RESUMO
Common purslane (Portulaca oleracea) integrates both C4 and crassulacean acid metabolism (CAM) photosynthesis pathways and is a promising model plant to explore C4-CAM plasticity. Here, we report a high-quality chromosome-level genome of nicotinamide adenine dinucleotide (NAD)-malic enzyme (ME) subtype common purslane that provides evidence for 2 rounds of whole-genome duplication (WGD) with an ancient WGD (P-ß) in the common ancestor to Portulacaceae and Cactaceae around 66.30 million years ago (Mya) and another (Po-α) specific to common purslane lineage around 7.74 Mya. A larger number of gene copies encoding key enzymes/transporters involved in C4 and CAM pathways were detected in common purslane than in related species. Phylogeny, conserved functional site, and collinearity analyses revealed that the Po-α WGD produced the phosphoenolpyruvate carboxylase-encoded gene copies used for photosynthesis in common purslane, while the P-ß WGD event produced 2 ancestral genes of functionally differentiated (C4- and CAM-specific) beta carbonic anhydrases involved in the C4 + CAM pathways. Additionally, cis-element enrichment analysis in the promoters showed that CAM-specific genes have recruited both evening and midnight circadian elements as well as the Abscisic acid (ABA)-independent regulatory module mediated by ethylene-response factor cis-elements. Overall, this study provides insights into the origin and evolutionary process of C4 and CAM pathways in common purslane, as well as potential targets for engineering crops by integrating C4 or CAM metabolism.
Assuntos
Portulaca , Portulaca/genética , Portulaca/metabolismo , Duplicação Gênica , Metabolismo Ácido das Crassuláceas , Evolução Biológica , Filogenia , Fotossíntese/genéticaRESUMO
The efficacy of SA foliar use on Pb and Ni-induced stress tolerance and phytoremediation potential by Portulaca oleraceae L. were assayed as a factorial trial based on a completely randomized design with four repetitions. The factors included; SA foliar application (0 and 100 µM) and HMs application of Pb [0, 150, and 225 mg kg-1 soil Lead (II) nitrate] and Ni [0, 220, and 330 mg kg-1 soil Nickel (II) nitrate]. Plant height, stem diameter, shoot and root fresh and dry weight, photosynthetic pigments, total soluble proteins, palmitic acid, stearic acid, arachidic acid, and some macro- and micro-elements contents were reduced facing the HMs stress, but SA foliar application ameliorated these traits. HMs stress increased malondialdehyde content, total antioxidant activity, total flavonoids, phenolics, and linolenic acid content, while SA foliar application declined the mentioned parameters. Moreover, shoot and root Pb and Ni content enhanced in the purslane plants supplemented by SA under the HMs stress. The results propose SA foliar application as a reliable methodology to recover purslane growth characters and fatty acid profiles in the soil contaminated with the HMs. The idea is that SA would be potentially effective in alleviating HMs contamination while keeping reasonable phytoremediation potential.
There is no information available in previous literature about the impact of Pb and Ni on the phytochemical profile of oil in purslane. Therefore, in this report, we evaluated the purslane plant's growth and physiological responses and its seed oil's components in response to SA foliar application under conditions of Pb and Ni over-availability. Additionally, we examined the role of SA treatment in improving phytoremediation of Pb and Ni.
Assuntos
Biodegradação Ambiental , Chumbo , Níquel , Portulaca , Ácido Salicílico , Poluentes do Solo , Chumbo/metabolismo , Poluentes do Solo/metabolismo , Níquel/metabolismo , Ácido Salicílico/metabolismo , Portulaca/metabolismo , Folhas de Planta/metabolismoRESUMO
C4 photosynthesis and Crassulacean acid metabolism (CAM) have been considered as largely independent adaptations despite sharing key biochemical modules. Portulaca is a geographically widespread clade of over 100 annual and perennial angiosperm species that primarily use C4 but facultatively exhibit CAM when drought stressed, a photosynthetic system known as C4 + CAM. It has been hypothesized that C4 + CAM is rare because of pleiotropic constraints, but these have not been deeply explored. We generated a chromosome-level genome assembly of Portulaca amilis and sampled mRNA from P. amilis and Portulaca oleracea during CAM induction. Gene co-expression network analyses identified C4 and CAM gene modules shared and unique to both Portulaca species. A conserved CAM module linked phosphoenolpyruvate carboxylase to starch turnover during the day-night transition and was enriched in circadian clock regulatory motifs in the P. amilis genome. Preservation of this co-expression module regardless of water status suggests that Portulaca constitutively operate a weak CAM cycle that is transcriptionally and posttranscriptionally upregulated during drought. C4 and CAM mostly used mutually exclusive genes for primary carbon fixation, and it is likely that nocturnal CAM malate stores are shuttled into diurnal C4 decarboxylation pathways, but we found evidence that metabolite cycling may occur at low levels. C4 likely evolved in Portulaca through co-option of redundant genes and integration of the diurnal portion of CAM. Thus, the ancestral CAM system did not strongly constrain C4 evolution because photosynthetic gene networks are not co-regulated for both daytime and nighttime functions.
Assuntos
Metabolismo Ácido das Crassuláceas , Portulaca , Metabolismo Ácido das Crassuláceas/genética , Secas , Fosfoenolpiruvato Carboxilase/genética , Fosfoenolpiruvato Carboxilase/metabolismo , Fotossíntese/genética , Portulaca/metabolismoRESUMO
BACKGROUND: Chronic exposure to ultraviolet (UV) radiation induces photo-oxidation, which in turn causes the overproduction of matrix metalloproteinases (MMPs) and collagen degradation. These symptoms are referred to as photoaging, which is characterized by skin thickness, irregular pigmentation, elastosis and coarse wrinkles. In this study, the protective effects of oleracone C isolated from Portulaca olerace against UVB-induced changes in MMPs and type I procollagen production were investigated in human keratinocytes. METHODS: Human immortalized keratinocytes have been used as an in vitro cell model to study the abnormal skin barrier development such as in photoaging. The effects of the compound on cell viability were determined by colorimetric MTT assay. This study also measured ROS production using DCFH-DA assay. Releases of MMPs and type Iα1 procollagen were analysed by ELISA. RT-PCR and Western blot were carried out to test the expressions of mRNA and proteins related to MMPs and type I procollagen biosynthesis. RESULT: Effect of oleracone C against UVB-mediated oxidative stress was evaluated measuring its ability to eliminate UVB-induced activation of reactive oxygen species (ROS). Treatment of oleracone C hindered the production of intracellular ROS. UVB exposure increased MMPs (MMP-1, MMP-2 and MMP-9) release from keratinocytes and decreased the release of type I procollagen. Treatment with oleracone C reversed these effects of UVB exposure. Oleracone C treatment also diminished the intracellular expression of MMP-1, MMP-2 and MMP-9 and elevated the type I procollagen. Oleracone C suppressed the UVB irradiation-dependent upregulation phosphorylation of p38 and ERK1/2 in the mitogen-activated protein kinase (MAPK) pathway. Furthermore, oleracone C stimulated collagen production through the TGF-ß signalling pathway, which activates collagen synthesis in UVB-irradiated keratinocytes. CONCLUSION: These findings reasonably suggest ameliorating the potential of oleracone C against the UVB-induced photoaging of the human keratinocytes.
RÉSUMÉ: CONTEXTE: L'exposition chronique aux rayons ultraviolets (UV) induit la photo-oxydation, qui à son tour entraîne la surproduction de métalloprotéases matricielles (MMP) et la dégradation du collagène. Ces symptômes sont appelés photovieillissement, qui se caractérise par une épaisseur de la peau, une pigmentation irrégulière, une élastose et des rides grossières. Dans cette étude, les effets protecteurs de l'oléracone C isolée à partir du pourpier potager contre les changements induits par les UVB dans les MMP et la production de procollagène de type I ont été étudiés dans les kératinocytes humains. MÉTHODES: Les kératinocytes humains immortalisés ont été utilisés comme modèle cellulaire in vitro pour étudier le développement anormal de la barrière cutanée, comme c'est le cas dans le photovieillissement. Les effets du composé sur la viabilité cellulaire ont été déterminés par test colorimétrique au MTT. Cette étude a également mesuré la production de DRO à l'aide du dosage DCFH-DA. Les productions de MMP et de procollagène de type Iα1 ont été analysées par la méthode ELISA. La RT-PCR et le Western blot ont été réalisés pour tester les expressions de l'ARNm, et des protéines liées aux MMP et à la biosynthèse du procollagène de type I. RÉSULTAT: L'effet de l'oléracone C contre le stress oxydatif médié par les UVB a été évalué en mesurant sa capacité à éliminer l'activation induite par les UVB des dérivés réactifs de l'oxygène (DRO). Le traitement par oléracone C a empêché la production de DRO intracellulaires. L'exposition aux UVB a augmenté la production de MMP (MMP-1, MMP-2 et MMP-9) par les kératinocytes et a diminué la production de procollagène de type I. Le traitement par oléracone C a inversé ces effets de l'exposition aux UVB. Le traitement par oléracone C a également diminué l'expression intracellulaire de MMP-1, MMP-2 et MMP-9, et a augmenté le taux de procollagène de type I. L'oléracone C a supprimé la phosphorylation de régulation à la hausse dépendante de l'exposition aux UVB de p38 et ERK1/2 dans la voie de la protéine kinase activée par des agents mitogènes (Mitogen-Activated Protein Kinase, MAPK). En outre, l'oléracone C a stimulé la production de collagène par la voie de signalisation de TGF-ß, qui active la synthèse du collagène dans les kératinocytes exposés aux UVB. CONCLUSION: Ces résultats indiquent raisonnablement une amélioration du potentiel de l'oléracone C contre le photovieillissement induit par les UVB des kératinocytes humains.
Assuntos
Portulaca , Envelhecimento da Pele , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Portulaca/metabolismo , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/farmacologia , Queratinócitos , Colágeno Tipo I/metabolismo , Raios Ultravioleta/efeitos adversos , Fibroblastos , PeleRESUMO
Portulaca species can switch between C4 and crassulacean acid metabolism (CAM) depending on environmental conditions. However, the regulatory mechanisms behind this rare photosynthetic adaptation remain elusive. Using Portulaca oleracea as a model system, here we investigated the involvement of the circadian clock, plant hormones, and transcription factors in coordinating C4 and CAM gene expression. Free-running experiments in constant conditions suggested that C4 and CAM gene expression are intrinsically connected to the circadian clock. Detailed time-course, drought, and rewatering experiments revealed distinct time frames for CAM induction and reversion (days versus hours, respectively), which were accompanied by changes in abscisic acid (ABA) and cytokinin metabolism and signaling. Exogenous ABA and cytokinins were shown to promote and repress CAM expression in P. oleracea, respectively. Moreover, the drought-induced decline in C4 transcript levels was completely recovered upon cytokinin treatment. The ABA-regulated transcription factor genes HB7, NFYA7, NFYC9, TT8, and ARR12 were identified as likely candidate regulators of CAM induction following this approach, whereas NFYC4 and ARR9 were connected to C4 expression patterns. Therefore, we provide insights into the signaling events controlling C4-CAM transitions in response to water availability and over the day/night cycle, highlighting candidate genes for future functional studies in the context of facultative C4-CAM photosynthesis.
Assuntos
Portulaca , Ácido Abscísico , Dióxido de Carbono/metabolismo , Metabolismo Ácido das Crassuláceas , Citocininas , Fotossíntese/fisiologia , Portulaca/genética , Portulaca/metabolismoRESUMO
Cadmium (Cd) reduces plant growth by interfering with important plant metabolic processes at the physiological, biochemical, and molecular levels. Here, the effects of foliar application of zinc oxide nanoparticles (ZnO-NPs) on growth, antioxidant enzymes, glyoxalase system, and macro- and micro-elements levels of purslane (portulaca oleracea L.) under Cd toxicity were investigated. The results revealed that Cd toxicity increased the levels of hydrogen peroxide (H2O2), methylglyoxal (MG) and malondialdehyde (MDA), resulting in oxidative stress and the induction of electrolyte leakage (EL). Cd stress enhanced the leaf concentration of Cd and declined the leaf concentrations of macro- and micro-elements, resulting in a decrease in the content of photosynthetic pigments and plant growth. However, the foliar application of ZnO-NPs improved the activity of antioxidant enzymes and the glyoxalase system and, consequently, reduced the levels of H2O2, MG, MDA, and EL in Cd-stressed plants. ZnO-NPs decreased the leaf concentration of Cd and restored the leaf concentrations of macro- and micro-elements, thereby improving photosynthetic pigments and the growth of Cd-stressed purslane plants. In general, the results revealed that the foliar application of ZnO-NPs improved the growth of purslane plants under Cd phytotoxicity by maintaining nutrient homeostasis, improving the defense mechanisms (antioxidant enzymes and glyoxalase cycle), and increasing the accumulation of proline and glutathione. Therefore, the results of the present study strongly recommend that ZnO-NPs could be used effectively in the cultivation of plants in areas contaminated with toxic Cd metal.
Assuntos
Nanopartículas , Portulaca , Poluentes do Solo , Óxido de Zinco , Antioxidantes/metabolismo , Cádmio/metabolismo , Homeostase , Peróxido de Hidrogênio/metabolismo , Nanopartículas/química , Nutrientes , Portulaca/metabolismo , Poluentes do Solo/análise , Óxido de Zinco/química , Óxido de Zinco/toxicidadeRESUMO
Fifteen new water-soluble alkaloids were obtained from the fresh herbs of Portulaca oleracea L. The structures of 15 alkaloids 1-15 were established according to spectroscopic data, and the stereoconfigurations were determined based on experimental and calculated electronic circular dichroism (ECD) data and single crystal X-ray diffraction. Alkaloids 1-15 were found to display good anti-inflammatory activity at 10 µM and could significantly reduce the interleukin-6 (IL-6) and nitric oxide (NO) levels induced by lipopolysaccharide (LPS) in RAW 264.7 macrophages.
Assuntos
Alcaloides/química , Anti-Inflamatórios/química , Portulaca/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Cristalografia por Raios X , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/patologia , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Conformação Molecular , Óxido Nítrico/metabolismo , Extratos Vegetais/química , Portulaca/metabolismo , Células RAW 264.7 , Solubilidade , Água/químicaRESUMO
Salinity represents one of the environmental conditions with adverse effects on the productivity of most crops throughout the world. The response of plants to salt stress is of great interest for research to understand the mechanism involved in tolerance to salinity and highlight insights into the improvement of salt tolerance-crops of importance. In this study, the effect of salt stress was observed in wild and cultivated populations of P. oleracea originated from Tunisia and Italy. The results showed that at various concentrations of NaCl (0â¯mM, 50â¯mM, 100â¯mM and 150â¯mM), salinity has led to changes in growth parameters marked mainly by an increase in fresh and dry biomass. Beside, one of the salinity-induced side effects corresponds to the competition of Na+ and K+ ions for potassium root transporters. Our results suggested that purslane deployed an important element of tolerance such as the transporters ability to discriminate cations. In addition, the variation of PC5S gene expression tested by semi-quantitative RT-PCR revealed that proline synthesis is important in plants adaptation in saline conditions. A correlation between the gene expression varying by population and saline concentration and the level of proline assayed on the leaves of P. oleracea was highlighted.
Assuntos
Portulaca/fisiologia , Estresse Salino , Estresse Fisiológico , Adaptação Fisiológica , Biomassa , Produtos Agrícolas/metabolismo , Itália , Folhas de Planta/metabolismo , Portulaca/genética , Portulaca/metabolismo , Potássio/metabolismo , Prolina/metabolismo , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/fisiologia , Sódio/metabolismo , Cloreto de Sódio/farmacologia , TunísiaRESUMO
MAIN CONCLUSION: Portulaca leaves serve as an alternative bioresource for edible PUFAs. Transcriptome data provide information to explore Portulaca as a model system for galactolipids, leaf lipid metabolism, and PUFA-rich designer lipids. Poly-unsaturated fatty acids (PUFAs) are gaining importance due to their innumerable health benefits, and hence, understanding their biosynthesis in plants has attained prominence in recent years. The most common source of PUFAs is of marine origin. Although reports have identified Portulaca oleracea (purslane) as a leaf source of omega-3 fatty acids in the form of alpha-linolenic acid (ALA), the mechanism of ALA accumulation and its distribution into various lipids has not been elucidated. Here, we present the lipid profiles of leaves and seeds of several accessions of P. oleracea. Among the nineteen distinct accessions, the RR04 accession has the highest amount of ALA and is primarily associated with galactolipids. In addition, we report the transcriptome of RR04, and we have mapped the potential genes involved in lipid metabolism. Phosphatidylcholine (PC) is the major site of acyl editing, which is catalyzed by lysophosphatidylcholine acyltransferase (LPCAT), an integral membrane protein that plays a major role in supplying oleate to the PC pool for further unsaturation. Our investigations using mass spectrometric analysis of leaf microsomal fractions identified LPCAT as part of a membrane protein complex. Both native and recombinant LPCAT showed strong acyltransferase activity with various acyl-CoA substrates. Altogether, the results suggest that ALA-rich glycerolipid biosynthetic machinery is highly active in nutritionally important Portulaca leaves. Furthermore, lipidome, transcriptome, and mass spectrometric analyses of RR04 provide novel information for exploring Portulaca as a potential resource and a model system for studying leaf lipid metabolism.
Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Lipídeos/análise , Folhas de Planta/metabolismo , Portulaca/genética , Portulaca/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Escherichia coli/genética , Ácidos Graxos/análise , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos/genética , Microssomos/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sementes/metabolismoRESUMO
In this study, primary investigations of selected cultivar of purslane named as Tall Green under articular salinity stress were evaluated to understand the basic concept of different mechanisms of physiological attributes which will play an important role for molecular and proteomic level research. The evaluation of morphological and physiological attributes under 0 mM (without salt addition) 100 mM and 200 mM salt stress changed dramatically. The results showed high salt stress at 200 mM significantly decreasing the morphological attributes and performance of leaves, stems, and roots. At moderate salt stress levels, 100 mM, the ratio of Fv/Fm slightly increased compared to high stress. In addition, salt stress significantly decreased the total chlorophyll content (chl a+b) at 200 mM. The relative water content percentage was high at 0 mM. Moreover, the electrolyte leakage (EL) significantly increased with increasing salinity stress compared to control 0 mM.
Assuntos
Pressão Osmótica , Proteínas de Plantas/metabolismo , Portulaca/anatomia & histologia , Portulaca/metabolismo , Proteoma/metabolismo , Salinidade , Clorofila/metabolismo , Clorofila AAssuntos
Portulaca , Dióxido de Carbono/metabolismo , Secas , Fotossíntese , Extratos Vegetais , Portulaca/metabolismo , ChuvaRESUMO
Portulacaceae is a family that has considerable diversity in photosynthetic phenotypes. It is one of 19 families of terrestrial plants where species having C4 photosynthesis have been found. Most species in Portulaca are in the alternate-leaved (AL) lineage, which includes one clade (Cryptopetala) with taxa lacking C4 photosynthesis and three clades having C4 species (Oleracea, Umbraticola and Pilosa). All three species in the Cryptopetala clade lack Kranz anatomy, the leaves have C3-like carbon isotope composition and they have low levels of C4 cycle enzymes. Anatomical, biochemical and physiological analyses show they are all C3-C4 intermediates. They have intermediate CO2 compensation points, enrichment of organelles in the centripetal position in bundle sheath (BS) cells, with selective localization of glycine decarboxylase in BS mitochondria. In the three C4 clades there are differences in Kranz anatomy types and form of malic enzyme (ME) reported to function in C4 (NAD-ME versus NADP-ME): Oleracea (Atriplicoid, NAD-ME), Umbraticola (Atriplicoid, NADP-ME) and Pilosa (Pilosoid, NADP-ME). Structural and biochemical analyses were performed on Pilosa clade representatives having Pilosoid-type leaf anatomy with Kranz tissue enclosing individual peripheral vascular bundles and water storage in the center of the leaf. In this clade, all species except P. elatior are NADP-ME-type C4 species with grana-deficient BS chloroplasts and grana-enriched M chloroplasts. Surprisingly, P. elatior has BS chloroplasts enriched in grana and NAD-ME-type photosynthesis. The results suggest photosynthetic phenotypes were probably derived from an ancestor with NADP-ME-type C4, with two independent switches to NAD-ME type.
Assuntos
Evolução Biológica , Fotossíntese , Folhas de Planta/metabolismo , Portulaca/metabolismo , Western Blotting , Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Cotilédone/anatomia & histologia , Glicina Desidrogenase (Descarboxilante)/metabolismo , Malato Desidrogenase/metabolismo , Microscopia Eletrônica de Transmissão , NAD/metabolismo , Fenótipo , Folhas de Planta/ultraestrutura , Portulaca/ultraestruturaRESUMO
Finding appropriate rooftop vegetation may improve the quality of runoff from green roofs. Portulaca grandiflora was examined as possible vegetation for green roofs. Green roof substrate was found to have low bulk density (360.7 kg/m3) and high water-holding capacity (49.4%), air-filled porosity (21.1%), and hydraulic conductivity (5270 mm/hour). The optimal substrate also supported the growth of P. grandiflora with biomass multiplication of 450.3% and relative growth rate of 0.038. Phytoextraction potential of P. grandiflora was evaluated using metal-spiked green roof substrate as a function of time and spiked substrate metal concentration. It was identified that P. grandiflora accumulated all metals (Al, Cd, Cr, Cu, Fe, Ni, Pb, and Zn) from metal-spiked green roof substrate. At the end of 40 days, P. grandiflora accumulated 811 ± 26.7, 87.2 ± 3.59, 416 ± 15.8, 459 ± 15.6, 746 ± 20.9, 357 ± 18.5, 565 ± 6.8, and 596 ± 24.4 mg/kg of Al, Cd, Cr, Cu, Fe, Ni, Pb and Zn, respectively. Results also indicated that spiked substrate metal concentration strongly influenced metal accumulation property of P. grandiflora with metal uptake increased and accumulation factor decreased with increase in substrate metal concentration. P. grandiflora also showed potential to translocate all the examined metals with translocation factor greater than 1 for Al, Cu, Fe, and Zn, indicating hyperaccumulation property.
Assuntos
Alumínio/metabolismo , Metais Pesados/metabolismo , Portulaca/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Índia , Portulaca/crescimento & desenvolvimento , Chuva/químicaRESUMO
An alternative method to other technologies to clean up the soil, air and water pollution by heavy metals is phytoremediation. Therefore, a pot culture experiment was conducted at the College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran, in 2014 to determine the potential absorption of cadmium by Portulaca oleracea (Common purslane), Solanum nigrum (Black nightshade), Abutilon theophrasti (Velvetleaf) and Taraxacum officinale (Dandelion). The type of experiment was completely randomized design with factorial arrangement and four replications. The soil in pot was treated with different rates of CdCl2.H2O (0 (control), 10, 20, 40, 60, and 80 mg Cd/kg soil) and the plants were sown. With increasing concentration levels, fresh weight and dry weight of shoots and roots of all plant species were reduced. The reduction severity was ranked according the following order, P. oleracea > A. theophrasti > S. nigrum > T. officinale. Bioconcentration factor (BCF), Translocation factor (TF) and Translocation efficiency (TE%) was ranked according the following order, T. officinale > S. nigrum > A. theophrasti > P. oleracea. The results of this study revealed that T. officinale and S. nigrum are effective species to phytoremediate Cd-contaminated soil.
Assuntos
Biodegradação Ambiental , Cádmio/metabolismo , Plantas Daninhas/metabolismo , Poluentes do Solo/metabolismo , Relação Dose-Resposta a Droga , Irã (Geográfico) , Malvaceae/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Portulaca/metabolismo , Solanum nigrum/metabolismo , Taraxacum/metabolismoRESUMO
Heavy metal bioaccumulation can be affected by various crop-weed interactions that potentially exist in agroecosystems. A pot experiment was conducted to evaluate the role of rhizosphere interaction of sunflower and purslane (Portulaca oleracea L.) weed on cadmium (Cd) uptake and its allocation to sunflower grains. The experimental treatments consisted of two cropping systems (mono and mixed culture), two adjusted salinity levels (0 and 0.5% NaCl) and three artificial levels of Cd in soil (Control, 3 and 6 mg kg(-1)). The results showed that the growth of sunflower in the presence of purslane in comparison to mono culture of sunflower led to change of total Cd content and Cd allocated to grains only in saline conditions. Promoting effects of salinity on Cd concentration of grain were alleviated where sunflower was co-planted with purslane. Besides, supply of Zn in grains of co-planted sunflower was strongly affected by salinity. Results of this study revealed that although co-planted purslane could alter conditions in the shared rhizosphere, it had no effect on enhancing Cd uptake by neighboring sunflower directly.
Assuntos
Cádmio/metabolismo , Helianthus/metabolismo , Portulaca/metabolismo , Salinidade , Poluentes do Solo/metabolismo , Solo/química , Biodegradação Ambiental , RizosferaRESUMO
The present study was investigated to evaluate the uptake and accumulation of selenium (Se) by the stem cuttings of Portulaca oleracea L. grown in alfisol amended with various concentrations of Se. P. oleracea accumulated a maximum of 63.4 µg g(-1) dry weight in a short growth period of 42 days. The order of accumulation of Se among the plant parts was leaves (31.5 µg g(-1)) > stems (16.4 µg g(-1)) > roots (15.5 µg g(-1)). The accumulation potential was fourfold higher than the plant available concentration of 15.2 µg g(-1) of Se g(-1) of soil (diethylenetriaminepentaacetic acid extracted). Although the plant was able to accumulate Se in their tissues, increase in Se concentrations in soil caused a concentration-dependent decrease in the growth rate of plants (regeneration of leaves, number of leaves, number of roots, root length, stem length and biomass).
Assuntos
Portulaca/efeitos dos fármacos , Portulaca/metabolismo , Selênio/farmacocinética , Disponibilidade Biológica , Fenômenos Químicos , Relação Dose-Resposta a Droga , Monitoramento Ambiental , Poluição Ambiental/análise , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Caules de Planta/efeitos dos fármacos , Caules de Planta/metabolismo , Portulaca/crescimento & desenvolvimento , Solo/químicaRESUMO
This study is aimed to explore the potential of purslane (Portulaca oleracea L.) as a phytoremediation candidate for the removal of naphthalene in a hydroponic system; moreover, the impacts of naphthalene on the physiological and biochemical characteristics of the plant were investigated. Four different naphthalene concentrations (0, 15, 30, and 60 ppm) were selected for the experiments, with an additional control treatment without plants containing 60 ppm naphthalene. Each treatment, utilizing a total of 20 hydroponic containers, consisted of 4 replicates. The results indicated that naphthalene led to a reduction in root and shoot growth. The root weight decreased from 17 mg in the control group to 6 mg in the 60 ppm naphthalene treatment, while the shoot weight decreased from 107.5 mg in the control group to 65.7 mg in the 60 ppm naphthalene treatment. Besides, the different naphthalene concentrations had an impact on the photosynthetic pigments. Compared to the control treatment, under severe stress conditions, chlorophyll a decreased by 51.85%, chlorophyll b decreased by 48.14%, and carotenoids decreased by 54.59%; however, anthocyanin, compared to the control treatment, increased by 30.1% under severe stress conditions. The presence of naphthalene also resulted in increased levels of malondialdehyde, hydrogen peroxide, and proline in both roots and shoots at various naphthalene concentrations. In roots, malondialdehyde increased by 40.74%, H2O2 increased by 3%, and proline increased by 75.6%, while malondialdehyde increased by 43.16%, H2O2 increased by 5.34%, and proline increased by 59.48% in shoots under severe stress conditions and compared to the control treatment. Root and shoot protein levels decreased by 64.49% and 32.26%, respectively. Furthermore, the antioxidant enzymes of glutathione S-transferase, superoxide dismutase, catalase, and ascorbate peroxidase showed increased activities in both roots and shoots under severe naphthalene stress conditions. Purslane demonstrated the ability to remove approximately 80% of naphthalene from the medium. In conclusion, this plant has an effective participation in naphthalene uptake and mitigates the adverse effects of naphthalene by enhancing antioxidant enzyme and proline activities.
Assuntos
Biodegradação Ambiental , Naftalenos , Portulaca , Portulaca/metabolismo , Portulaca/efeitos dos fármacos , Naftalenos/metabolismo , Clorofila/metabolismo , Hidrocarbonetos Aromáticos/metabolismoRESUMO
Testicular dysfunction is a prevalent health problem frequently reported in individuals with diabetes mellitus (DM). Oxidative-inflammatory reactions, hormonal and spermatic abnormalities often accompany this illness. Herbal remedies "particularly wild plants" including chicory (Chicorium Intybus) and purslane (Portulaca Oleracea) are emerging as popular agents for people dealing with these issues due to their ability to act as antioxidants, reduce inflammation, and exhibit antidiabetic effects. According to the collected data, the daily administration of chicory (Ch) seed-extract (250 mg/kg) or purslane (Pu) seed-extract (200 mg/kg) to streptozotocin (STZ)-induced diabetic rats (50 mg/kg) for 30 days resulted in the normalization of fasting blood glucose (FBG), serum fructosamine, insulin levels, and insulin resistance (HOMA-IR), as well as reducing lipid peroxidation end-product malondialdehyde (MDA) level, aldehyde oxidase (AO) and xanthene oxidase (XO) activities. While caused a considerable improvement in glutathione (GSH) content, superoxide dismutase (SOD), catalase (CAT) activity, and total antioxidant capacity (TAC) when compared to diabetic rats. Ch and Pu extracts had a substantial impact on testicular parameters including sperm characterization, testosterone level, vimentin expression along with improvements in body and testis weight. They also mitigated hyperlipidemia by reducing total lipids (TL), total cholesterol (TC) levels, and low-density lipoprotein cholesterol (LDL-C), while increasing high-density lipoprotein cholesterol (HDL-C). Furthermore, oral administration of either Ch or Pu notably attuned the elevated proinflammatory cytokines as tumor necrotic factor (TNF-α), C-reactive protein (CRP), and Interleukin-6 (IL-6) together with reducing apoptosis and DNA damage. This was achieved through the suppression of DNA-fragmentation marker 8OHdG, triggering of caspase-3 immuno-expression, and elevation of Bcl-2 protein. The histological studies provided evidence supporting the preventive effects of Ch and Pu against DM-induced testicular dysfunction. In conclusion, Ch and Pu seed-extracts mitigate testicular impairment during DM due to their antihyperglycemic, antilipidemic, antioxidant, anti-inflammatory, and antiapoptotic properties.
Assuntos
Cichorium intybus , Diabetes Mellitus Experimental , Resistência à Insulina , Portulaca , Doenças Testiculares , Humanos , Ratos , Masculino , Animais , Portulaca/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Plantas Comestíveis/metabolismo , Glicemia/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Estresse Oxidativo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Inflamação , Doenças Testiculares/tratamento farmacológico , Glutationa/metabolismo , Colesterol/farmacologiaRESUMO
Purslane (Portulaca oleracea L.) is the eighth most common plant distributed throughout the world being a heat- and drought-tolerant plant. In this study, we evaluated the effect of salinity on total amounts of fatty acids (FAs) and ω3/ω6 ratio in leaves of purslane. Plants exposed to four levels of chloride salinity in the root zone (60, 90, 120 and 240 mM NaCl) for 40 days showed no signs of toxicity or death. The main FAs detected were C16:0>C18:3>C18:2. The ratio of ω6 to ω3 was not changed with salt stress. Hierarchic cluster analysis brought together 60 and 90 mM NaCl in control plants, based on their FA content. The results of this study confirm the purslane as a plant rich in FAs whose consumption may contribute to dietary intake of ω3 polyunsaturated fatty acid, with obvious benefits to human health.
Assuntos
Dieta , Ácidos Graxos/metabolismo , Folhas de Planta/metabolismo , Portulaca/metabolismo , Tolerância ao Sal , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Análise por Conglomerados , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Humanos , Valor NutritivoRESUMO
Six new alkaloids (compounds 1-6) were isolated from Portulaca oleracea L. The compounds were triple pair (1 and 2, 3 and 4, and 5 and 6) enantiomers, with 1, 3, and 5 in the R-configuration and 2, 4, and 6 in the S-configuration, and all could bind to SUR1 according to molecular docking analysis. Treatment of STC-1 cells with each compound led to an influx of intracellular Ca2+, eventually leading to the secretion of glucagon-like peptide-1 (GLP-1), with compound 3 giving the highest secretion, resulting in 24.3 ± 7.03% more GLP-1 than nateglinide-treated cells, suggesting that these alkaloids may be able to reduce blood glucose based on their ability to stimulate the release of GLP-1. Furthermore, compound 3 also exhibited slightly faster absorption than nateglinide, as shown by pharmacokinetic analysis conducted in rats. Therefore, the results showed that some purslane alkaloids (such as compound 3) had good pharmacological activity in vivo and may have preventive and therapeutic effects on diabetes.