Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.512
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 634(8034): 626-634, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39385026

RESUMO

Olfaction is a fundamental sensory modality that guides animal and human behaviour1,2. However, the underlying neural processes of human olfaction are still poorly understood at the fundamental-that is, the single-neuron-level. Here we report recordings of single-neuron activity in the piriform cortex and medial temporal lobe in awake humans performing an odour rating and identification task. We identified odour-modulated neurons within the piriform cortex, amygdala, entorhinal cortex and hippocampus. In each of these regions, neuronal firing accurately encodes odour identity. Notably, repeated odour presentations reduce response firing rates, demonstrating central repetition suppression and habituation. Different medial temporal lobe regions have distinct roles in odour processing, with amygdala neurons encoding subjective odour valence, and hippocampal neurons predicting behavioural odour identification performance. Whereas piriform neurons preferably encode chemical odour identity, hippocampal activity reflects subjective odour perception. Critically, we identify that piriform cortex neurons reliably encode odour-related images, supporting a multimodal role of the human piriform cortex. We also observe marked cross-modal coding of both odours and images, especially in the amygdala and piriform cortex. Moreover, we identify neurons that respond to semantically coherent odour and image information, demonstrating conceptual coding schemes in olfaction. Our results bridge the long-standing gap between animal models and non-invasive human studies and advance our understanding of odour processing in the human brain by identifying neuronal odour-coding principles, regional functional differences and cross-modal integration.


Assuntos
Encéfalo , Neurônios , Odorantes , Percepção Olfatória , Análise de Célula Única , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Tonsila do Cerebelo/fisiologia , Tonsila do Cerebelo/citologia , Encéfalo/anatomia & histologia , Encéfalo/citologia , Encéfalo/fisiologia , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Hipocampo/citologia , Neurônios/citologia , Neurônios/fisiologia , Odorantes/análise , Percepção Olfatória/fisiologia , Córtex Piriforme/fisiologia , Córtex Piriforme/citologia , Lobo Temporal/fisiologia , Lobo Temporal/citologia , Vigília/fisiologia
2.
Nat Rev Neurosci ; 25(7): 453-472, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806946

RESUMO

The olfactory system is an ideal and tractable system for exploring how the brain transforms sensory inputs into behaviour. The basic tasks of any olfactory system include odour detection, discrimination and categorization. The challenge for the olfactory system is to transform the high-dimensional space of olfactory stimuli into the much smaller space of perceived objects and valence that endows odours with meaning. Our current understanding of how neural circuits address this challenge has come primarily from observations of the mechanisms of the brain for processing other sensory modalities, such as vision and hearing, in which optimized deep hierarchical circuits are used to extract sensory features that vary along continuous physical dimensions. The olfactory system, by contrast, contends with an ill-defined, high-dimensional stimulus space and discrete stimuli using a circuit architecture that is shallow and parallelized. Here, we present recent observations in vertebrate and invertebrate systems that relate the statistical structure and state-dependent modulation of olfactory codes to mechanisms of perception and odour-guided behaviour.


Assuntos
Invertebrados , Odorantes , Condutos Olfatórios , Olfato , Vertebrados , Animais , Invertebrados/fisiologia , Vertebrados/fisiologia , Olfato/fisiologia , Humanos , Condutos Olfatórios/fisiologia , Percepção Olfatória/fisiologia
3.
Nature ; 617(7962): 777-784, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37100911

RESUMO

Associating multiple sensory cues with objects and experience is a fundamental brain process that improves object recognition and memory performance. However, neural mechanisms that bind sensory features during learning and augment memory expression are unknown. Here we demonstrate multisensory appetitive and aversive memory in Drosophila. Combining colours and odours improved memory performance, even when each sensory modality was tested alone. Temporal control of neuronal function revealed visually selective mushroom body Kenyon cells (KCs) to be required for enhancement of both visual and olfactory memory after multisensory training. Voltage imaging in head-fixed flies showed that multisensory learning binds activity between streams of modality-specific KCs so that unimodal sensory input generates a multimodal neuronal response. Binding occurs between regions of the olfactory and visual KC axons, which receive valence-relevant dopaminergic reinforcement, and is propagated downstream. Dopamine locally releases GABAergic inhibition to permit specific microcircuits within KC-spanning serotonergic neurons to function as an excitatory bridge between the previously 'modality-selective' KC streams. Cross-modal binding thereby expands the KCs representing the memory engram for each modality into those representing the other. This broadening of the engram improves memory performance after multisensory learning and permits a single sensory feature to retrieve the memory of the multimodal experience.


Assuntos
Encéfalo , Percepção de Cores , Drosophila melanogaster , Aprendizagem , Memória , Neurônios , Percepção Olfatória , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Dopamina/metabolismo , Aprendizagem/fisiologia , Corpos Pedunculados/citologia , Corpos Pedunculados/fisiologia , Neurônios/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Neurônios GABAérgicos/metabolismo , Neurônios Serotoninérgicos/metabolismo , Memória/fisiologia , Percepção Olfatória/fisiologia , Neurônios Dopaminérgicos/metabolismo , Inibição Neural , Percepção de Cores/fisiologia , Odorantes/análise
4.
Nature ; 618(7963): 193-200, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225986

RESUMO

Odorants are detected as smell in the nasal epithelium of mammals by two G-protein-coupled receptor families, the odorant receptors and the trace amine-associated receptors1,2 (TAARs). TAARs emerged following the divergence of jawed and jawless fish, and comprise a large monophyletic family of receptors that recognize volatile amine odorants to elicit both intraspecific and interspecific innate behaviours such as attraction and aversion3-5. Here we report cryo-electron microscopy structures of mouse TAAR9 (mTAAR9) and mTAAR9-Gs or mTAAR9-Golf trimers in complex with ß-phenylethylamine, N,N-dimethylcyclohexylamine or spermidine. The mTAAR9 structures contain a deep and tight ligand-binding pocket decorated with a conserved D3.32W6.48Y7.43 motif, which is essential for amine odorant recognition. In the mTAAR9 structure, a unique disulfide bond connecting the N terminus to ECL2 is required for agonist-induced receptor activation. We identify key structural motifs of TAAR family members for detecting monoamines and polyamines and the shared sequence of different TAAR members that are responsible for recognition of the same odour chemical. We elucidate the molecular basis of mTAAR9 coupling to Gs and Golf by structural characterization and mutational analysis. Collectively, our results provide a structural basis for odorant detection, receptor activation and Golf coupling of an amine olfactory receptor.


Assuntos
Aminas Biogênicas , Odorantes , Percepção Olfatória , Poliaminas , Receptores Odorantes , Animais , Camundongos , Aminas Biogênicas/análise , Aminas Biogênicas/química , Aminas Biogênicas/metabolismo , Microscopia Crioeletrônica , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Odorantes/análise , Percepção Olfatória/fisiologia , Poliaminas/análise , Poliaminas/química , Poliaminas/metabolismo , Receptores de Amina Biogênica/química , Receptores de Amina Biogênica/genética , Receptores de Amina Biogênica/metabolismo , Receptores de Amina Biogênica/ultraestrutura , Receptores Odorantes/química , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Receptores Odorantes/ultraestrutura , Olfato/fisiologia , Espermidina/análise , Espermidina/química , Espermidina/metabolismo
5.
Annu Rev Neurosci ; 43: 277-295, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32640927

RESUMO

Olfaction is fundamentally distinct from other sensory modalities. Natural odor stimuli are complex mixtures of volatile chemicals that interact in the nose with a receptor array that, in rodents, is built from more than 1,000 unique receptors. These interactions dictate a peripheral olfactory code, which in the brain is transformed and reformatted as it is broadcast across a set of highly interconnected olfactory regions. Here we discuss the problems of characterizing peripheral population codes for olfactory stimuli, of inferring the specific functions of different higher olfactory areas given their extensive recurrence, and of ultimately understanding how odor representations are linked to perception and action. We argue that, despite the differences between olfaction and other sensory modalities, addressing these specific questions will reveal general principles underlying brain function.


Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiologia , Condutos Olfatórios/fisiologia , Percepção Olfatória/fisiologia , Olfato/fisiologia , Animais , Humanos , Odorantes
6.
Nature ; 611(7937): 754-761, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36352224

RESUMO

Odour plumes in the wild are spatially complex and rapidly fluctuating structures carried by turbulent airflows1-4. To successfully navigate plumes in search of food and mates, insects must extract and integrate multiple features of the odour signal, including odour identity5, intensity6 and timing6-12. Effective navigation requires balancing these multiple streams of olfactory information and integrating them with other sensory inputs, including mechanosensory and visual cues9,12,13. Studies dating back a century have indicated that, of these many sensory inputs, the wind provides the main directional cue in turbulent plumes, leading to the longstanding model of insect odour navigation as odour-elicited upwind motion6,8-12,14,15. Here we show that Drosophila melanogaster shape their navigational decisions using an additional directional cue-the direction of motion of odours-which they detect using temporal correlations in the odour signal between their two antennae. Using a high-resolution virtual-reality paradigm to deliver spatiotemporally complex fictive odours to freely walking flies, we demonstrate that such odour-direction sensing involves algorithms analogous to those in visual-direction sensing16. Combining simulations, theory and experiments, we show that odour motion contains valuable directional information that is absent from the airflow alone, and that both Drosophila and virtual agents are aided by that information in navigating naturalistic plumes. The generality of our findings suggests that odour-direction sensing may exist throughout the animal kingdom and could improve olfactory robot navigation in uncertain environments.


Assuntos
Drosophila melanogaster , Percepção de Movimento , Odorantes , Percepção Olfatória , Navegação Espacial , Vento , Animais , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/fisiologia , Odorantes/análise , Navegação Espacial/fisiologia , Percepção de Movimento/fisiologia , Fatores de Tempo , Percepção Olfatória/fisiologia , Antenas de Artrópodes/fisiologia , Sinais (Psicologia) , Caminhada/fisiologia
7.
PLoS Biol ; 22(10): e3002849, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39401242

RESUMO

A core function of the olfactory system is to determine the valence of odors. In humans, central processing of odor valence perception has been shown to take form already within the olfactory bulb (OB), but the neural mechanisms by which this important information is communicated to, and from, the olfactory cortex (piriform cortex, PC) are not known. To assess communication between the 2 nodes, we simultaneously measured odor-dependent neural activity in the OB and PC from human participants while obtaining trial-by-trial valence ratings. By doing so, we could determine when subjective valence information was communicated, what kind of information was transferred, and how the information was transferred (i.e., in which frequency band). Support vector machine (SVM) learning was used on the coherence spectrum and frequency-resolved Granger causality to identify valence-dependent differences in functional and effective connectivity between the OB and PC. We found that the OB communicates subjective odor valence to the PC in the gamma band shortly after odor onset, while the PC subsequently feeds broader valence-related information back to the OB in the beta band. Decoding accuracy was better for negative than positive valence, suggesting a focus on negative valence. Critically, we replicated these findings in an independent data set using additional odors across a larger perceived valence range. Combined, these results demonstrate that the OB and PC communicate levels of subjective odor pleasantness across multiple frequencies, at specific time points, in a direction-dependent pattern in accordance with a two-stage model of odor processing.


Assuntos
Odorantes , Bulbo Olfatório , Percepção Olfatória , Córtex Piriforme , Humanos , Masculino , Córtex Piriforme/fisiologia , Bulbo Olfatório/fisiologia , Feminino , Adulto , Adulto Jovem , Percepção Olfatória/fisiologia , Ritmo beta/fisiologia , Ritmo Gama/fisiologia , Máquina de Vetores de Suporte , Olfato/fisiologia
8.
Nature ; 598(7881): 479-482, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34588694

RESUMO

During sleep, most animal species enter a state of reduced consciousness characterized by a marked sensory disconnect. Yet some processing of the external world must remain intact, given that a sleeping animal can be awoken by intense stimuli (for example, a loud noise or a bright light) or by soft but qualitatively salient stimuli (for example, the sound of a baby cooing or hearing one's own name1-3). How does a sleeping brain retain the ability to process the quality of sensory information? Here we present a paradigm to study the functional underpinnings of sensory discrimination during sleep in Drosophila melanogaster. We show that sleeping vinegar flies, like humans, discern the quality of sensory stimuli and are more likely to wake up in response to salient stimuli. We also show that the salience of a stimulus during sleep can be modulated by internal states. We offer a prototypical blueprint detailing a circuit involved in this process and its modulation as evidence that the system can be used to explore the cellular underpinnings of how a sleeping brain experiences the world.


Assuntos
Drosophila melanogaster/fisiologia , Percepção/fisiologia , Sensação/fisiologia , Sono/fisiologia , Animais , Drosophila melanogaster/genética , Masculino , Neurônios/fisiologia , Odorantes/análise , Percepção Olfatória/genética , Percepção Olfatória/fisiologia , Estimulação Física , Sensação/genética , Sono/genética , Olfato/genética , Olfato/fisiologia
9.
PLoS Biol ; 21(10): e3002206, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37906721

RESUMO

Sparse coding can improve discrimination of sensory stimuli by reducing overlap between their representations. Two factors, however, can offset sparse coding's benefits: similar sensory stimuli have significant overlap and responses vary across trials. To elucidate the effects of these 2 factors, we analyzed odor responses in the fly and mouse olfactory regions implicated in learning and discrimination-the mushroom body (MB) and the piriform cortex (PCx). We found that neuronal responses fall along a continuum from extremely reliable across trials to extremely variable or stochastic. Computationally, we show that the observed variability arises from noise within central circuits rather than sensory noise. We propose this coding scheme to be advantageous for coarse- and fine-odor discrimination. More reliable cells enable quick discrimination between dissimilar odors. For similar odors, however, these cells overlap and do not provide distinguishing information. By contrast, more unreliable cells are decorrelated for similar odors, providing distinguishing information, though these benefits only accrue with extended training with more trials. Overall, we have uncovered a conserved, stochastic coding scheme in vertebrates and invertebrates, and we identify a candidate mechanism, based on variability in a winner-take-all (WTA) inhibitory circuit, that improves discrimination with training.


Assuntos
Dípteros , Percepção Olfatória , Animais , Camundongos , Condutos Olfatórios/fisiologia , Olfato/fisiologia , Odorantes , Aprendizagem/fisiologia , Percepção Olfatória/fisiologia
10.
Nature ; 588(7836): 118-123, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33177711

RESUMO

Wavelength is a physical measure of light, and the intricate understanding of its link to perceived colour enables the creation of perceptual entities such as metamers-non-overlapping spectral compositions that generate identical colour percepts1. By contrast, scientists have been unable to develop a physical measure linked to perceived smell, even one that merely reflects the extent of perceptual similarity between odorants2. Here, to generate such a measure, we collected perceptual similarity estimates of 49,788 pairwise odorants from 199 participants who smelled 242 different multicomponent odorants and used these data to refine a predictive model that links odorant structure to odorant perception3. The resulting measure combines 21 physicochemical features of the odorants into a single number-expressed in radians-that accurately predicts the extent of perceptual similarity between multicomponent odorant pairs. To assess the usefulness of this measure, we investigated whether we could use it to create olfactory metamers. To this end, we first identified a cut-off in the measure: pairs of multicomponent odorants that were within 0.05 radians of each other or less were very difficult to discriminate. Using this cut-off, we were able to design olfactory metamers-pairs of non-overlapping molecular compositions that generated identical odour percepts. The accurate predictions of perceptual similarity, and the ensuing creation of olfactory metamers, suggest that we have obtained a valid olfactory measure, one that may enable the digitization of smell.


Assuntos
Odorantes/análise , Percepção Olfatória/fisiologia , Olfato/fisiologia , Adulto , Aprendizagem por Discriminação , Discriminação Psicológica , Feminino , Ferula , Humanos , Masculino , Rosa , Viola , Adulto Jovem
11.
Nature ; 583(7815): 253-258, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32612230

RESUMO

The cortex organizes sensory information to enable discrimination and generalization1-4. As systematic representations of chemical odour space have not yet been described in the olfactory cortex, it remains unclear how odour relationships are encoded to place chemically distinct but similar odours, such as lemon and orange, into perceptual categories, such as citrus5-7. Here, by combining chemoinformatics and multiphoton imaging in the mouse, we show that both the piriform cortex and its sensory inputs from the olfactory bulb represent chemical odour relationships through correlated patterns of activity. However, cortical odour codes differ from those in the bulb: cortex more strongly clusters together representations for related odours, selectively rewrites pairwise odour relationships, and better matches odour perception. The bulb-to-cortex transformation depends on the associative network originating within the piriform cortex, and can be reshaped by passive odour experience. Thus, cortex actively builds a structured representation of chemical odour space that highlights odour relationships; this representation is similar across individuals but remains plastic, suggesting a means through which the olfactory system can assign related odour cues to common and yet personalized percepts.


Assuntos
Odorantes/análise , Córtex Olfatório/anatomia & histologia , Córtex Olfatório/fisiologia , Condutos Olfatórios , Compostos Orgânicos/análise , Compostos Orgânicos/química , Animais , Masculino , Camundongos , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Córtex Olfatório/citologia , Percepção Olfatória/fisiologia , Olfato
12.
Nature ; 581(7809): 428-433, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461641

RESUMO

After severe brain injury, it can be difficult to determine the state of consciousness of a patient, to determine whether the patient is unresponsive or perhaps minimally conscious1, and to predict whether they will recover. These diagnoses and prognoses are crucial, as they determine therapeutic strategies such as pain management, and can underlie end-of-life decisions2,3. Nevertheless, there is an error rate of up to 40% in determining the state of consciousness in patients with brain injuries4,5. Olfaction relies on brain structures that are involved in the basic mechanisms of arousal6, and we therefore hypothesized that it may serve as a biomarker for consciousness7. Here we use a non-verbal non-task-dependent measure known as the sniff response8-11 to determine consciousness in patients with brain injuries. By measuring odorant-dependent sniffing, we gain a sensitive measure of olfactory function10-15. We measured the sniff response repeatedly over time in patients with severe brain injuries and found that sniff responses significantly discriminated between unresponsive and minimally conscious states at the group level. Notably, at the single-patient level, if an unresponsive patient had a sniff response, this assured future regaining of consciousness. In addition, olfactory sniff responses were associated with long-term survival rates. These results highlight the importance of olfaction in human brain function, and provide an accessible tool that signals consciousness and recovery in patients with brain injuries.


Assuntos
Lesões Encefálicas/diagnóstico , Lesões Encefálicas/fisiopatologia , Estado de Consciência/fisiologia , Percepção Olfatória/fisiologia , Estado Vegetativo Persistente/diagnóstico , Estado Vegetativo Persistente/fisiopatologia , Olfato/fisiologia , Adulto , Nível de Alerta , Erros de Diagnóstico/prevenção & controle , Feminino , Humanos , Masculino , Odorantes/análise , Prognóstico , Recuperação de Função Fisiológica/fisiologia , Sensibilidade e Especificidade , Análise de Sobrevida
13.
J Neurosci ; 44(20)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38548337

RESUMO

The perception of food relies on the integration of olfactory and gustatory signals originating from the mouth. This multisensory process generates robust associations between odors and tastes, significantly influencing the perceptual judgment of flavors. However, the specific neural substrates underlying this integrative process remain unclear. Previous electrophysiological studies identified the gustatory cortex as a site of convergent olfactory and gustatory signals, but whether neurons represent multimodal odor-taste mixtures as distinct from their unimodal odor and taste components is unknown. To investigate this, we recorded single-unit activity in the gustatory cortex of behaving female rats during the intraoral delivery of individual odors, individual tastes, and odor-taste mixtures. Our results demonstrate that chemoselective neurons in the gustatory cortex are broadly responsive to intraoral chemosensory stimuli, exhibiting time-varying multiphasic changes in activity. In a subset of these chemoselective neurons, odor-taste mixtures elicit nonlinear cross-modal responses that distinguish them from their olfactory and gustatory components. These findings provide novel insights into multimodal chemosensory processing by the gustatory cortex, highlighting the distinct representation of unimodal and multimodal intraoral chemosensory signals. Overall, our findings suggest that olfactory and gustatory signals interact nonlinearly in the gustatory cortex to enhance the identity coding of both unimodal and multimodal chemosensory stimuli.


Assuntos
Odorantes , Percepção Gustatória , Animais , Feminino , Ratos , Percepção Gustatória/fisiologia , Paladar/fisiologia , Percepção Olfatória/fisiologia , Ratos Long-Evans , Olfato/fisiologia , Neurônios/fisiologia , Córtex Cerebral/fisiologia
14.
J Neurosci ; 44(44)2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39266300

RESUMO

Odor information arrives first in the main olfactory bulb and is then broadcasted to the olfactory cortices and striatum. Downstream regions have unique cellular and connectivity architectures that may generate different coding patterns to the same odors. To reveal region-specific response features, tuning and decoding of single-unit populations, we recorded responses to the same odors under the same conditions across regions, namely, the main olfactory bulb (MOB), the anterior olfactory nucleus (AON), the anterior piriform cortex (aPC), and the olfactory tubercle of the ventral striatum (OT), of awake male mice. We focused on chemically closely related aldehydes that still create distinct percepts. The MOB had the highest decoding accuracy for aldehydes and was the only region encoding chemical similarity. The MOB had the highest fraction of inhibited responses and narrowly tuned odor-excited responses in terms of timing and odor selectivity. Downstream, the interconnected AON and aPC differed in their response patterns to the same stimuli. While odor-excited responses dominated the AON, the aPC had a comparably high fraction of odor-inhibited responses. Both cortices share a main output target that is the MOB. This prompted us to test if the two regions convey also different net outputs. Aldehydes activated AON terminals in the MOB as a bulk signal but inhibited those from the aPC. The differential cortical projection responses generalized to complex odors. In summary, olfactory regions reveal specialized features in their encoding with AON and aPC differing in their local computations, thereby generating inverse net centrifugal and intercortical outputs.


Assuntos
Camundongos Endogâmicos C57BL , Odorantes , Córtex Olfatório , Condutos Olfatórios , Animais , Masculino , Camundongos , Condutos Olfatórios/fisiologia , Córtex Olfatório/fisiologia , Bulbo Olfatório/fisiologia , Olfato/fisiologia , Córtex Piriforme/fisiologia , Percepção Olfatória/fisiologia
15.
J Neurosci ; 44(22)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38561229

RESUMO

Creating and evaluating predictions are considered important features in sensory perception. Little is known about processing differences between the senses and their cortical substrates. Here, we tested the hypothesis that olfaction, the sense of smell, would be highly dependent on (nonolfactory) object-predictive cues and involve distinct cortical processing features. We developed a novel paradigm to compare prediction error processing across senses. Participants listened to spoken word cues (e.g., "lilac") and determined whether target stimuli (odors or pictures) matched the word cue or not. In two behavioral experiments (total n = 113; 72 female), the disparity between congruent and incongruent response times was exaggerated for olfactory relative to visual targets, indicating a greater dependency on predictive verbal cues to process olfactory targets. A preregistered fMRI study (n = 30; 19 female) revealed the anterior cingulate cortex (a region central for error detection) being more activated by incongruent olfactory targets, indicating a role for olfactory predictive error processing. Additionally, both the primary olfactory and visual cortices were significantly activated for incongruent olfactory targets, suggesting olfactory prediction errors are dependent on cross-sensory processing resources, whereas visual prediction errors are not. We propose that olfaction is characterized by a strong dependency on predictive (nonolfactory) cues and that odors are evaluated in the context of such predictions by a designated transmodal cortical network. Our results indicate differences in how predictive cues are used by different senses in rapid decision-making.


Assuntos
Imageamento por Ressonância Magnética , Percepção Olfatória , Humanos , Feminino , Masculino , Adulto , Percepção Olfatória/fisiologia , Adulto Jovem , Sinais (Psicologia) , Olfato/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Odorantes , Mapeamento Encefálico , Adolescente , Tempo de Reação/fisiologia , Córtex Cerebral/fisiologia , Córtex Cerebral/diagnóstico por imagem , Estimulação Luminosa/métodos
16.
PLoS Biol ; 20(1): e3001509, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986157

RESUMO

Studies of neuronal oscillations have contributed substantial insight into the mechanisms of visual, auditory, and somatosensory perception. However, progress in such research in the human olfactory system has lagged behind. As a result, the electrophysiological properties of the human olfactory system are poorly understood, and, in particular, whether stimulus-driven high-frequency oscillations play a role in odor processing is unknown. Here, we used direct intracranial recordings from human piriform cortex during an odor identification task to show that 3 key oscillatory rhythms are an integral part of the human olfactory cortical response to smell: Odor induces theta, beta, and gamma rhythms in human piriform cortex. We further show that these rhythms have distinct relationships with perceptual behavior. Odor-elicited gamma oscillations occur only during trials in which the odor is accurately perceived, and features of gamma oscillations predict odor identification accuracy, suggesting that they are critical for odor identity perception in humans. We also found that the amplitude of high-frequency oscillations is organized by the phase of low-frequency signals shortly following sniff onset, only when odor is present. Our findings reinforce previous work on theta oscillations, suggest that gamma oscillations in human piriform cortex are important for perception of odor identity, and constitute a robust identification of the characteristic electrophysiological response to smell in the human brain. Future work will determine whether the distinct oscillations we identified reflect distinct perceptual features of odor stimuli.


Assuntos
Ondas Encefálicas/fisiologia , Eletrocorticografia/métodos , Percepção Olfatória/fisiologia , Córtex Piriforme/fisiologia , Sinais (Psicologia) , Epilepsia , Humanos , Odorantes , Olfato
19.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38652554

RESUMO

Indole is often associated with a sweet and floral odor typical of jasmine flowers at low concentrations and an unpleasant, animal-like odor at high concentrations. However, the mechanism whereby the brain processes this opposite valence of indole is not fully understood yet. In this study, we aimed to investigate the neural mechanisms underlying indole valence encoding in conversion and nonconversion groups using the smelling task to arouse pleasantness. For this purpose, 12 conversion individuals and 15 nonconversion individuals participated in an event-related functional magnetic resonance imaging paradigm with low (low-indole) and high (high-indole) indole concentrations in which valence was manipulated independent of intensity. The results of this experiment showed that neural activity in the right amygdala, orbitofrontal cortex and insula was associated with valence independent of intensity. Furthermore, activation in the right orbitofrontal cortex in response to low-indole was positively associated with subjective pleasantness ratings. Conversely, activation in the right insula and amygdala in response to low-indole was positively correlated with anticipatory hedonic traits. Interestingly, while amygdala activation in response to high-indole also showed a positive correlation with these hedonic traits, such correlation was observed solely with right insula activation in response to high-indole. Additionally, activation in the right amygdala in response to low-indole was positively correlated with consummatory pleasure and hedonic traits. Regarding olfactory function, only activation in the right orbitofrontal cortex in response to high-indole was positively correlated with olfactory identification, whereas activation in the insula in response to low-indole was negatively correlated with the level of self-reported olfactory dysfunction. Based on these findings, valence transformation of indole processing in the right orbitofrontal cortex, insula, and amygdala may be associated with individual hedonic traits and perceptual differences.


Assuntos
Mapeamento Encefálico , Indóis , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Odorantes , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Percepção Olfatória/fisiologia , Emoções/fisiologia , Olfato/fisiologia
20.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34996867

RESUMO

Invariant stimulus recognition is a challenging pattern-recognition problem that must be dealt with by all sensory systems. Since neural responses evoked by a stimulus are perturbed in a multitude of ways, how can this computational capability be achieved? We examine this issue in the locust olfactory system. We find that locusts trained in an appetitive-conditioning assay robustly recognize the trained odorant independent of variations in stimulus durations, dynamics, or history, or changes in background and ambient conditions. However, individual- and population-level neural responses vary unpredictably with many of these variations. Our results indicate that linear statistical decoding schemes, which assign positive weights to ON neurons and negative weights to OFF neurons, resolve this apparent confound between neural variability and behavioral stability. Furthermore, simplification of the decoder using only ternary weights ({+1, 0, -1}) (i.e., an "ON-minus-OFF" approach) does not compromise performance, thereby striking a fine balance between simplicity and robustness.


Assuntos
Gafanhotos/fisiologia , Odorantes , Neurônios Receptores Olfatórios/fisiologia , Animais , Modelos Neurológicos , Condutos Olfatórios/fisiologia , Percepção Olfatória/fisiologia , Olfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA