Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 398, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654150

RESUMO

Pinellia ternata (Thunb.) Briet., a valuable herb native to China, is susceptible to the "sprout tumble" phenomenon because of high temperatures, resulting in a significant yield reduction. However, the molecular regulatory mechanisms underlying the response of P. ternata to heat stress are not well understood. In this study, we integrated transcriptome and miRNAome sequencing to identify heat-response genes, microRNAs (miRNAs), and key miRNA-target pairs in P. ternata that differed between heat-stress and room-temperature conditions. Transcriptome analysis revealed extensive reprogramming of 4,960 genes across various categories, predominantly associated with cellular and metabolic processes, responses to stimuli, biological regulation, cell parts, organelles, membranes, and catalytic and binding activities. miRNAome sequencing identified 1,597 known/conserved miRNAs that were differentially expressed between the two test conditions. According to the analysis, genes and miRNAs associated with the regulation of transcription, DNA template, transcription factor activity, and sequence-specific DNA binding pathways may play a major role in the resistance to heat stress in P. ternata. Integrated analysis of the transcriptome and miRNAome expression data revealed 41 high-confidence miRNA-mRNA pairs, forming 25 modules. MYB-like proteins and calcium-responsive transcription coactivators may play an integral role in heat-stress resistance in P. ternata. Additionally, the candidate genes and miRNAs were subjected to quantitative real-time polymerase chain reaction to validate their expression patterns. These results offer a foundation for future studies exploring the mechanisms and critical genes involved in heat-stress resistance in P. ternata.


Assuntos
Resposta ao Choque Térmico , MicroRNAs , Pinellia , Plântula , Transcriptoma , Pinellia/genética , Pinellia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Resposta ao Choque Térmico/genética , Plântula/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
2.
Plant Cell Rep ; 43(5): 125, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647720

RESUMO

KEY MESSAGE: The interaction network and pathway map uncover the potential crosstalk between sugar and hormone metabolisms as a possible reason for leaf senescence in P. ternata. Pinellia ternata, an environmentally sensitive medicinal plant, undergoes leaf senescence twice a year, affecting its development and yield. Understanding the potential mechanism that delays leaf senescence could theoretically decrease yield losses. In this study, a typical senescent population model was constructed, and an integrated analysis of transcriptomic and metabolomic profiles of P. ternata was conducted using two early leaf senescence populations and two stay-green populations. The result showed that two key gene modules were associated with leaf senescence which were mainly enriched in sugar and hormone signaling pathways, respectively. A network constructed by unigenes and metabolisms related to the obtained two pathways revealed that several compounds such as D-arabitol and 2MeScZR have a higher significance ranking. In addition, a total of 130 hub genes in this network were categorized into 3 classes based on connectivity. Among them, 34 hub genes were further analyzed through a pathway map, the potential crosstalk between sugar and hormone metabolisms might be an underlying reason of leaf senescence in P. ternata. These findings address the knowledge gap regarding leaf senescence in P. ternata, providing candidate germplasms for molecular breeding and laying theoretical basis for the realization of finely regulated cultivation in future.


Assuntos
Regulação da Expressão Gênica de Plantas , Metabolômica , Pinellia , Reguladores de Crescimento de Plantas , Folhas de Planta , Transcriptoma , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Pinellia/genética , Pinellia/metabolismo , Pinellia/fisiologia , Pinellia/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma/genética , Senescência Vegetal/genética , Perfilação da Expressão Gênica , Açúcares/metabolismo , Metaboloma/genética , Redes Reguladoras de Genes , Metabolismo dos Carboidratos/genética
3.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38892337

RESUMO

Pinellia ternata is a medicinal plant that has important pharmacological value, and the bulbils serve as the primary reproductive organ; however, the mechanisms underlying bulbil initiation remain unclear. Here, we characterized bulbil development via histological, transcriptomic, and targeted metabolomic analyses to unearth the intricate relationship between hormones, genes, and bulbil development. The results show that the bulbils initiate growth from the leaf axillary meristem (AM). In this stage, jasmonic acid (JA), abscisic acid (ABA), isopentenyl adenosine (IPA), and salicylic acid (SA) were highly enriched, while indole-3-acetic acid (IAA), zeatin, methyl jasmonate (MeJA), and 5-dexoxystrigol (5-DS) were notably decreased. Through OPLS-DA analysis, SA has emerged as the most crucial factor in initiating and positively regulating bulbil formation. Furthermore, a strong association between IPA and SA was observed during bulbil initiation. The transcriptional changes in IPT (Isopentenyltransferase), CRE1 (Cytokinin Response 1), A-ARR (Type-A Arabidopsis Response Regulator), B-ARR (Type-B Arabidopsis Response Regulator), AUX1 (Auxin Resistant 1), ARF (Auxin Response Factor), AUX/IAA (Auxin/Indole-3-acetic acid), GH3 (Gretchen Hagen 3), SAUR (Small Auxin Up RNA), GA2ox (Gibberellin 2-oxidase), GA20ox (Gibberellin 20-oxidase), AOS (Allene oxide synthase), AOC (Allene oxide cyclase), OPR (Oxophytodienoate Reductase), JMT (JA carboxy l Methyltransferase), COI1 (Coronatine Insensitive 1), JAZ (Jasmonate ZIM-domain), MYC2 (Myelocytomatosis 2), D27 (DWARF27), SMAX (Suppressor of MAX2), PAL (Phenylalanine Ammonia-Lyase), ICS (Isochorismate Synthase), NPR1 (Non-expressor of Pathogenesis-related Genes1), TGA (TGACG Sequence-specific Binding), PR-1 (Pathogenesis-related), MCSU (Molybdenium Cofactor Sulfurase), PP2C (Protein Phosphatase 2C), and SnRK (Sucrose Non-fermenting-related Protein Kinase 2) were highly correlated with hormone concentrations, indicating that bulbil initiation is coordinately controlled by multiple phytohormones. Notably, eight TFs (transcription factors) that regulate AM initiation have been identified as pivotal regulators of bulbil formation. Among these, WUS (WUSCHEL), CLV (CLAVATA), ATH1 (Arabidopsis Thaliana Homeobox Gene 1), and RAX (Regulator of Axillary meristems) have been observed to exhibit elevated expression levels. Conversely, LEAFY demonstrated contrasting expression patterns. The intricate expression profiles of these TFs are closely associated with the upregulated expression of KNOX(KNOTTED-like homeobox), suggesting a intricate regulatory network underlying the complex process of bulbil initiation. This study offers a profound understanding of the bulbil initiation process and could potentially aid in refining molecular breeding techniques specific to P. ternata.


Assuntos
Regulação da Expressão Gênica de Plantas , Pinellia , Reguladores de Crescimento de Plantas , Transcriptoma , Reguladores de Crescimento de Plantas/metabolismo , Pinellia/genética , Pinellia/metabolismo , Perfilação da Expressão Gênica , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Acetatos/metabolismo , Acetatos/farmacologia , Folhas de Planta/metabolismo , Folhas de Planta/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento
4.
J Plant Res ; 136(3): 359-369, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36881276

RESUMO

Pinellia ternata (Thunb.) Breit. is an important traditional Chinese medicinal herb and very sensitive to high temperatures. To gain a better understanding of flavonoid biosynthesis under heat stress in P. ternata, we performed integrated analyses of metabolome and transcriptome data. P. ternata plants were subjected to a temperature of 38 °C, and samples were collected after 10 d of treatment. A total of 502 differential accumulated metabolites and 5040 different expressed transcripts were identified, with flavonoid biosynthesis predominantly enriched. Integrated metabolomics and transcriptome analysis showed that high temperature treatment upregulated the expression of CYP73A and downregulated the expression of other genes (such as HCT, CCoAOMT, DFR1, DFR2), which might inhibit the biosynthesis of the downstream metabolome, including such metabolites as chlorogenic acid, pelargonidin, cyanidin, and (-)-epigallocatechin in the flavonoid biosynthesis pathway. The transcription expression levels of these genes were validated by real-time PCR. Our results provide valuable insights into flavonoid composition and accumulation patterns and the candidate genes participating in the flavonoid biosynthesis pathways under heat stress in P. ternata.


Assuntos
Pinellia , Transcriptoma , Pinellia/genética , Pinellia/metabolismo , Resposta ao Choque Térmico , Metaboloma , Flavonoides/metabolismo
5.
Biotechnol Lett ; 45(10): 1381-1391, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37589824

RESUMO

OBJECTIVE: In this study, we established an efficient and rapid transient expression system in the protoplasts of Pinellia ternata (Thunb.) Breit. (P. ternata). RESULTS: The protoplasts of P. ternata were prepared from plant leaves as the source material by digesting them with the combination of 20 g·l-1 cellulase and 15 g·l-1 macerozyme for 6 h. Based on the screening of PEG concentration, the conditions for PEG-mediated protoplast transformation were improved, and the highest transformation efficiency was found for 40% PEG 4000. Furthermore, we used the subcellular protein localization technique in P. ternata protoplasts to allow further validation of transient expression system. CONCLUSIONS: We present the method that can be applicable for studying both gene verification and expression in P. ternata protoplasts, thus allowing for engineering the improved varieties of P. ternata through molecular plant breeding techniques. This method can also be widely applicable for analyzing protein interactions, detecting promoter activity, for somatic cell fusion in plant breeding, as well as for other related studies.


Assuntos
Celulase , Pinellia , Pinellia/genética , Protoplastos , Melhoramento Vegetal , Embaralhamento de DNA
6.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511363

RESUMO

Using petiole material as explants and directly inducing the formation of microtubers without going through the callus stage is an essential way to rapidly expand scarce medical plants such as Pinellia ternata. However, the early molecular mechanism underlying the formation of the microtuber is largely elusive. Here, we conducted cytology and dynamic transcriptome analyses of inchoate microtubers in Pinellia explants and identified 1092 differentially expressed genes after their cultivation in vitro for 0, 5, and 15 days. Compared with 0 day, the number and size of the microtuber cells were larger at 5 and 15 days of culture. Detailed categorization revealed that the differentially expressed genes were mainly related to responses to stimulus, biological regulation, organelles, membranes, transcription factor activity, and protein binding. Further analysis revealed that the microtuber at different incubation days exhibited quite a difference in both hormone signaling pathway transduction and the regulation pattern of transcription factors. Therefore, this study contributes to a better understanding of the early molecular regulation during the formation of the microtuber and provides new insights for the study of the rapid expansion of P. ternata and other medical plants.


Assuntos
Pinellia , Pinellia/genética , Perfilação da Expressão Gênica , Hormônios/metabolismo , Expressão Gênica
7.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175702

RESUMO

Pinellia ternata (Thunb.) Breit. (P. ternata) is a very important plant that is commonly used in traditional Chinese medicine. Its corms can be used as medicine and function to alleviate cough, headache, and phlegm. The epidermis of P. ternata corms is often light yellow to yellow in color; however, within the range of P. ternata found in JingZhou City in Hubei Province, China, there is a form of P. ternata in which the epidermis of the corm is red. We found that the total flavonoid content of red P. ternata corms is significantly higher than that of yellow P. ternata corms. The objective of this study was to understand the molecular mechanisms behind the difference in epidermal color between the two forms of P. ternata. The results showed that a high content of anthocyanidin was responsible for the red epidermal color in P. ternata, and 15 metabolites, including cyanidin-3-O-rutinoside-5-O-glucoside, cyanidin-3-O-glucoside, and cyanidin-3-O-rutinoside, were screened as potential color markers in P. ternata through metabolomic analysis. Based on an analysis of the transcriptome, seven genes, including PtCHS1, PtCHS2, PtCHI1, PtDFR5, PtANS, PtUPD-GT2, and PtUPD-GT3, were found to have important effects on the biosynthesis of anthocyanins in the P. ternata corm epidermis. Furthermore, two transcription factors (TFs), bHLH1 and bHLH2, may have regulatory functions in the biosynthesis of anthocyanins in red P. ternata corms. Using an integrative analysis of the metabolomic and transcriptomic data, we identified five genes, PtCHI, PtDFR2, PtUPD-GT1, PtUPD-GT2, and PtUPD-GT3, that may play important roles in the presence of the red epidermis color in P. ternata corms.


Assuntos
Pinellia , Transcriptoma , Antocianinas/genética , Antocianinas/metabolismo , Pinellia/genética , Perfilação da Expressão Gênica , Glucosídeos/metabolismo
8.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6613-6623, 2023 Dec.
Artigo em Zh | MEDLINE | ID: mdl-38212021

RESUMO

The evaluation of germplasm resources is the prerequisite for the development, utilization, and conservation of Chinese medicinal resources. The selection of excellent germplasm is the key to the breeding and orderly production of Pinellia ternata. In this study, 21 germplasm materials of P. ternata from major production areas in China were collected and analyzed for population diversity after phenotypic preliminary screening. The results have revealed that the P. ternata population has abundant phenotypic variation, and the phenotypic changes could be divided into five phenotypes in terms of organ trait variation. Further analysis of variation in 20 quantitative traits of the population revealed that the coefficient of variation for adenosine content(339.05%) was the largest, while the coefficient of variation for the underground plant height(16.35%) was the smallest. Correlation analysis showed that there was a strong correlation among various traits, with 52 pairs of traits showing highly significant correlation(P<0.01) and 19 pairs of traits showing a significant correlation(P<0.05). The 21 germplasms in the test could be classified into three major clusters by cluster analysis, with Cluster Ⅱ having the highest number and content of nucleosides, making it suitable for the selection and breeding of P. ternata varieties with high content of nucleosides. The yield in Cluster Ⅲ was higher than that in other groups, making it suitable for the selection and breeding of P. ternata varieties with a high yield. All trait indicators could be simplified into five principal component factors through principal component analysis, and the cumulative contribution rate was up to 86.04%. Further, comprehensive analysis using membership function and stepwise regression analysis identified nine traits, such as plant height, main leaf length, and underground plant height as characteristic indicators for the comprehensive evaluation of germplasm resources of P. ternata. BX007, BX008, and BX005 were identified as germplasms with both high yield and high uridine content, with BX007 having the highest uridine content of 479.51 µg·g~(-1). It belonged to the germplasm of P. ternata with double bulbils and could be cultivated as a potential good variety. Based on the phenotypic classification of P. ternata, systematic resource evaluation was carried out in this study, which could lay a foundation for the excavation of genetic resources and the breeding of new varieties of P. ternata.


Assuntos
Pinellia , Plantas Medicinais , Pinellia/genética , Melhoramento Vegetal , Fenótipo , Uridina
9.
BMC Plant Biol ; 22(1): 457, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151520

RESUMO

BACKGROUND: Pinellia ternata is an important traditional medicine in China, and its growth is regulated by the transcriptome or proteome. Lysine crotonylation, a newly identified and important type of posttranslational modification, plays a key role in many aspects of cell metabolism. However, little is known about its functions in Pinellia ternata. RESULTS: In this study, we generated a global crotonylome analysis of Pinellia ternata and examined its overlap with lysine succinylation. A total of 2106 crotonylated sites matched on 1006 proteins overlapping in three independent tests were identified, and we found three specific amino acids surrounding crotonylation sites in Pinellia ternata: KcrF, K***Y**Kcr and Kcr****R. Gene Ontology (GO) and KEGG pathway enrichment analyses showed that two crucial alkaloid biosynthesis-related enzymes and many stress-related proteins were also highly crotonylated. Furthermore, several enzymes participating in carbohydrate metabolism pathways were found to exhibit both lysine crotonylation and succinylation modifications. CONCLUSIONS: These results indicate that lysine crotonylation performs important functions in many biological processes in Pinellia ternata, especially in the biosynthesis of alkaloids, and some metabolic pathways are simultaneously regulated by lysine crotonylation and succinylation.


Assuntos
Alcaloides , Pinellia , Lisina/metabolismo , Pinellia/genética , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo
10.
Mol Biol Rep ; 49(8): 7753-7763, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35670929

RESUMO

BACKGROUND: Ensuring the authenticity of raw materials is a key step prior to producing Chinese patent medicines. Pinellia ternata (Thunb.) Breit. is the botanical origin of Pinelliae Rhizoma (Banxia), a traditional Chinese medicine used to treat cough, insomnia, nausea, inflammation, epilepsy, and so on. Unfortunately, authentic Pinelliae Rhizoma is often adulterated by morphologically indistinguishable plant material due to the insufficient regulatory procedures of processed medicinal plant products. Thus, it is important to develop a molecular assay based on species-specific nucleotide signatures and primers to efficiently distinguish authentic Pinelliae Rhizoma from its adulterants. METHODS AND RESULTS: The ITS2 region of 67 Pinelliae Rhizoma and its common adulterants were sequenced. Eight single nucleotide polymorphisms within a 28-43 bp stretch of ITS2 were used to develop six primer pairs to amplify these species-specific regions. We assayed 56 Pinelliae Rhizoma products sold on the Chinese market, including medicinal slices, powder and Chinese patent medicines, which revealed that about 66% of products were adulterated. The most common adulterants were Pinellia pedatisecta (found in 57% of the assayed products), Arisaema erubescens (9%), Typhonium giganteum (2%) and Typhonium flagelliforme (2%). CONCLUSIONS: A severe adulteration condition was revealed in the traditional medicine market. The species-specific nucleotide assays developed in this study can be applied to reliably identify Pinelliae Rhizoma and its adulterants, aiding in the authentication and quality control of processed products on the herbal market.


Assuntos
Medicamentos de Ervas Chinesas , Pinellia , Medicamentos sem Prescrição , Nucleotídeos , Pinellia/genética , Rizoma/genética
11.
Mol Biol Rep ; 49(8): 7873-7885, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689783

RESUMO

BACKGROUND: Pinellia Tenore (Araceae) is a genus of perennial herbaceous plants, all of which have medicinal value. The chloroplast (cp) genome data of Pinellia are scarce, and the phylogenetic relationship and gene evolution remain unclear. METHODS AND RESULTS: We sequenced and annotated the Pinellia pedatisecta cp genome and combined it with previously published genomes for other Pinellia species. We used bioinformatics methods to analyse the genomic structure, repetitive sequences, interspecific variation, divergence hotspots, phylogenetic relationships, divergence time estimation and selective pressure of four Pinellia plastomes. Results showed that the cp genomes of Pinellia varied in length between 168,178 (P. pedatisecta MN046890) and 164,013 bp (P. ternata KR270823). A total of 68-111 SSR loci were identified as candidate molecular markers for further genetic diversity study. Eight mutational hotspot regions were determined, including psbI-trnG-UCC, psbM-rpoB, ndhJ-trnT-UGU, trnP-UGG-trnW-CCA, ndhF-trnN-GUU, ndhG-ndhE, ycf1-rps15 and trnR-ycf1. Gene selection pressure suggested that four genes were subjected to positive selection. Phylogenetic inferences based on the complete cp genomes revealed a sister relationship between Pinellia and Arisaema plants whose divergence was estimated to occur around 22.48 million years ago. All Pinellia species formed a monophyletic evolutionary clade in which P. peltata, rather than P. pedatisecta, earlier diverged, indicating that P. pedatisecta is not the basal taxon of Pinellia but P. peltata may be. CONCLUSIONS: The cp genomes of Pinellia will provide valuable information for species classification, identification, molecular breeding and evolutionary exploration of the genus Pinellia.


Assuntos
Genoma de Cloroplastos , Pinellia , Evolução Molecular , Genoma de Cloroplastos/genética , Genômica/métodos , Filogenia , Pinellia/genética , Plantas/genética
12.
Cell Mol Biol (Noisy-le-grand) ; 67(4): 10-17, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35809307

RESUMO

It has been recognized that Citrus reticulata and Pinellia ternata have a good therapeutic effect on NSCLC. However, the potential mechanism of C. reticulata and P. ternata in the treatment of NSCLC based on network pharmacology analysis is not clear. The "Drug-Component-Target-Disease" network was constructed by Cytoscape, and the protein interaction (PPI) network was constructed by STRING. Our study indicated that 18 active ingredients of C. reticulata and P. Ternata were screened from the TCMSP database, and 56 target genes of C. reticulata and P. Ternata for the treatment of NSCLC were identified, and we constructed the "Drug-Component-Target-Disease" network. In this study, we screened 56 PPI core genes to establish a PPI network. We concluded that the network pharmacology mechanism of the effect of C. reticulata and P. Ternata  on NSCLC may be closely related to the protein expressed by TP53, ESR1, FOS, NCOA3 and MAPK8, and these may play the therapeutic roles by regulating the IL-17 signaling pathway, antigen processing and presentation, microRNAs in cancer and endocrine resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Citrus , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Pinellia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Citrus/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Simulação de Acoplamento Molecular , Farmacologia em Rede , Pinellia/genética
13.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36142812

RESUMO

Pinellia ternata (Thunb.) Druce is a traditional medicinal plant containing a variety of alkaloids, which are important active ingredients. Brassinolide (BR) is a plant hormone that regulates plant response to environmental stress and promotes the accumulation of secondary metabolites in plants. However, the regulatory mechanism of BR-induced alkaloid accumulation in P. ternata is not clear. In this study, we investigated the effects of BR and BR biosynthesis inhibitor (propiconazole, Pcz) treatments on alkaloid biosynthesis in the bulbil of P. ternata. The results showed that total alkaloid content and bulbil yield was enhanced by 90.87% and 29.67% under BR treatment, respectively, compared to the control. We identified 818 (476 up-regulated and 342 down-regulated) and 697 (389 up-regulated and 308 down-regulated) DEGs in the BR-treated and Pcz-treated groups, respectively. Through this annotated data and the Kyoto encyclopedia of genes and genomes (KEGG), the expression patterns of unigenes involved in the ephedrine alkaloid, tropane, piperidine, pyridine alkaloid, indole alkaloid, and isoquinoline alkaloid biosynthesis were observed under BR and Pcz treatments. We identified 11, 8, 2, and 13 unigenes in the ephedrine alkaloid, tropane, piperidine, and pyridine alkaloid, indole alkaloid, and isoquinoline alkaloid biosynthesis, respectively. The expression levels of these unigenes were increased by BR treatment and were decreased by Pcz treatment, compared to the control. The results provided molecular insight into the study of the molecular mechanism of BR-promoted alkaloid biosynthesis.


Assuntos
Alcaloides , Pinellia , Alcaloides/metabolismo , Brassinosteroides , Efedrina , Perfilação da Expressão Gênica , Isoquinolinas/metabolismo , Pinellia/genética , Piperidinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Piridinas/metabolismo , Esteroides Heterocíclicos , Transcriptoma , Tropanos
14.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5209-5216, 2022 Oct.
Artigo em Zh | MEDLINE | ID: mdl-36472027

RESUMO

In summer in 2020, Pinellia ternata in many planting areas in Hubei suffered from serious southern blight, as manifested by the yellowing and wilted leaves and rotten tubers. This study aims to identify the pathogen, clarify the biological characteristics of the pathogen, and screen fungicides. To be specific, the pathogen was isolated, purified, and identified, and the pathogenicity was detected according to the Koch's postulates. Moreover, the biological characteristics of the pathogen were analyzed. Furthermore, PDA plates and seedlings were used to determine the most effective fungicides. The results showed that the mycelia of the pathogen were white and villous with silk luster, which produced a large number of white to black brown sclerotia. The pathogen was identified as Athelia rolfsii by morphological observation and molecular identification based on LSU and TEF gene sequences. The optimum growth conditions for A. rolfsii were 30 ℃ and pH 5-8, and the optimum conditions for the germination of sclerotia were 25 ℃ and pH 7-9. Bacillus subtilis, difenoconazole, and flusilazole were identified as effective fungicides with PDA, and their half maximal effective concentration(EC_(50)) was all less than 5 mg·L~(-1). The effective fungicides screened with the seedlings were hymexazol and difenoconazole. Based on the screening experiments, difenoconazole can be used as the main agent for the prevention and treatment of southern blight.


Assuntos
Fungicidas Industriais , Pinellia , Pinellia/genética , Fungicidas Industriais/farmacologia , Plântula , Bacillus subtilis , Micélio
15.
Ecotoxicol Environ Saf ; 202: 110877, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32574862

RESUMO

Heat stress has been a major environmental factor limiting the growth and development of Pinellia ternata which is an important Chinese traditional medicine. It has been reported that spermidine (SPD) and melatonin (MLT) play pivotal roles in modulating heat stress response (HSR). However, the roles of SPD and MLT in HSR of P. ternata, and the potential mechanism is still unknown. Here, exogenous SPD and MLT treatments alleviated heat-induced damages in P. ternata, which was supported by the increased chlorophyll content, OJIP curve, and relative water content, and the decreased malondialdehyde and electrolyte leakage. Then, RNA sequencing between CK (control) and Heat (1 h of heat treatment) was conducted to analyze how genes were in response to short-term heat stress in P. ternata. A total of 14,243 (7870 up- and 6373 down-regulated) unigenes were differentially expressed after 1 h of heat treatment. Bioinformatics analysis revealed heat-responsive genes mainly included heat shock proteins (HSPs), ribosomal proteins, ROS-scavenging enzymes, genes involved in calcium signaling, hormone signaling transduction, photosynthesis, pathogen resistance, and transcription factors such as heat stress transcription factors (HSFs), NACs, WRKYs, and bZIPs. Among them, PtABI5, PtNAC042, PtZIP17, PtSOD1, PtHSF30, PtHSFB2b, PtERF095, PtWRKY75, PtGST1, PtHSP23.2, PtHSP70, and PtLHC1 were significantly regulated by SPD or MLT treatment with same or different trends under heat stress condition, indicating that exogenous application of MLT and SPD might enhance heat tolerance in P. ternata through regulating these genes but may with different regulatory patterns. These findings contributed to the identification of potential genes involved in short-term HSR and the improved thermotolerance by MLT and SPD in P. ternata, which provided important clues for improving thermotolerance of P. ternata.


Assuntos
Melatonina/metabolismo , Pinellia/fisiologia , Espermidina/metabolismo , Termotolerância/genética , Clorofila/metabolismo , Regulação para Baixo/efeitos dos fármacos , Perfilação da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Resposta ao Choque Térmico/fisiologia , Temperatura Alta , Fotossíntese/efeitos dos fármacos , Pinellia/genética , Pinellia/metabolismo , Análise de Sequência de RNA , Termotolerância/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
16.
Zhongguo Zhong Yao Za Zhi ; 45(2): 341-346, 2020 Jan.
Artigo em Zh | MEDLINE | ID: mdl-32237316

RESUMO

Pinellia ternata belongs to the Araceae family and is a medicinal herb. The tuber is the medicinal organ with antitussive, antiemetic and anti-tumor activities. It is easy to encounter high temperature environment during the growth periods, leading to decrease of tuber production. At present, the mechanism of response to high temperature stress in P. ternata is still unknown. DNA methylation plays a vital role in plant protection against adversity stress as a way of epigenetic regulation. In this study, P. ternata was used as material for treatment of high temperature stress at 0 h, 6 h and 80 h, and methylation sensitive amplification polymorphism(MSAP) analysis was conducted on the changes of DNA methylation in its genome. The results showed that 20 pairs of MSAP primers were selected from 100 MSAP primers with multiple clear and uniform bands, and 353, 355 and 342 loci were amplified from materials of P. ternata treated in the high temperature stress 0 h, 6 h and 80 h, respectively. Cytosine methylation levels of CCGG context in the above materials were characterized as 60.91%, 44.79% and 44.74%, respectively. And the full methylation ratios were 16.71%, 22.25% and 29.24, respectively. It demonstrated that high temperature stress significantly induced the down-regulation of DNA methylation level and up-regulation of the full methylation rate in P. ternata genome. This study provides a preliminary theoretical reference for analyzing the mechanism of P. ternata responding to high temperature stress from the epigenetic perspective.


Assuntos
Metilação de DNA , Epigênese Genética , Temperatura Alta , Pinellia/genética , Plantas Medicinais/genética
17.
Zhongguo Zhong Yao Za Zhi ; 45(6): 1311-1315, 2020 Mar.
Artigo em Zh | MEDLINE | ID: mdl-32281341

RESUMO

Pinellia ternata is a medicinal herb of Araceae, and its tubers are used as medicines. It is a common Chinese herbal medicine in China and has a large market demand. When exposing to strong light intensity and high temperature during the growth process, P. ternata withers in a phenomenon known as "sprout tumble", which largely limits tuber production. Shade can effectively delay sprout tumble formation and increase its yield, however the relevant regulation mechanism is unclear. DNA methylation, as a self-modifying response to environmental changes, is often involved in the regulation of plant growth and development. In this study, P. ternata grown under natural light and 90% shading were selected as the control group and the experimental group for genomic DNA methylation analysis by using methylate sensitive amplification polymorphism(MSAP). The results showed that a total of 617 loci were detected with 20 pairs of primers, of which 311 were in the natural light group and 306 in the shading group. The methylation sites in the light and shading groups accounted for 58.2% and 71.57%, respectively, and the methylation ratios in the methylation sites were 27.65% and 29.41%, respectively, indicating that shading significantly induced the genome DNA methylation of P. ternata. Compared to the natural light group, shading promoted 32.51% of the genes methylation, while inducing 16.25% gene demethylation. This study reveals the DNA methylation variation of P. ternata under shading conditions, which lays a preliminary theoretical foundation for further analysis of the mechanism of shading regulation of P. ternata growth from epigenetic level.


Assuntos
Metilação de DNA , Escuridão , Pinellia/genética , Pinellia/efeitos da radiação , Luz Solar , China , Epigênese Genética , Plantas Medicinais/genética , Plantas Medicinais/efeitos da radiação
18.
BMC Plant Biol ; 19(1): 565, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852442

RESUMO

BACKGROUND: Pinellia ternata is native to China and has been used as a traditional herb due to its antiemetic, antitussive, analgesic, and anxiolytic effects. When exposed to strong light intensity and high temperature during the reproductive growth process, P. ternata withers in a phenomenon known as "sprout tumble", which largely limits tuber production. Shade was previously found to delay sprout tumble formation (STF); however, no information exists regarding this process at the molecular level. Hence, we determined the genes involved in tuber development and STF in P. ternata. RESULTS: Compared to that with natural sun-light (control), shade significantly induced chlorophyll accumulation, increased chlorophyll fluorescence parameters including initial fluorescence, maximal fluorescence, and qP, and dramatically repressed chlorophyll a:b and NPQ. Catalase (CAT) activity was largely induced by shade, and tuber products were largely increased in this environment. Transcriptome profiles of P. ternata grown in natural sun-light and shaded environments were analyzed by a combination of next generation sequencing (NGS) and third generation single-molecule real-time (SMRT) sequencing. Corrections of SMRT long reads based on NGS short reads yielded 136,163 non-redundant transcripts, with an average N50 length of 2578 bp. In total, 6738 deferentially-expressed genes (DEGs) were obtained from the comparisons, specifically D5S vs D5CK, D20S vs D20CK, D20S vs D5S, and D20CK vs D5CK, of which, 6384 DEGs (94.8%) were generated from the D20S vs D20CK comparison. Gene annotation and functional analyses revealed that these genes were related to auxin signal transduction, polysaccharide and sugar metabolism, phenylpropanoid biosynthesis, and photosynthesis. Moreover, the expression of genes enriched in photosynthesis appeared to be significantly altered by shade. The expression patterns of 16 candidate genes were consistent with changes in their transcript abundance as identified by RNA-Seq, and these might contribute to STF and tuber production. CONCLUSION: The full-length transcripts identified in this study have provided a more accurate depiction of P. ternata gene transcription. Further, we identified potential genes involved in STF and tuber growth. Such data could serve as a genetic resource and a foundation for further research on this important traditional herb.


Assuntos
Genes de Plantas , Pinellia/genética , Tubérculos/crescimento & desenvolvimento , Luz Solar , Transcriptoma , Perfilação da Expressão Gênica , Pinellia/crescimento & desenvolvimento , Tubérculos/genética
19.
Zhongguo Zhong Yao Za Zhi ; 44(13): 2777-2784, 2019 Jul.
Artigo em Zh | MEDLINE | ID: mdl-31359690

RESUMO

According to the data of Pinellia ternate transcriptome,two calmodulin genes were cloned and named as Pt Ca M1 and PtCa M2 respectively. The results of bioinformatics analysis showed that Pt Ca Ms genes contained a 450 bp open reading frame,encoding149 amino acids.The identity of the coding sequences was 80%,and the identity of amino acids sequence was 91%. Pt Ca Ms genes contained EF-hand structure domain,belonging to the Ca M families. The Real-time PCR analysed the expression patterns of Pt Ca Ms in different tissues and different treatments. RESULTS:: showed that Pt Ca M1 and Pt Ca M2 gene were the highest expression level in tuber. Under Ca Cl2 treatment,the expressions of Pt Ca Ms were significantly higher than the control. Under EGTA,La Cl3 and TFP treatments,the expression level of Pt Ca Ms decreased gradually. In this study,the Pt Ca Ms gene were successfully cloned from P. ternate,which laid a foundation for the functional characteristic of Pt Ca Ms gene and the synthesis of alkaloids from P. ternata for further study.


Assuntos
Calmodulina/genética , Pinellia/genética , Clonagem Molecular , Genes de Plantas , Tubérculos/genética
20.
BMC Plant Biol ; 18(1): 357, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30558544

RESUMO

BACKGROUND: Pinellia ternata is a Chinese traditional medicinal herb, used to cure diseases including insomnia, eclampsia and cervical carcinoma, for hundreds of years. Non-self-recognition in multicellular organisms can initiate the innate immunity to avoid the invasion of pathogens. A design for pathogen independent, heterosis based, fresh resistance can be generated in F1 hybrid was proposed. RESULTS: By library functional screening, we found that P. ternata genes, named as ptHR375 and ptHR941, were identified with the potential to trigger a hypersensitive response in Nicotiana benthamiana. Significant induction of ROS and Callose deposition in N. benthamiana leaves along with activation of pathogenesis-related genes viz.; PR-1a, PR-5, PDF1.2, NPR1, PAL, RBOHB and ERF1 and antioxidant enzymes was observed. After transformation into N. benthamiana, expression of pathogenesis related genes was significantly up-regulated to generate high level of resistance against Phytophthora capsici without affecting the normal seed germination and morphological characters of the transformed N. benthamiana. UPLC-QTOF-MS analysis of ptHR375 transformed N. benthamiana revealed the induction of Oxytetracycline, Cuelure, Allantoin, Diethylstilbestrol and 1,2-Benzisothiazol-3(2H)-one as bioactive compounds. Here we also proved that F1 hybrids, produced by crossing of the ptHR375 and ptHR941 transformed and non-transformed N. benthamiana, show significant high levels of PR-gene expressions and pathogen resistance. CONCLUSIONS: Heterologous plant genes can activate disease resistance in another plant species and furthermore, by generating F1 hybrids, fresh pathogen independent plant immunity can be obtained. It is also concluded that ptHR375 and ptHR941 play their role in SA and JA/ET defense pathways to activate the resistance against invading pathogens.


Assuntos
Nicotiana/genética , Nicotiana/imunologia , Pinellia/genética , Imunidade Vegetal/genética , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas , Glucanos/genética , Glucanos/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Phytophthora/patogenicidade , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA