum toxin in HSP when applied according to individual treatment goals. The use of mobile digital gait analysis and machine learning represents a novel approach for monitoring treatment effects and predicting treatment response.


Assuntos
Análise da Marcha , Paraplegia Espástica Hereditária , Humanos , Masculino , Feminino , Paraplegia Espástica Hereditária/tratamento farmacológico , Adulto , Pessoa de Meia-Idade , Análise da Marcha/métodos , Estudos Prospectivos , Fármacos Neuromusculares/farmacologia , Fármacos Neuromusculares/administração & dosagem , Fármacos Neuromusculares/uso terapêutico , Resultado do Tratamento , Toxinas Botulínicas Tipo A/uso terapêutico , Toxinas Botulínicas Tipo A/farmacologia , Adulto Jovem , Idoso , Toxinas Botulínicas/uso terapêutico
2.
Acta Neuropathol ; 146(2): 353-368, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37119330

RESUMO

Hereditary spastic paraplegias (HSP) are rare, inherited neurodegenerative or neurodevelopmental disorders that mainly present with lower limb spasticity and muscle weakness due to motor neuron dysfunction. Whole genome sequencing identified bi-allelic truncating variants in AMFR, encoding a RING-H2 finger E3 ubiquitin ligase anchored at the membrane of the endoplasmic reticulum (ER), in two previously genetically unexplained HSP-affected siblings. Subsequently, international collaboration recognized additional HSP-affected individuals with similar bi-allelic truncating AMFR variants, resulting in a cohort of 20 individuals from 8 unrelated, consanguineous families. Variants segregated with a phenotype of mainly pure but also complex HSP consisting of global developmental delay, mild intellectual disability, motor dysfunction, and progressive spasticity. Patient-derived fibroblasts, neural stem cells (NSCs), and in vivo zebrafish modeling were used to investigate pathomechanisms, including initial preclinical therapy assessment. The absence of AMFR disturbs lipid homeostasis, causing lipid droplet accumulation in NSCs and patient-derived fibroblasts which is rescued upon AMFR re-expression. Electron microscopy indicates ER morphology alterations in the absence of AMFR. Similar findings are seen in amfra-/- zebrafish larvae, in addition to altered touch-evoked escape response and defects in motor neuron branching, phenocopying the HSP observed in patients. Interestingly, administration of FDA-approved statins improves touch-evoked escape response and motor neuron branching defects in amfra-/- zebrafish larvae, suggesting potential therapeutic implications. Our genetic and functional studies identify bi-allelic truncating variants in AMFR as a cause of a novel autosomal recessive HSP by altering lipid metabolism, which may potentially be therapeutically modulated using precision medicine with statins.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Paraplegia Espástica Hereditária , Animais , Humanos , Paraplegia Espástica Hereditária/tratamento farmacológico , Paraplegia Espástica Hereditária/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Peixe-Zebra , Mutação , Neurônios Motores , Receptores do Fator Autócrino de Motilidade/genética
3.
FASEB J ; 35(2): e21329, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33484186

RESUMO

L1 syndrome is a rare developmental disorder characterized by hydrocephalus of varying severity, intellectual deficits, spasticity of the legs, and adducted thumbs. Therapy is limited to symptomatic relief. Numerous gene mutations in the L1 cell adhesion molecule (L1CAM, hereafter abbreviated L1) were identified in L1 syndrome patients, and those affecting the extracellular domain of this transmembrane type 1 glycoprotein show the most severe phenotypes. Previously analyzed rodent models of the L1 syndrome focused on L1-deficient animals or mouse mutants with abrogated cell surface expression of L1, making it difficult to test L1 function-triggering mimetic compounds with potential therapeutic value. To overcome this impasse, we generated a novel L1 syndrome mouse with a mutation of aspartic acid at position 201 in the extracellular part of L1 (p.D201N, hereafter termed L1-201) that displays a cell surface-exposed L1 accessible to the L1 mimetics. Behavioral assessment revealed an increased neurological deficit score and increased locomotor activity in male L1-201 mice carrying the mutation on the X-chromosome. Histological analyses of L1-201 mice showed features of the L1 syndrome, including enlarged ventricles and reduced size of the corpus callosum. Expression levels of L1-201 protein as well as extent of cell surface biotinylation and immunofluorescence labelling of cultured cerebellar neurons were normal. Importantly, treatment of these cultures with the L1 mimetic compounds duloxetine, crotamiton, and trimebutine rescued impaired cell migration and survival as well as neuritogenesis. Altogether, the novel L1 syndrome mouse model provides a first experimental proof-of-principle for the potential therapeutic value of L1 mimetic compounds.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/tratamento farmacológico , Deficiência Intelectual/tratamento farmacológico , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Peptidomiméticos/uso terapêutico , Paraplegia Espástica Hereditária/tratamento farmacológico , Animais , Células Cultivadas , Cerebelo/citologia , Cerebelo/metabolismo , Cerebelo/patologia , Ventrículos Cerebrais/metabolismo , Ventrículos Cerebrais/patologia , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Cloridrato de Duloxetina/farmacologia , Cloridrato de Duloxetina/uso terapêutico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Molécula L1 de Adesão de Célula Nervosa/genética , Neurogênese , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Peptidomiméticos/farmacologia , Fenótipo , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/patologia , Toluidinas/farmacologia , Toluidinas/uso terapêutico , Trimebutina/farmacologia , Trimebutina/uso terapêutico
4.
Clin Genet ; 100(1): 51-58, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33713342

RESUMO

GCH1 mutations have been associated with dopa-responsive dystonia (DRD), Parkinson's disease (PD) and tetrahydrobiopterin (BH4 )-deficient hyperphenylalaninemia B. Recently, GCH1 mutations have been reported in five patients with hereditary spastic paraplegia (HSP). Here, we analyzed a total of 400 HSP patients (291 families) from different centers across Canada by whole exome sequencing (WES). Three patients with heterozygous GCH1 variants were identified: monozygotic twins with a p.(Ser77_Leu82del) variant, and a patient with a p.(Val205Glu) variant. The former variant is predicted to be likely pathogenic and the latter is pathogenic. The three patients presented with childhood-onset lower limb spasticity, hyperreflexia and abnormal plantar responses. One of the patients had diurnal fluctuations, and none had parkinsonism or dystonia. Phenotypic differences between the monozygotic twins were observed, who responded well to levodopa treatment. Pathway enrichment analysis suggested that GCH1 shares processes and pathways with other HSP-associated genes, and structural analysis of the variants indicated a disruptive effect. In conclusion, GCH1 mutations may cause HSP; therefore, we suggest a levodopa trial in HSP patients and including GCH1 in the screening panels of HSP genes. Clinical differences between monozygotic twins suggest that environmental factors, epigenetics, and stochasticity could play a role in the clinical presentation.


Assuntos
GTP Cicloidrolase/genética , Mutação/genética , Paraplegia Espástica Hereditária/genética , Adulto , Canadá , Criança , Feminino , Humanos , Levodopa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Transtornos Parkinsonianos/genética , Linhagem , Fenótipo , Paraplegia Espástica Hereditária/tratamento farmacológico , Gêmeos Monozigóticos/genética
5.
Mov Disord ; 36(7): 1654-1663, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33595142

RESUMO

BACKGROUND: Hereditary spastic paraplegia presents spasticity as the main clinical manifestation, reducing gait quality and producing incapacity. Management with botulinum toxin type A (BoNT-A) is not well elucidated. The objective of the current study was to evaluate the efficacy and safety of BoNT-A in patients with hereditary spastic paraplegias. METHODS: This was a double-blind, randomized, placebo-controlled crossover trial. Each participant was randomly assigned to receive 1 injection session of either BoNT-A (100 IU/2 mL of Prosigne in each adductor magnus and each triceps surae) or saline 0.9% (2 mL). The primary outcome measure was change from baseline in maximal gait velocity, and secondary outcome measures included changes in gait at self-selected velocity, spasticity, muscle strength, Spastic Paraplegia Rating Scale, pain, fatigue, and subjective perception of improvement. We also looked at adverse events reported by the patients. RESULTS: We enrolled 55 patients, 36 of whom were men and 41 with the pure phenotype. Mean age was 43 ± 13.4 years (range, 19-72 years), mean age of onset waws 27 ± 13.1 years (range, <1 to 55 yars), and mean disease duration was 17 ± 12.7 years (range, 1-62 years). Compared with baseline, we did not find significant differences between groups in primary and secondary outcomes, except for reduction in adductor tone (P = 0.01). The adverse events were transient and tolerable, and their incidence did not significantly differ between treatments (P = 0.17). CONCLUSIONS: BoNT-A was safe in patients with hereditary spastic paraplegias and reduced the adductor tone, but it was not able to produce functional improvement considering the doses, injection protocol, measures, and instruments used. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Toxinas Botulínicas Tipo A , Fármacos Neuromusculares , Paraplegia Espástica Hereditária , Adolescente , Adulto , Criança , Pré-Escolar , Método Duplo-Cego , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Espasticidade Muscular/tratamento farmacológico , Fármacos Neuromusculares/uso terapêutico , Paraplegia Espástica Hereditária/tratamento farmacológico , Resultado do Tratamento , Adulto Jovem
6.
Hum Mol Genet ; 27(14): 2517-2530, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29726929

RESUMO

Mechanisms by which long corticospinal axons degenerate in hereditary spastic paraplegia (HSP) are largely unknown. Here, we have generated induced pluripotent stem cells (iPSCs) from patients with two autosomal recessive forms of HSP, SPG15 and SPG48, which are caused by mutations in the ZFYVE26 and AP5Z1 genes encoding proteins in the same complex, the spastizin and AP5Z1 proteins, respectively. In patient iPSC-derived telencephalic glutamatergic and midbrain dopaminergic neurons, neurite number, length and branching are significantly reduced, recapitulating disease-specific phenotypes. We analyzed mitochondrial morphology and noted a significant reduction in both mitochondrial length and their densities within axons of these HSP neurons. Mitochondrial membrane potential was also decreased, confirming functional mitochondrial defects. Notably, mdivi-1, an inhibitor of the mitochondrial fission GTPase DRP1, rescues mitochondrial morphology defects and suppresses the impairment in neurite outgrowth and late-onset apoptosis in HSP neurons. Furthermore, knockdown of these HSP genes causes similar axonal defects, also mitigated by treatment with mdivi-1. Finally, neurite outgrowth defects in SPG15 and SPG48 cortical neurons can be rescued by knocking down DRP1 directly. Thus, abnormal mitochondrial morphology caused by an imbalance of mitochondrial fission and fusion underlies specific axonal defects and serves as a potential therapeutic target for SPG15 and SPG48.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas de Transporte/genética , GTP Fosfo-Hidrolases/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Mitocondriais/genética , Paraplegia Espástica Hereditária/genética , Axônios/efeitos dos fármacos , Axônios/patologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Dinaminas , Humanos , Células-Tronco Pluripotentes Induzidas , Potencial da Membrana Mitocondrial/genética , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Mitocôndrias/genética , Mitocôndrias/patologia , Dinâmica Mitocondrial/genética , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação , Crescimento Neuronal/efeitos dos fármacos , Crescimento Neuronal/genética , Quinazolinonas/farmacologia , Paraplegia Espástica Hereditária/tratamento farmacológico , Paraplegia Espástica Hereditária/fisiopatologia
7.
Brain ; 141(1): 72-84, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29228183

RESUMO

The hereditary spastic paraplegias are an expanding and heterogeneous group of disorders characterized by spasticity in the lower limbs. Plasma biomarkers are needed to guide the genetic testing of spastic paraplegia. Spastic paraplegia type 5 (SPG5) is an autosomal recessive spastic paraplegia due to mutations in CYP7B1, which encodes a cytochrome P450 7α-hydroxylase implicated in cholesterol and bile acids metabolism. We developed a method based on ultra-performance liquid chromatography electrospray tandem mass spectrometry to validate two plasma 25-hydroxycholesterol (25-OHC) and 27-hydroxycholesterol (27-OHC) as diagnostic biomarkers in a cohort of 21 patients with SPG5. For 14 patients, SPG5 was initially suspected on the basis of genetic analysis, and then confirmed by increased plasma 25-OHC, 27-OHC and their ratio to total cholesterol. For seven patients, the diagnosis was initially based on elevated plasma oxysterol levels and confirmed by the identification of two causal CYP7B1 mutations. The receiver operating characteristic curves analysis showed that 25-OHC, 27-OHC and their ratio to total cholesterol discriminated between SPG5 patients and healthy controls with 100% sensitivity and specificity. Taking advantage of the robustness of these plasma oxysterols, we then conducted a phase II therapeutic trial in 12 patients and tested whether candidate molecules (atorvastatin, chenodeoxycholic acid and resveratrol) can lower plasma oxysterols and improve bile acids profile. The trial consisted of a three-period, three-treatment crossover study and the six different sequences of three treatments were randomized. Using a linear mixed effect regression model with a random intercept, we observed that atorvastatin decreased moderately plasma 27-OHC (∼30%, P < 0.001) but did not change 27-OHC to total cholesterol ratio or 25-OHC levels. We also found an abnormal bile acids profile in SPG5 patients, with significantly decreased total serum bile acids associated with a relative decrease of ursodeoxycholic and lithocholic acids compared to deoxycholic acid. Treatment with chenodeoxycholic acid restored bile acids profile in SPG5 patients. Therefore, the combination of atorvastatin and chenodeoxycholic acid may be worth considering for the treatment of SPG5 patients but the neurological benefit of these metabolic interventions remains to be evaluated in phase III therapeutic trials using clinical, imaging and/or electrophysiological outcome measures with sufficient effect sizes. Overall, our study indicates that plasma 25-OHC and 27-OHC are robust diagnostic biomarkers of SPG5 and shall be used as first-line investigations in any patient with unexplained spastic paraplegia.


Assuntos
Anticolesterolemiantes/uso terapêutico , Mutação/genética , Oxisteróis/sangue , Paraplegia Espástica Hereditária/sangue , Paraplegia Espástica Hereditária/tratamento farmacológico , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Atorvastatina/uso terapêutico , Ácidos e Sais Biliares/sangue , Criança , Colesterol/sangue , Estudos de Coortes , Família 7 do Citocromo P450/genética , Ácido Desoxicólico/uso terapêutico , Feminino , Humanos , Hidroxicolesteróis/sangue , Lactente , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Exame Neurológico , Curva ROC , Resveratrol/uso terapêutico , Paraplegia Espástica Hereditária/diagnóstico por imagem , Esteroide Hidroxilases/genética , Adulto Jovem
8.
Hum Mol Genet ; 25(6): 1088-99, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26744324

RESUMO

Hereditary spastic paraplegias (HSPs) are a group of neurodegenerative diseases causing progressive gait dysfunction. Over 50 genes have now been associated with HSP. Despite the recent explosion in genetic knowledge, HSP remains without pharmacological treatment. Loss-of-function mutation of the SPAST gene, also known as SPG4, is the most common cause of HSP in patients. SPAST is conserved across animal species and regulates microtubule dynamics. Recent studies have shown that it also modulates endoplasmic reticulum (ER) stress. Here, utilizing null SPAST homologues in C. elegans, Drosophila and zebrafish, we tested FDA-approved compounds known to modulate ER stress in order to ameliorate locomotor phenotypes associated with HSP. We found that locomotor defects found in all of our spastin models could be partially rescued by phenazine, methylene blue, N-acetyl-cysteine, guanabenz and salubrinal. In addition, we show that established biomarkers of ER stress levels correlated with improved locomotor activity upon treatment across model organisms. Our results provide insights into biomarkers and novel therapeutic avenues for HSP.


Assuntos
Modelos Animais de Doenças , Paraplegia Espástica Hereditária/tratamento farmacológico , Adenosina Trifosfatases/genética , Animais , Caenorhabditis elegans , Drosophila , Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Feminino , Humanos , Locomoção/efeitos dos fármacos , Locomoção/genética , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Mutação , Fenazinas/farmacologia , Fenótipo , Paraplegia Espástica Hereditária/genética , Peixe-Zebra
9.
Brain ; 140(12): 3112-3127, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29126212

RESUMO

Spastic paraplegia type 5 (SPG5) is a rare subtype of hereditary spastic paraplegia, a highly heterogeneous group of neurodegenerative disorders defined by progressive neurodegeneration of the corticospinal tract motor neurons. SPG5 is caused by recessive mutations in the gene CYP7B1 encoding oxysterol-7α-hydroxylase. This enzyme is involved in the degradation of cholesterol into primary bile acids. CYP7B1 deficiency has been shown to lead to accumulation of neurotoxic oxysterols. In this multicentre study, we have performed detailed clinical and biochemical analysis in 34 genetically confirmed SPG5 cases from 28 families, studied dose-dependent neurotoxicity of oxysterols in human cortical neurons and performed a randomized placebo-controlled double blind interventional trial targeting oxysterol accumulation in serum of SPG5 patients. Clinically, SPG5 manifested in childhood or adolescence (median 13 years). Gait ataxia was a common feature. SPG5 patients lost the ability to walk independently after a median disease duration of 23 years and became wheelchair dependent after a median 33 years. The overall cross-sectional progression rate of 0.56 points on the Spastic Paraplegia Rating Scale per year was slightly lower than the longitudinal progression rate of 0.80 points per year. Biochemically, marked accumulation of CYP7B1 substrates including 27-hydroxycholesterol was confirmed in serum (n = 19) and cerebrospinal fluid (n = 17) of SPG5 patients. Moreover, 27-hydroxycholesterol levels in serum correlated with disease severity and disease duration. Oxysterols were found to impair metabolic activity and viability of human cortical neurons at concentrations found in SPG5 patients, indicating that elevated levels of oxysterols might be key pathogenic factors in SPG5. We thus performed a randomized placebo-controlled trial (EudraCT 2015-000978-35) with atorvastatin 40 mg/day for 9 weeks in 14 SPG5 patients with 27-hydroxycholesterol levels in serum as the primary outcome measure. Atorvastatin, but not placebo, reduced serum 27-hydroxycholesterol from 853 ng/ml [interquartile range (IQR) 683-1113] to 641 (IQR 507-694) (-31.5%, P = 0.001, Mann-Whitney U-test). Similarly, 25-hydroxycholesterol levels in serum were reduced. In cerebrospinal fluid 27-hydroxycholesterol was reduced by 8.4% but this did not significantly differ from placebo. As expected, no effects were seen on clinical outcome parameters in this short-term trial. In this study, we define the mutational and phenotypic spectrum of SPG5, examine the correlation of disease severity and progression with oxysterol concentrations, and demonstrate in a randomized controlled trial that atorvastatin treatment can effectively lower 27-hydroxycholesterol levels in serum of SPG5 patients. We thus demonstrate the first causal treatment strategy in hereditary spastic paraplegia.


Assuntos
Atorvastatina/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Paraplegia Espástica Hereditária/tratamento farmacológico , Adolescente , Adulto , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Estudos de Casos e Controles , Proliferação de Células , Estudos Transversais , Família 7 do Citocromo P450/genética , Progressão da Doença , Método Duplo-Cego , Família , Feminino , Humanos , Hidroxicolesteróis/metabolismo , Células-Tronco Pluripotentes Induzidas , Masculino , Pessoa de Meia-Idade , Mutação , Neuritos , Oxisteróis/sangue , Oxisteróis/líquido cefalorraquidiano , Linhagem , Índice de Gravidade de Doença , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Esteroide Hidroxilases/genética , Adulto Jovem
12.
Rev Neurol (Paris) ; 172(6-7): 389-91, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27180005

RESUMO

We describe a patient with SPG11 hereditary spastic paraplegia (HSP), who developed walking disorder in childhood. He presented three episodes of subacute gait disorders worsening between the age of 20 and 22 years. Brain and spinal MRI revealed multiple T2 hypersignal lesions, consistent with inflammatory lesions. Surprisingly, CSF analysis showed neither oligoclonal bands nor increased IgG index. He was dramatically improved by intravenous methylprednisolone. A relapsing-remitting multiple sclerosis (MS) was suspected. This is the first description of SPG11 HSP associated with MS.


Assuntos
Esclerose Múltipla/complicações , Esclerose Múltipla/genética , Proteínas/genética , Paraplegia Espástica Hereditária/complicações , Administração Intravenosa , Transtornos Neurológicos da Marcha/complicações , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/tratamento farmacológico , Transtornos Neurológicos da Marcha/genética , Humanos , Masculino , Metilprednisolona/administração & dosagem , Esclerose Múltipla/tratamento farmacológico , Mutação , Paraplegia Espástica Hereditária/tratamento farmacológico , Paraplegia Espástica Hereditária/genética , Adulto Jovem
13.
J Neurosci ; 34(5): 1856-67, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24478365

RESUMO

Mutations to the SPG4 gene encoding the microtubule-severing protein spastin are the most common cause of hereditary spastic paraplegia. Haploinsufficiency, the prevalent model for the disease, cannot readily explain many of its key aspects, such as its adult onset or its specificity for the corticospinal tracts. Treatment strategies based solely on haploinsufficiency are therefore likely to fail. Toward developing effective therapies, here we investigated potential gain-of-function effects of mutant spastins. The full-length human spastin isoform called M1 or a slightly shorter isoform called M87, both carrying the same pathogenic mutation C448Y, were expressed in three model systems: primary rat cortical neurons, fibroblasts, and transgenic Drosophila. Although both isoforms had ill effects on motor function in transgenic flies and decreased neurite outgrowth from primary cortical neurons, mutant M1 was notably more toxic than mutant M87. The observed phenotypes did not result from dominant-negative effects of mutated spastins. Studies in cultured cells revealed that microtubules can be heavily decorated by mutant M1 but not mutant M87. Microtubule-bound mutant M1 decreased microtubule dynamics, whereas unbound M1 or M87 mutant spastins increased microtubule dynamics. The alterations in microtubule dynamics observed in the presence of mutated spastins are not consistent with haploinsufficiency and are better explained by a gain-of-function mechanism. Our results fortify a model wherein toxicity of mutant spastin proteins, especially mutant M1, contributes to axonal degeneration in the corticospinal tracts. Furthermore, our results provide details on the mechanism of the toxicity that may chart a course toward more effective treatment regimens.


Assuntos
Adenosina Trifosfatases/genética , Microtúbulos/metabolismo , Mutação/genética , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/fisiopatologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Cisteína/genética , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Haploinsuficiência/genética , Humanos , Locomoção/fisiologia , Masculino , Microtúbulos/genética , Neurônios/efeitos dos fármacos , Neurônios/patologia , Nocodazol/farmacologia , Nocodazol/uso terapêutico , Ratos , Paraplegia Espástica Hereditária/tratamento farmacológico , Paraplegia Espástica Hereditária/patologia , Espastina , Transfecção , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Tirosina/genética
14.
Arch Phys Med Rehabil ; 96(6): 1166-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25626112

RESUMO

OBJECTIVE: To show the benefits of a continuous intrathecal baclofen (ITB) test infusion in a patient with hereditary spastic paraplegia (HSP), with an improved gait performance after ITB pump implantation. DESIGN: Case report. SETTING: University hospital. PARTICIPANT: A 49-year old man with HSP experiencing progressive walking difficulties because of lower extremity spasticity, which did not respond to oral spasmolytics. INTERVENTIONS: A prolonged, continuous ITB test infusion was started at a low dose and increased gradually, to provide a stable dose of ITB over a prolonged period. The gradual dose increase provided the patient enough time to experience the effects of ITB, because he feared that ITB therapy might cause functional loss. MAIN OUTCOME MEASURES: Modified Ashworth Scale, electromyography, muscle strength, timed Up and Go tests, and the Patient Global Impression of Change. Gait performance before and after ITB pump implantation was assessed in a motion laboratory. RESULTS: During the test infusion, the ITB dose was gradually increased to a continuous dose of 108µg/d. This dose caused the spasticity to decrease, with maintenance of muscle strength. After pump implantation, gait performance was improved, resulting in increased knee flexion during the loading response and a doubled walking speed as compared with baseline. CONCLUSIONS: Patients with HSP who have mild spasticity that does not respond to oral spasmolytics should receive a continuous ITB test infusion, to provide them with enough time to experience the delicate balance between spasmolysis and muscle strength. ITB administration is a suitable therapy to improve gait performance in patients with HSP.


Assuntos
Baclofeno/administração & dosagem , Agonistas dos Receptores de GABA-B/administração & dosagem , Transtornos Neurológicos da Marcha/tratamento farmacológico , Paraplegia Espástica Hereditária/tratamento farmacológico , Eletromiografia , Humanos , Bombas de Infusão Implantáveis , Infusão Espinal , Masculino , Pessoa de Meia-Idade , Força Muscular
16.
J Biol Chem ; 288(36): 26052-26066, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23880767

RESUMO

ß-Glucosidase 2 (GBA2) is an enzyme that cleaves the membrane lipid glucosylceramide into glucose and ceramide. The GBA2 gene is mutated in genetic neurological diseases (hereditary spastic paraplegia and cerebellar ataxia). Pharmacologically, GBA2 is reversibly inhibited by alkylated imino sugars that are in clinical use or are being developed for this purpose. We have addressed the ambiguity surrounding one of the defining characteristics of GBA2, which is its sensitivity to inhibition by conduritol B epoxide (CBE). We found that CBE inhibited GBA2, in vitro and in live cells, in a time-dependent fashion, which is typical for mechanism-based enzyme inactivators. Compared with the well characterized impact of CBE on the lysosomal glucosylceramide-degrading enzyme (glucocerebrosidase, GBA), CBE inactivated GBA2 less efficiently, due to a lower affinity for this enzyme (higher KI) and a lower rate of enzyme inactivation (k(inact)). In contrast to CBE, N-butyldeoxygalactonojirimycin exclusively inhibited GBA2. Accordingly, we propose to redefine GBA2 activity as the ß-glucosidase that is sensitive to inhibition by N-butyldeoxygalactonojirimycin. Revised as such, GBA2 activity 1) was optimal at pH 5.5-6.0; 2) accounted for a much higher proportion of detergent-independent membrane-associated ß-glucosidase activity; 3) was more variable among mouse tissues and neuroblastoma and monocyte cell lines; and 4) was more sensitive to inhibition by N-butyldeoxynojirimycin (miglustat, Zavesca®), in comparison with earlier studies. Our evaluation of GBA2 makes it possible to assess its activity more accurately, which will be helpful in analyzing its physiological roles and involvement in disease and in the pharmacological profiling of monosaccharide mimetics.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Inibidores Enzimáticos/farmacocinética , Inositol/análogos & derivados , beta-Glucosidase/antagonistas & inibidores , 1-Desoxinojirimicina/farmacocinética , 1-Desoxinojirimicina/farmacologia , Animais , Células COS , Linhagem Celular Tumoral , Ataxia Cerebelar/tratamento farmacológico , Ataxia Cerebelar/enzimologia , Chlorocebus aethiops , Inibidores Enzimáticos/farmacologia , Glucosilceramidase , Humanos , Concentração de Íons de Hidrogênio , Inositol/farmacocinética , Inositol/farmacologia , Camundongos , Paraplegia Espástica Hereditária/tratamento farmacológico , Paraplegia Espástica Hereditária/enzimologia , beta-Glucosidase/metabolismo
17.
Int J Rehabil Res ; 47(1): 3-9, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38251093

RESUMO

This systematic review aims to evaluate the use of intrathecal baclofen (ITB) for hereditary spastic paraparesis (HSP) treatment. An extensive search in two electronical databases was performed. We identified articles published between 1990 and 2022 (PubMed, Scopus), and applied the following inclusion criteria: diagnosis of HSP at the time of the intervention, either familial or sporadic; report on the effect of ITB in patients with HSP; test trial via either bolus injections or continuous infusion tests; and ITB pump implantation. A data extraction sheet based on the Cochrane Consumers and Communication Review Group's data extraction template was created and adapted to collect relevant data. A qualitative analysis was performed to present the results in narrative summary fashion. A total of 6 studies met our inclusion criteria. 51 patients with HSP had a pre-implantation ITB trial. The time since the diagnosis until the pump implantation ranged from 5 to 30 years. The initial bolus ranged from 20 to 50 µg and the mean doses used at steady state ranged from 65 to 705 µg. An improvement in spasticity was observed on the modified Ashworth Scale in patients treated with ITB. Although all studies reported a subjective gait improvement, not all found an objective improvement in gait. The most common side effect reported was catheter-related problems. The findings of this review support the use of ITB as an effective and a viable option for the treatment of spasticity in HSP refractory to conservative therapies.


Assuntos
Baclofeno , Injeções Espinhais , Relaxantes Musculares Centrais , Baclofeno/uso terapêutico , Baclofeno/administração & dosagem , Humanos , Relaxantes Musculares Centrais/uso terapêutico , Relaxantes Musculares Centrais/administração & dosagem , Paraplegia Espástica Hereditária/tratamento farmacológico , Bombas de Infusão Implantáveis
18.
Nat Commun ; 15(1): 584, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233389

RESUMO

Unbiased phenotypic screens in patient-relevant disease models offer the potential to detect therapeutic targets for rare diseases. In this study, we developed a high-throughput screening assay to identify molecules that correct aberrant protein trafficking in adapter protein complex 4 (AP-4) deficiency, a rare but prototypical form of childhood-onset hereditary spastic paraplegia characterized by mislocalization of the autophagy protein ATG9A. Using high-content microscopy and an automated image analysis pipeline, we screened a diversity library of 28,864 small molecules and identified a lead compound, BCH-HSP-C01, that restored ATG9A pathology in multiple disease models, including patient-derived fibroblasts and induced pluripotent stem cell-derived neurons. We used multiparametric orthogonal strategies and integrated transcriptomic and proteomic approaches to delineate potential mechanisms of action of BCH-HSP-C01. Our results define molecular regulators of intracellular ATG9A trafficking and characterize a lead compound for the treatment of AP-4 deficiency, providing important proof-of-concept data for future studies.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/tratamento farmacológico , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Proteômica , Neurônios/metabolismo , Transporte Proteico , Proteínas/metabolismo , Mutação
19.
J Clin Neurosci ; 117: 136-142, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804674

RESUMO

Limited but encouraging results support the use of dalfampridine in patients with hereditary spastic paraplegia (HSP). Our aim was to investigate the effects of dalfampridine on walking speed, muscle length, spasticity, functional strength, and functional mobility in patients with HSP. In this triple-blinded, randomized, placebo-controlled pilot trial, four patients with HSP received dalfampridine (10 mg twice daily) in addition to physiotherapy (twice a week), and four patients received placebo in addition to physiotherapy for eight weeks. The group allocation was masked from the assessor, treating physiotherapists, and patients. The primary outcome was the Timed 25-foot Walk Test (T25FWT) at the end of the eight-week treatment. The secondary outcome measures were functional mobility, functional muscle strength, muscle length, and spasticity. The improvement in the T25FWT values was significantly higher in the experimental group than in the control group (p < 0.05). All patients in the experimental group exceeded the proposed minimally important clinical difference for T25FWT. The degrees of improvement in most muscle length and spasticity assessments and functional muscle strength were also higher in the experimental group (p < 0.05). No significant difference was observed between the groups regarding functional mobility (p > 0.05). No adverse events or side effects were noted. This pilot trial yields encouraging evidence that the combination of dalfampridine and physiotherapy may enhance muscle parameters and improve walking speed in patients with HSP. However, further research involving larger sample sizes and more comprehensive assessments is needed to validate these results and establish the clinical benefits of this treatment approach. Trial registration ID: NCT05613114 (https://clinicaltrials.gov/), retrospectively registered on November 14, 2022.


Assuntos
4-Aminopiridina , Paraplegia Espástica Hereditária , Humanos , 4-Aminopiridina/uso terapêutico , Paraplegia Espástica Hereditária/tratamento farmacológico , Projetos Piloto , Caminhada/fisiologia , Espasticidade Muscular/tratamento farmacológico
20.
Neurol Med Chir (Tokyo) ; 63(12): 535-541, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37743509

RESUMO

Intrathecal baclofen (ITB) therapy effectively treats spasticity caused by brain or spinal cord lesions. However, only a few studies compare the course of treatment for different diseases. We investigated the change in daily dose of baclofen per year and its associated adverse events in patients presenting with the three most common etiologies at our institute: hereditary spastic paraplegia, cerebral palsy, and spinal cord injury. The ITB pumps were implanted from July 2007 to August 2019, with a mean follow-up period of 70 months. In patients with hereditary spastic paraplegia, baclofen dosage was reduced after eight years following ITB introduction, and the treatment was terminated in one patient owing to disease progression. In patients with cerebral palsy, the dosage increased gradually, and became constant in the 11th year. Patients with spinal cord injury gradually increased their baclofen dosage throughout the entire observation period. Severity and adverse event rates were higher in patients with cerebral palsy than in others. The degree and progression of spasticity varied depending on the causative disease. Understanding the characteristics and natural history of each disease is important when continuing ITB treatment.


Assuntos
Paralisia Cerebral , Relaxantes Musculares Centrais , Paraplegia Espástica Hereditária , Traumatismos da Medula Espinal , Humanos , Baclofeno/efeitos adversos , Paralisia Cerebral/complicações , Paralisia Cerebral/tratamento farmacológico , Relaxantes Musculares Centrais/efeitos adversos , Paraplegia Espástica Hereditária/complicações , Paraplegia Espástica Hereditária/tratamento farmacológico , Bombas de Infusão Implantáveis/efeitos adversos , Espasticidade Muscular/etiologia , Espasticidade Muscular/induzido quimicamente , Traumatismos da Medula Espinal/etiologia , Injeções Espinhais/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA