Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Appl Environ Microbiol ; 90(2): e0201623, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38214515

RESUMO

Global warming has led to a high incidence of extreme heat events, and the frequent occurrence of extreme heat events has had extensive and far-reaching impacts on wetland ecosystems. The widespread distribution of plastics in the environment, including polyethylene (PE), polylactic acid (PLA), and tire particles (TPs), has caused various environmental problems. Here, high-throughput sequencing techniques and metabolomics were used for the first time to investigate the effects of three popular microplastic types: PE, PLA, and TP, on the sediment microbiome and the metabolome at both temperatures. The microplastics were incorporated into the sediment at a concentration of 3% by weight of the dry sediment (wt/wt), to reflect environmentally relevant conditions. Sediment enzymatic activity and physicochemical properties were co-regulated by both temperatures and microplastics producing significant differences compared to controls. PE and PLA particles inhibited bacterial diversity at low temperatures and promoted bacterial diversity at high temperatures, and TP particles promoted both at both temperatures. For bacterial richness, only PLA showed inhibition at low temperature; all other treatments showed promotion. PE, PLA, and TP microplastics changed the community structure of sediment bacteria, forming two clusters at low and high temperatures. Furthermore, PE, PLA, and TP changed the sediment metabolic profiles, producing differential metabolites such as lipids and molecules, organic heterocyclic compounds, and organic acids and their derivatives, especially TP had the most significant effect. These findings contribute to a more comprehensive understanding of the potential impact of microplastic contamination.IMPORTANCEIn this study, we added 3% (wt/wt) microplastic particles, including polyethylene, polylactic acid, and tire particles, to natural sediments under simulated laboratory conditions. Subsequently, we simulated the sediment microbial and ecosystem responses under different temperature conditions by incubating them for 60 days at 15°C and 35°C, respectively. After synthesizing these results, our study strongly suggests that the presence of microplastics in sediment ecosystems and exposure under different temperature conditions may have profound effects on soil microbial communities, enzyme activities, and metabolite profiles. This is important for understanding the potential hazards of microplastic contamination on terrestrial ecosystems and for developing relevant environmental management strategies.


Assuntos
Microbiota , Poluentes Químicos da Água , Plásticos , Microplásticos/química , Microplásticos/farmacologia , Polietileno/análise , Polietileno/farmacologia , Ecossistema , Temperatura , Poluentes Químicos da Água/análise , Sedimentos Geológicos/microbiologia , Poliésteres , Metaboloma , Monitoramento Ambiental
2.
J Fish Dis ; 47(1): e13862, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37776076

RESUMO

Piscirickettsiosis is the most prevalent bacterial disease affecting seawater salmon in Chilean salmon industry. Antibiotic therapy is the first alternative to counteract infections caused by Piscirickettsia salmonis. The presence of bacterial biofilms on materials commonly used in salmon farming may be critical for understanding the bacterial persistence in the environment. In the present study, the CDC Biofilm Reactor® was used to investigate the effect of sub- and over-MIC of florfenicol on both the pre-formed biofilm and the biofilm formation by P. salmonis under the antibiotic stimuli on Nylon and high-density polyethylene (HDPE) surfaces. This study demonstrated that FLO, at sub- and over-MIC doses, decreases biofilm-embedded live bacteria in the P. salmonis isolates evaluated. However, it was shown that in the P. salmonis Ps007 strain the presence of sub-MIC of FLO reduced its biofilm formation on HDPE surfaces; however, biofilm persists on Nylon surfaces. These results demonstrated that P. salmonis isolates behave differently against FLO and also, depending on the surface materials. Therefore, it remains a challenge to find an effective strategy to control the biofilm formation of P. salmonis, and certainly other marine pathogens that affect the sustainability of the Chilean salmon industry.


Assuntos
Doenças dos Peixes , Piscirickettsia , Infecções por Piscirickettsiaceae , Salmonidae , Animais , Polietileno/farmacologia , Nylons/farmacologia , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia , Antibacterianos/farmacologia , Salmão , Biofilmes , Infecções por Piscirickettsiaceae/veterinária , Infecções por Piscirickettsiaceae/microbiologia
3.
Environ Res ; 236(Pt 2): 116775, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517491

RESUMO

Bioplastics arise as an alternative to plastic production delinked from fossil resources. However, as their demand is increasing, there is a need to investigate their environmental fingerprint. Here we study the toxicity of microplastics (MPLs) of two widely used materials, the polylactic acid (PLA) and the polyhydroxybutyrate (PHB) on the environmental aquatic model species Daphnia magna. The study was focused on sublethal behavioural and feeding endpoints linked to antipredator scape responses and food intake. The study aimed to test that MPLs from single-use household comercial items and among them bioplastics should be more toxic than those obtained from standard plastic polymers and fossil plastic materials due to the greater amount of plastic additives, and that MPLs should be more toxic than plastic extracts due to the contribution of both particle and plastic additive toxicity. MPLs were obtained by cryogenic grinding and sea-sand erosion to obtain irregular particles. MPL included standard polymers and nine comercial items of PLA and PHB and one fossil-based material of high-density polyethylene (HDPE). The additive content in commercial items was characterised by liquid chromatography coupled with high-resolution mass spectrometry. D. magna juveniles were exposed for 24 h to particles and their plastic extracts. Results indicated that the toxicity of bioplastic particles was five times higher than the effects produced by exposure to the content of the additives alone, that bioplastic particles were more toxic than fossil ones and that particles obtained from commercial items were more toxic than those obtained from PLA, PHB or HDPE polymer standards. Predicted toxicity from the measured plastic additives in the studied commercially available household items, however, was poorly related with the observed behavioural and feeding effects. Further research on unknown chemical components together with physical factors is need it to fully understand the mechanisms of toxicity of bioplastic materials.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Plásticos/toxicidade , Plásticos/análise , Daphnia , Polietileno/farmacologia , Poliésteres/toxicidade , Biopolímeros/farmacologia , Poluentes Químicos da Água/análise
4.
Lett Appl Microbiol ; 76(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36731877

RESUMO

Biofilms are surface-associated microbial clusters embedded in extracellular polymeric substances. Biofilms formed on food-contact surfaces create challenges for the food industry due to their increased tolerance to antimicrobial agents and disinfectants. This study aimed to evaluate the effect of the biofilm maturation period on their resistance to gaseous ClO2. Listeria monocytogenes, Salmonellaserotype Typhimurium, and Escherichia coli O157:H7 biofilms formed on stainless steel (SS) and high-density polyethylene (HDPE) surfaces were investigated. The total cell mass and protein content significantly increased (P < .05) between the second and the fifth day of maturation, and the biofilms' resistance to gaseous ClO2 increased as they matured. Generally, the cell counts of 0-day-old L. monocytogenes, Salm. Typhimurium, and E. coli O157:H7 biofilms on SS and HDPE reduced below the detection limit (0.48 log CFU/cm2) within 5 min. The cell counts of 2-day-old biofilms of the three pathogens were reduced by 6.22 to over 7.52 log, while those of 5-day-old biofilms were reduced by 3.64 to over 6.34 log after 20 min of treatment with 30 ppmv of gaseous ClO2. Therefore, as resistance increases with biofilm maturation, daily gaseous ClO2 treatment would maximize the antimicrobial efficacy of the cleaning strategy against biofilms.


Assuntos
Anti-Infecciosos , Escherichia coli O157 , Gases/farmacologia , Contagem de Colônia Microbiana , Polietileno/farmacologia , Microbiologia de Alimentos , Biofilmes , Anti-Infecciosos/farmacologia
5.
J Appl Microbiol ; 133(4): 2583-2598, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35870145

RESUMO

AIMS: To determine the antimicrobial potency of a surface-anchored quaternary ammonium salt (SAQAS)-based biocide during in vitro wet and dry fomite assays and to determine the mechanism of killing bacteria on the surface. METHODS AND RESULTS: Wet and dry fomite assays were established in vitro for a commercially available biocide (SAQAS-A) applied to glass and low-density polyethylene (LDPE) surfaces. Both wet and dry fomite tests showed the active killing of Gram-positive and Gram-negative bacteria but not endospores. Assays measuring membrane permeability (ATP and DNA release), bacterial membrane potential and bacterial ROS production were correlated with the time-to-kill profiles to show SAQAS-A activity in suspension and applied to a surface. CONCLUSIONS: SAQAS-A is an effective biocide against model strains of vegetative bacteria. The killing mechanism for SAQAS-A observed minimal membrane depolarization, a surge in ROS production and assessment of membrane permeability supported the puncture of cells in both suspension and surface attachment, leading to cell death. SIGNIFICANCE AND IMPACT OF THE STUDY: SAQAS represents effective surface biocides against single challenges with bacteria through a mechanical killing ability that supports real-world application if their durability can be demonstrated to maintain residual activity.


Assuntos
Anti-Infecciosos , Desinfetantes , Trifosfato de Adenosina , Antibacterianos/farmacologia , Bactérias , Desinfetantes/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Polietileno/farmacologia , Compostos de Amônio Quaternário/farmacologia , Espécies Reativas de Oxigênio
6.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361770

RESUMO

While there has been intensive research on the influence of microplastics (MPs) on aquatic organisms and humans, their effect on microorganisms is relatively little-known. The present study describes the response of the Trichoderma harzianum strain to low-density polyethylene (LDPE) microparticles. MPs, either separately or with metolachlor (MET), were added to the cultures. Initially, MP was not found to have a negative effect on fungal growth and MET degradation. After 72 h of cultivation, the content of fungal biomass in samples with MPs was almost three times higher than that in the cultures without MPs. Additionally, a 75% degradation of the initial MET was observed. However, due to the qualitative and quantitative changes in individual classes of phospholipids, cell membrane permeability was increased. Additionally, MPs induced the overproduction of reactive oxygen species. The activity of superoxide dismutase and catalase was also increased in response to MPs. Despite these defense mechanisms, there was enhanced lipid peroxidation in the cultures containing the LDPE microparticles. The results of the study may fill the knowledge gap on the influence of MPs on filamentous fungi. The findings will be helpful in future research on the biodegradation of contaminants coexisting with MPs in soil.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Polietileno/farmacologia , Estresse Oxidativo , Fungos , Poluentes Químicos da Água/farmacologia
7.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34948232

RESUMO

Low density polyethylene (LDPE) films covered with active coatings containing mixtures of rosemary, raspberry, and pomegranate CO2 extracts were found to be active against selected bacterial strains that may extend the shelf life of food products. The coatings also offer antiviral activity, due to their influence on the activity of Φ6 bacteriophage, selected as a surrogate for SARS-CoV-2 particles. The mixture of these extracts could be incorporated into a polymer matrix to obtain a foil with antibacterial and antiviral properties. The initial goal of this work was to obtain active LDPE films containing a mixture of CO2 extracts of the aforementioned plants, incorporated into an LDPE matrix via an extrusion process. The second aim of this study was to demonstrate the antibacterial properties of the active films against Gram-positive and Gram-negative bacteria, and to determine the antiviral effect of the modified material on Φ6 bacteriophage. In addition, an analysis was made on the influence of the active mixture on the polymer physicochemical features, e.g., mechanical and thermal properties, as well as its color and transparency. The results of this research indicated that the LDPE film containing a mixture of raspberry, rosemary, and pomegranate CO2 extracts incorporated into an LDPE matrix inhibited the growth of Staphylococcus aureus. This film was also found to be active against Bacillus subtilis. This modified film did not inhibit the growth of Escherichia coli and Pseudomonas syringae cells; however, their number decreased significantly. The LDPE active film was also found to be active against Φ6 particles, meaning that the film had antiviral properties. The incorporation of the mixture of CO2 extracts into the polymer matrix affected its mechanical properties. It was observed that parameters describing mechanical properties decreased, although did not affect the transition of LDPE significantly. Additionally, the modified film exhibited barrier properties towards UV radiation. Modified PE/CO2 extracts films could be applied as a functional food packaging material with antibacterial and antiviral properties.


Assuntos
Embalagem de Alimentos/métodos , Extratos Vegetais/farmacologia , Polietileno/química , Antibacterianos/química , Antibacterianos/farmacologia , Antivirais/química , Antivirais/farmacologia , Bacteriófago phi 6/efeitos dos fármacos , Biofilmes , Quitosana/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Extratos Vegetais/química , Polietileno/farmacologia , Polímeros/química , Punica granatum , Rosmarinus/química , Rubus , SARS-CoV-2/efeitos dos fármacos
8.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34884641

RESUMO

Fibroblasts in the synovial membrane secrete molecules essential to forming the extracellular matrix (ECM) and supporting joint homeostasis. While evidence suggests that fibroblasts contribute to the response to joint injury, the outcomes appear to be patient-specific and dependent on interactions between resident immune cells, particularly macrophages (Mφs). On the other hand, the response of Mφs to injury depends on their functional phenotype. The goal of these studies was to further explore these issues in an in vitro 3D microtissue model that simulates a pathophysiological disease-specific microenvironment. Two sources of fibroblasts were used to assess patient-specific influences: mesenchymal stem cell (MSC)- and induced pluripotent stem cell (iPSC)-derived fibroblasts. These were co-cultured with either M1 or M2 Mφs, and the cultures were challenged with polyethylene particles coated with lipopolysaccharide (cPE) to model wear debris generated from total joint arthroplasties. Our results indicated that the fibroblast response to cPE was dependent on the source of the fibroblasts and the presence of M1 or M2 Mφs: the fibroblast response as measured by gene expression changes was amplified by the presence of M2 Mφs. These results demonstrate that the immune system modulates the function of fibroblasts; furthermore, different sources of differentiated fibroblasts may lead to divergent results. Overall, our research suggests that M2 Mφs may be a critical target for the clinical treatment of cPE induced fibrosis.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Polietileno/farmacologia , Artroplastia/métodos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Matriz Extracelular , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Fibroblastos/metabolismo , Fibrose/tratamento farmacológico , Fibrose/imunologia , Fibrose/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/imunologia
9.
Molecules ; 26(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562272

RESUMO

For many antibacterial polymer fibres, especially for those with natural functional additives, the antibacterial response might not last over time. Moreover, the mechanical performance of polymeric fibres degrades significantly during the intended operation, such as usage in textile and industrial filter applications. The degradation process and overall ageing can lead to emitted volatile organic compounds (VOCs). This work focused on the usage of pine rosin as natural antibacterial chemical and analysed the weathering of melt-spun polyethylene (PE) and poly lactic acid (PLA) polyfilaments. A selected copolymer surfactant, as an additional chemical, was studied to better integrate rosin with the molecular structure of the plastics. The results reveal that a high 20 w-% of rosin content can be obtained by surfactant addition in non-oriented PE and PLA melt-spun polyfilaments. According to the VOC analysis, interestingly, the total emissions from the melt-spun PE and PLA fibres were lower for rosin-modified (10 w-%) fibres and when analysed below 60 ℃. The PE fibres of the polyfilaments were found to be clearly more durable in terms of the entire weathering study, i.e., five weeks of ultraviolet radiation, thermal ageing and standard washing. The antibacterial response against Gram-positive Staphylococcus aureus by the rosin-containing fibres was determined to be at the same level (decrease of 3-5 logs cfu/mL) as when using 1.0 w-% of commercial silver-containing antimicrobial. For the PE polyfilaments with rosin (10 w-%), full killing response (decrease of 3-5 logs cfu/mL) remained after four weeks of accelerated ageing at 60 ℃.


Assuntos
Antibacterianos/química , Polietileno/química , Resinas Vegetais/química , Compostos Orgânicos Voláteis/química , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Pinus/química , Plásticos/química , Plásticos/farmacologia , Poliésteres/química , Polietileno/farmacologia , Polímeros/química , Polímeros/farmacologia , Prata/química , Staphylococcus aureus/efeitos dos fármacos , Têxteis/análise , Compostos Orgânicos Voláteis/farmacologia
10.
Trop Med Int Health ; 25(2): 216-221, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31691403

RESUMO

OBJECTIVE: To assess the influence of soil on the effectiveness of two new slow-release formulations (floating and non-floating) of pyriproxyfen coextruded with low-density polyethylene. METHODS: Two slow-release devices were developed using low-density polyethylene, pyriproxyfen as larvicide and calcium carbonate as filler. A factorial design was used to evaluate the effect of soil presence on the performance of each device. Weekly bioassays were performed. RESULTS: Soil presence affected treatment effectiveness, but this effect was associated with device type. The tablets were effective for nearly 3 months. CONCLUSION: Treatment effectiveness could be reduced because of the loss of pyriproxyfen by several physico-chemical processes such as adsorption into the soil.


OBJECTIF: Evaluer l'influence de la terre sur l'efficacité de deux nouvelles formulations à libération lente (flottante et non flottante) de pyriproxyfène coextrudé avec du polyéthylène de faible densité. MÉTHODES: Deux dispositifs à libération lente ont été développés en utilisant du polyéthylène de faible densité, du pyriproxyfène comme larvicide et du carbonate de calcium comme agent de charge. Un plan factoriel a été utilisé pour évaluer l'effet de la présence de terre sur les performances de chaque dispositif. Des essais biologiques hebdomadaires ont été effectués. RÉSULTATS: La présence de terre a affecté l'efficacité du traitement, mais cet effet était associé au type de dispositif. Les comprimés ont été efficaces pendant près de 3 mois. CONCLUSION: L'efficacité du traitement pourrait être réduite en raison de la perte du pyriproxyfène par plusieurs processus physicochimiques tels que l'adsorption sur la terre.


Assuntos
Aedes , Inseticidas/farmacologia , Piridinas/farmacologia , Solo/parasitologia , Animais , Argentina , Bioensaio , Larva/efeitos dos fármacos , Controle de Mosquitos , Polietileno/farmacologia
11.
Acta Orthop ; 91(6): 705-710, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32835560

RESUMO

Background and purpose - Survivorship of total hip arthroplasty (THA) with the ultra-high molecular weight polyethylene (UHMWPE) monoblock cup has been limited due to periprosthetic osteolysis and aseptic loosening, secondary to wear of the UHMWPE. In response, a vitamin E blended highly cross-linked polyethylene (HXLPE) cup was developed. This study set out to compare the wear and clinical 6-year outcomes of vitamin E blended HXLPE with UHMWPE in an isoelastic monoblock cup in patients with hip osteoarthritis who underwent uncemented THA. The 2-year results have been reported previously. Patients and methods - For this randomized controlled trial 199 patients were included. 102 patients received the vitamin E blended HXLPE uncemented acetabular cup and 97 patients the uncemented UHMWPE monoblock cup. Clinical and radiographic parameters were obtained preoperatively, directly postoperatively, and at 3, 12, 24, and 72 months. Wear rates were compared using the femoral head penetration (FHP) rate. Results - 173 patients (87%) completed the 6-year follow-up. The mean NRS scores for rest pain, load pain, and patient satisfaction were 0.3 (SD 1), 0.6 (SD 1), and 8.6 (SD 1) respectively. The mean Harris Hip Score was 93 (SD 12). The FHP rate was lower in the vitamin E blended HXLPE cup (0.028 mm/year) compared with the UHMWPE cup (0.035 mm/year) (p = 0.002). No adverse reactions associated with the clinical application of vitamin E blended HXLPE were observed. 15 complications occurred, equally distributed between the two cups. The 6-year survival to revision rate was 98% for both cups. There was no aseptic loosening. Interpretation - This study shows the superior performance of the HXLPE blended with vitamin E acetabular cup with clinical and radiographic results similar to the UHMWPE acetabular cup.


Assuntos
Artroplastia de Quadril , Osteólise , Polietileno/farmacologia , Polietilenos/farmacologia , Complicações Pós-Operatórias , Desenho de Prótese , Vitamina E/farmacologia , Acetábulo/diagnóstico por imagem , Artroplastia de Quadril/efeitos adversos , Artroplastia de Quadril/instrumentação , Artroplastia de Quadril/métodos , Feminino , Prótese de Quadril , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Quadril/cirurgia , Osteólise/diagnóstico , Osteólise/etiologia , Osteólise/prevenção & controle , Avaliação de Resultados em Cuidados de Saúde , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/etiologia , Desenho de Prótese/efeitos adversos , Desenho de Prótese/métodos , Falha de Prótese/etiologia , Radiografia/métodos
12.
J Nanosci Nanotechnol ; 19(5): 2599-2605, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30501756

RESUMO

Clay mineral vermiculite was treated with silver and copper nitrate solutions and samples were subsequently modified with organic compound (dodecylamine) via solid-solid melt intercalation. Prepared organo-inorgano vermiculites were used as nanofillers to the polyethylene matrix. Mixtures of polyethylene with vermiculite nanofillers, prepared by melt compounding technique, were pressed into thin plates. Structure changes of prepared powder vermiculite nanofillers and polyethylene/vermiculite composites were studied by X-ray diffraction analysis. The X-ray diffraction patterns of vermiculite nanofillers confirm intercalation of dodecylamine into the vermiculite interlayer. Antimicrobial properties of powder vermiculite nanofillers were evaluated by the minimum inhibitory concentration of samples which is needed to completely stop the bacterial growth and polyethylene/vermiculite composites were evaluated by the number of colony forming units survived on surfaces of composite plates. Different bacterial strains were studied: (1) Gram-positive, represented by bacteria Staphylococcus aureus and Enterococcus faecalis, (2) Gram-negative, represented by bacteria Escherichia coli and Pseudomonas aeruginosa, and (3) yeast, Candida albicans. Powder vermiculite nanofillers and surfaces of polyethylene/vermiculite composites showed good antimicrobial effect against tested bacteria and yeast. Powder vermiculite nanofillers show antimicrobial effect already after 30 minutes of tested time. Composite plates exhibited decrease of colony forming units number about 5-7 logarithmic orders depending on bacteria after 24 hours of tested time.


Assuntos
Anti-Infecciosos , Polietileno , Silicatos de Alumínio/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Polietileno/farmacologia
13.
Int J Mol Sci ; 20(24)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835689

RESUMO

There is a current clinical need for the development of bone void fillers and bioactive bone graft substitutes. The use of mesenchymal stem cells (MSCs) that are seeded into 3D scaffolds and induce bone generation in the event of MSCs osteogenic differentiation is highly promising. Since calcium ions and phosphates promote the osteogenic differentiation of MSCs, the use of the calcium complexes of phosphate-containing polymers is highly prospective in the development of osteogenic scaffolds. Calcium poly(ethylene phosphate)s (PEP-Ca) appear to be potentially suitable candidates primarily because of PEP's biodegradability. In a series of experiments with human adipose-tissue-derived multipotent mesenchymal stem cells (ADSCs), we demonstrated that PEP-Ca are non-toxic and give rise to osteogenesis gene marker, bone morphogenetic protein 2 (BMP-2) and mineralization of the intercellular matrix. Owing to the synthetic availability of poly(ethylene phosphoric acid) block copolymers, these results hold out the possibility for the development of promising new polymer composites for orthopaedic and maxillofacial surgery.


Assuntos
Fosfatos de Cálcio/farmacologia , Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Polietileno/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Cálcio/química , Fosfatos de Cálcio/química , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/efeitos dos fármacos , Ácidos Fosfóricos/síntese química , Ácidos Fosfóricos/química , Polietileno/química
14.
Biofouling ; 34(4): 378-387, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29663827

RESUMO

Antimicrobial surfaces are one approach to prevent biofilms in the food industry. The aim of this study was to investigate the effect of poly((tert-butyl-amino)-methyl-styrene) (poly(TBAMS)) incorporated into linear low-density polyethylene (LLDPE) on the formation of mono- and mixed-species biofilms. The biofilm on untreated and treated LLDPE was determined after 48 and 168 h. The comparison of the results indicated that the ability of Listeria monocytogenes to form biofilms was completely suppressed by poly(TBAMS) (Δ168 h 3.2 log10 cfu cm-2) and colonization of Staphylococcus aureus and Escherichia coli was significantly delayed, but no effect on Pseudomonas fluorescens was observed. The results of dual-species biofilms showed complex interactions between the microorganisms, but comparable effects on the individual bacteria by poly(TBAMS) were identified. Antimicrobial treatment with poly(TBAMS) shows great potential to prevent biofilms on polymeric surfaces. However, a further development of the material is necessary to reduce the colonization of strong biofilm formers.


Assuntos
Bactérias/efeitos dos fármacos , Biofilmes , Indústria Alimentícia/métodos , Microbiologia de Alimentos , Polietileno/farmacologia , Antibacterianos/farmacologia , Fenômenos Fisiológicos Bacterianos , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/fisiologia , Pseudomonas fluorescens/efeitos dos fármacos , Pseudomonas fluorescens/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia
15.
Environ Microbiol ; 19(11): 4447-4459, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28805294

RESUMO

Despite increasing concerns about microplastic (MP) pollution in aquatic ecosystems, there is insufficient knowledge on how MP affect fungal communities. In this study, we explored the diversity and community composition of fungi attached to polyethylene (PE) and polystyrene (PS) particles incubated in different aquatic systems in north-east Germany: the Baltic Sea, the River Warnow and a wastewater treatment plant. Based on next generation 18S rRNA gene sequencing, 347 different operational taxonomic units assigned to 81 fungal taxa were identified on PE and PS. The MP-associated communities were distinct from fungal communities in the surrounding water and on the natural substrate wood. They also differed significantly among sampling locations, pointing towards a substrate and location specific fungal colonization. Members of Chytridiomycota, Cryptomycota and Ascomycota dominated the fungal assemblages, suggesting that both parasitic and saprophytic fungi thrive in MP biofilms. Thus, considering the worldwide increasing accumulation of plastic particles as well as the substantial vector potential of MP, especially these fungal taxa might benefit from MP pollution in the aquatic environment with yet unknown impacts on their worldwide distribution, as well as biodiversity and food web dynamics at large.


Assuntos
Ascomicetos/efeitos dos fármacos , Quitridiomicetos/efeitos dos fármacos , Polietileno/farmacologia , Poliestirenos/farmacologia , Poluentes Químicos da Água/farmacologia , Ascomicetos/classificação , Ascomicetos/crescimento & desenvolvimento , Biodiversidade , Quitridiomicetos/classificação , Quitridiomicetos/crescimento & desenvolvimento , Ecossistema , RNA Ribossômico 18S/genética , Rios/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Poluição Química da Água
16.
Skin Res Technol ; 23(4): 525-530, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28303604

RESUMO

BACKGROUND/PURPOSE: The plastic microbeads, used in many cleansers, will be banned in cosmetic and personal care products within 2017 since they are non-degradable and can disturb the living organisms in water reservoirs. Various choices of biodegradable beads are commercially available, but their efficacy has not been proven yet. This study aimed to compare the cleansing efficacy in dirt and sebum removal aspects of three types of exfoliating beads. METHODS: The gel scrubs with polyethylene (PE) beads, mannan beads or wax beads, were formulated and evaluated for their stability. The in vivo evaluation was done in 38 healthy volunteers and the skin irritation, efficacy for dirt and sebum removal were measured by Mexameter® , Colorimeter® , and Sebumeter® , respectively. RESULTS: The selected gel scrubs did not cause an irritation in any volunteers. The differences in dirt residues between before and after scrubbing were not statistically significant among three gel scrubs and the similar result was also reported in the sebum removal study. CONCLUSION: All gel scrubs demonstrated the comparable cleansing efficacy in term of dirt and sebum removal. Thus, mannan beads and wax beads may be replaced non-biodegradable PE beads to achieve the similar cleansing effect.


Assuntos
Plásticos Biodegradáveis , Microesferas , Adolescente , Análise de Variância , Engenharia Biomédica , Cosméticos/química , Cosméticos/farmacologia , Detergentes/química , Detergentes/farmacologia , Toxidermias , Eritema/induzido quimicamente , Feminino , Géis , Voluntários Saudáveis , Humanos , Concentração de Íons de Hidrogênio , Higiene , Masculino , Polietileno/química , Polietileno/farmacologia , Sebo/efeitos dos fármacos , Higiene da Pele/métodos , Viscosidade , Adulto Jovem
17.
Neuroimmunomodulation ; 22(3): 152-65, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24853723

RESUMO

OBJECTIVE: An anti-resorptive impact of the neuropeptide calcitonin gene-related peptide (CGRP) on periprosthetic osteolysis, the leading cause of early prosthesis loosening, has been shown previously. In this study, the impact of CGRP on pro-inflammatory cytokine production associated with periprosthetic osteolysis was analysed using THP-1 macrophage-like cells. METHODS: Cells were stimulated with ultra-high-molecular-weight polyethylene (UHMWPE) particles (cell-to-particle ratios of 1:100 and 1:500) and lipopolysaccharides (LPS; 1 µg/ml) to establish osteolytic conditions, and simultaneously treated with CGRP (10(-8)M). Receptor activator of nuclear factor-κB (RANK), RANK ligand (RANKL) and tumour necrosis factor (TNF)-α mRNA expression were measured by quantitative RT-PCR. RANK protein was detected by Western blot. Secreted protein levels of TNF-α as well as interleukin (IL)-1ß and IL-6 were quantified in cell culture supernatants by ELISA and Bio-Plex cytokine assay, respectively. RESULTS: Activation of macrophage-like cells failed to enhance the production of RANK but led to a dose- and time-dependent increase of TNF-α mRNA and secreted protein levels of TNF-α, IL-1ß and IL-6. Application of CGRP time-dependently suppressed TNF-α mRNA expression induced by low-particle concentrations and LPS, while both particle- and LPS-induced secretion of TNF-α was inhibited. A pronounced inhibitory effect of CGRP on LPS-induced cytokine production at 24 h of incubation was also observed with IL-1ß and IL-6. CONCLUSIONS: CGRP shows a time-dependent inhibitory effect on the secretion of osteolysis-associated pro-inflammatory cytokines, indicating an indirect anti-resorptive influence of the neuropeptide on both aseptic prosthesis loosening and bacterially induced bone resorption which might enhance the life time of total joint replacements.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/genética , Relação Dose-Resposta a Droga , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Polietileno/farmacologia , Ligante RANK/genética , Ligante RANK/metabolismo , RNA Mensageiro/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptor Ativador de Fator Nuclear kappa-B/metabolismo
18.
Environ Sci Technol ; 49(6): 3769-77, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25723056

RESUMO

Biodegradation-promoting additives for polymers are increasingly being used around the world with the claim that they effectively render commercial polymers biodegradable. However, there is a lot of uncertainty about their effectiveness in degrading polymers in different environments. In this study, we evaluated the effect of biodegradation-promoting additives on the biodegradation of polyethylene (PE) and polyethylene terephthalate (PET). Biodegradation was evaluated in compost, anaerobic digestion, and soil burial environments. None of the five different additives tested significantly increased biodegradation in any of these environments. Thus, no evidence was found that these additives promote and/or enhance biodegradation of PE or PET polymers. So, anaerobic and aerobic biodegradation are not recommended as feasible disposal routes for nonbiodegradable plastics containing any of the five tested biodegradation-promoting additives.


Assuntos
Plásticos/farmacologia , Anaerobiose , Biodegradação Ambiental/efeitos dos fármacos , Meio Ambiente , Polietileno/farmacologia , Polietilenotereftalatos/farmacologia , Solo/química , Fatores de Tempo
19.
J Appl Microbiol ; 119(2): 510-20, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25976243

RESUMO

AIMS: To identify cultivable filamentous fungi before ensiling, after silage conservation, in farm-silos covered with two different plastic films (polyethylene (PE) vs biodegradable (MB)), as well as after aerobic exposure of whole-crop corn silage. METHODS AND RESULTS: Molecular techniques coupled with traditional microbial counting were utilized to identify the predominant fungal species. The cultivable fungal population changed remarkably from harvesting to silo opening. Anaerobiosis and low pH reduced mould count and the presence of Fusarium species both under PE and MB film. However, in the peripheral areas of the silo, where air penetration could not be completely prevented, the fungal population did not decrease. The predominant fungal species after aerobic exposure of silage was Aspergillus fumigatus, without differences between the two plastic films. CONCLUSIONS: Maintenance of anaerobiosis and a low pH also in the upper layer of the silo reduce the risk of mould growth during corn silage feed-out. SIGNIFICANCE AND IMPACT OF THE STUDY: Even if the new MB plastic film did not completely maintain the anaerobiosis in the upper layer of silage, the overall silage quality was not compromised and was similar to that observed under PE, indicating that the development and use of MB film to cover silage is promising, but needs some improvement.


Assuntos
Fungos/efeitos dos fármacos , Fungos/isolamento & purificação , Polietileno/farmacologia , Silagem/microbiologia , Zea mays/microbiologia , Fungos/classificação , Fungos/genética
20.
Food Sci Technol Int ; 20(3): 161-70, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23744114

RESUMO

The combined effect of natural antioxidants and packaging materials on the quality decay of breakfast cereals during storage was evaluated. Corn flakes were produced on industrial scale, using different packages and adding natural tocopherols to the ingredients, and stored for 1 year. The samples were then submitted to sensory analysis and HS-solid phase microextraction/gas chromatography/mass spectrometry (SPME/GC/MS) analysis. The packaging had a significant influence on the sensory profile of the aged product: metallized polypropylene gave the highest levels of oxidation compounds and sensory defects. The sensory profile was improved using polypropylene and especially high-density polyethylene. Natural tocopherols reduced the sensory decay of the flakes and the oxidative evolution of the volatile profile. They gave the most remarkable improvement in polypropylene (either metallized or not) packs. Polypropylene showed a barrier effect on the scalping of volatiles outside of the pack. This led to higher levels of oxidation volatiles and faster rates of the further oxidative processes involving the volatiles.


Assuntos
Antioxidantes/farmacologia , Grão Comestível/química , Embalagem de Alimentos/instrumentação , Polipropilenos/farmacologia , Sensação , Tocoferóis/farmacologia , Adulto , Desjejum , Interações Medicamentosas , Feminino , Qualidade dos Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Odorantes/análise , Oxirredução , Polietileno/farmacologia , Polipropilenos/química , Olfato , Microextração em Fase Sólida , Paladar , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA