Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 110(47): 18952-7, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24190996

RESUMO

Total and N-terminal isoform selective p73 knockout mice show a variety of central nervous system defects. Here we show that TAp73 is a transcriptional activator of p75 neurotrophin receptor (p75(NTR)) and that p75(NTR) mRNA and protein levels are strongly reduced in the central and peripheral nervous systems of p73 knockout mice. In parallel, primary cortical neurons from p73 knockout mice showed a reduction in neurite outgrowth and in nerve growth factor-mediated neuronal differentiation, together with reduced miniature excitatory postsynaptic current frequencies and behavioral defects. p73 null mice also have impairments in the peripheral nervous system with reduced thermal sensitivity, axon number, and myelin thickness. At least some of these morphological and functional impairments in p73 null cells can be rescued by p75(NTR) re-expression. Together, these data demonstrate that loss of p75(NTR) contributes to the neurological phenotype of p73 knockout mice.


Assuntos
Malformações do Sistema Nervoso/genética , Neuritos/patologia , Proteínas Nucleares/genética , Receptores de Fator de Crescimento Neural/deficiência , Animais , Western Blotting , Encéfalo/metabolismo , Biologia Computacional , Camundongos , Camundongos Knockout , Potenciais Pós-Sinápticos em Miniatura/genética , Bainha de Mielina/metabolismo , Malformações do Sistema Nervoso/patologia , Neuritos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativação Transcricional/genética
2.
J Neurosci ; 34(31): 10211-8, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25080583

RESUMO

Mutations in AChR subunits, expressed as pentamers in neuromuscular junctions (NMJs), cause various types of congenital myasthenic syndromes. In AChR pentamers, the adult ε subunit gradually replaces the embryonic γ subunit as the animal develops. Because of this switch in subunit composition, mutations in specific subunits result in synaptic phenotypes that change with developmental age. However, a mutation in any AChR subunit is considered to affect the NMJs of all muscle fibers equally. Here, we report a zebrafish mutant of the AChR δ subunit that exhibits two distinct NMJ phenotypes specific to two muscle fiber types: slow or fast. Homozygous fish harboring a point mutation in the δ subunit form functional AChRs in slow muscles, whereas receptors in fast muscles are nonfunctional. To test the hypothesis that different subunit compositions in slow and fast muscles underlie distinct phenotypes, we examined the presence of ε/γ subunits in NMJs using specific antibodies. Both wild-type and mutant larvae lacked ε/γ subunits in slow muscle synapses. These findings in zebrafish suggest that some mutations in human congenital myasthenic syndromes may affect slow and fast muscle fibers differently.


Assuntos
Mutação/genética , Junção Neuromuscular/genética , Receptores Colinérgicos/genética , Acetilcolina/farmacologia , Animais , Animais Geneticamente Modificados , Toxinas Botulínicas Tipo A/metabolismo , Proteínas de Fluorescência Verde/genética , Humanos , Técnicas In Vitro , Larva , Leucina/genética , Locomoção/genética , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Potenciais Pós-Sinápticos em Miniatura/genética , Músculo Esquelético/metabolismo , Técnicas de Patch-Clamp , Fenótipo , Prolina/genética , Natação/fisiologia , Peixe-Zebra
3.
Mol Psychiatry ; 18(10): 1077-89, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23711981

RESUMO

Autism spectrum disorders (ASDs) have been suggested to arise from abnormalities in the canonical and non-canonical Wnt signaling pathways. However, a direct connection between a human variant in a Wnt pathway gene and ASD-relevant brain pathology has not been established. Prickle2 (Pk2) is a post-synaptic non-canonical Wnt signaling protein shown to interact with post-synaptic density 95 (PSD-95). Here, we show that mice with disruption in Prickle2 display behavioral abnormalities including altered social interaction, learning abnormalities and behavioral inflexibility. Prickle2 disruption in mouse hippocampal neurons led to reductions in dendrite branching, synapse number and PSD size. Consistent with these findings, Prickle2 null neurons show decreased frequency and size of spontaneous miniature synaptic currents. These behavioral and physiological abnormalities in Prickle2 disrupted mice are consistent with ASD-like phenotypes present in other mouse models of ASDs. In 384 individuals with autism, we identified two with distinct, heterozygous, rare, non-synonymous PRICKLE2 variants (p.E8Q and p.V153I) that were shared by their affected siblings and inherited paternally. Unlike wild-type PRICKLE2, the PRICKLE2 variants found in ASD patients exhibit deficits in morphological and electrophysiological assays. These data suggest that these PRICKLE2 variants cause a critical loss of PRICKLE2 function. The data presented here provide new insight into the biological roles of Prickle2, its behavioral importance, and suggest disruptions in non-canonical Wnt genes such as PRICKLE2 may contribute to synaptic abnormalities underlying ASDs.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Dendritos/ultraestrutura , Hipocampo/patologia , Hipocampo/fisiopatologia , Proteínas com Domínio LIM/deficiência , Proteínas com Domínio LIM/fisiologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/fisiologia , Potenciais Pós-Sinápticos em Miniatura , Mutação de Sentido Incorreto , Neurônios/fisiologia , Mutação Puntual , Via de Sinalização Wnt , Sequência de Aminoácidos , Animais , Células Cultivadas , Transtornos Globais do Desenvolvimento Infantil/fisiopatologia , Transtornos Globais do Desenvolvimento Infantil/psicologia , Condicionamento Clássico , Comportamento Exploratório , Medo , Feminino , Reação de Congelamento Cataléptica/fisiologia , Humanos , Proteínas com Domínio LIM/genética , Masculino , Aprendizagem em Labirinto , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Potenciais Pós-Sinápticos em Miniatura/genética , Neurônios/patologia , Fenótipo , Densidade Pós-Sináptica/patologia , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Comportamento Social
4.
Mol Psychiatry ; 17(12): 1261-71, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22230884

RESUMO

Rett syndrome (RTT) is a neurodevelopmental autism spectrum disorder caused by mutations in the methyl-CpG-binding protein 2 (MECP2) gene. Here, we describe the first characterization and neuronal differentiation of induced pluripotent stem (iPS) cells derived from Mecp2-deficient mice. Fully reprogrammed wild-type (WT) and heterozygous female iPS cells express endogenous pluripotency markers, reactivate the X-chromosome and differentiate into the three germ layers. We directed iPS cells to produce glutamatergic neurons, which generated action potentials and formed functional excitatory synapses. iPS cell-derived neurons from heterozygous Mecp2(308) mice showed defects in the generation of evoked action potentials and glutamatergic synaptic transmission, as previously reported in brain slices. Further, we examined electrophysiology features not yet studied with the RTT iPS cell system and discovered that MeCP2-deficient neurons fired fewer action potentials, and displayed decreased action potential amplitude, diminished peak inward currents and higher input resistance relative to WT iPS-derived neurons. Deficiencies in action potential firing and inward currents suggest that disturbed Na(+) channel function may contribute to the dysfunctional RTT neuronal network. These phenotypes were additionally confirmed in neurons derived from independent WT and hemizygous mutant iPS cell lines, indicating that these reproducible deficits are attributable to MeCP2 deficiency. Taken together, these results demonstrate that neuronally differentiated MeCP2-deficient iPS cells recapitulate deficits observed previously in primary neurons, and these identified phenotypes further illustrate the requirement of MeCP2 in neuronal development and/or in the maintenance of normal function. By validating the use of iPS cells to delineate mechanisms underlying RTT pathogenesis, we identify deficiencies that can be targeted for in vitro translational screens.


Assuntos
Potenciais de Ação/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Proteína 2 de Ligação a Metil-CpG/genética , Neurônios/fisiologia , Síndrome de Rett/genética , Transmissão Sináptica/fisiologia , Potenciais de Ação/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Modelos Animais de Doenças , Ácido Glutâmico/fisiologia , Proteína 2 de Ligação a Metil-CpG/fisiologia , Camundongos , Camundongos Mutantes , Potenciais Pós-Sinápticos em Miniatura/genética , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Fenótipo , Transmissão Sináptica/genética
5.
Neurobiol Dis ; 45(3): 851-61, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22178625

RESUMO

We have generated a new mouse model for congenital myasthenic syndromes by inserting the missense mutation L221F into the ε subunit of the acetylcholine receptor by homologous recombination. This mutation has been identified in man to cause a mild form of slow-channel congenital myasthenic syndrome with variable penetrance. In our mouse model we observe as in human patients prolonged endplate currents. The summation of endplate potentials may account for a depolarization block at increasing stimulus frequencies, moderate reduced muscle strength and tetanic fade. Calcium and intracellular vesicle accumulation as well as junctional fold loss and organelle degeneration underlying a typical endplate myopathy, were identified. Moreover, a remodeling of neuromuscular junctions occurs in a muscle-dependent pattern expressing variable phenotypic effects. Altogether, this mouse model provides new insight into the pathophysiology of congenital myasthenia and serves as a new tool for deciphering signaling pathways induced by excitotoxicity at peripheral synapses.


Assuntos
Modelos Animais de Doenças , Predisposição Genética para Doença , Isoleucina/genética , Síndromes Miastênicas Congênitas/genética , Fenilalanina/genética , Receptores Nicotínicos/genética , Acetilcolinesterase/metabolismo , Aminofenóis , Animais , Biofísica , Diafragma/fisiopatologia , Diafragma/ultraestrutura , Regulação da Expressão Gênica/genética , Força da Mão/fisiologia , Humanos , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Potenciais Pós-Sinápticos em Miniatura/genética , Placa Motora/fisiopatologia , Placa Motora/ultraestrutura , Mutagênese/genética , Síndromes Miastênicas Congênitas/patologia , Proteínas de Neurofilamentos/metabolismo , Junção Neuromuscular/patologia , Junção Neuromuscular/fisiopatologia , Junção Neuromuscular/ultraestrutura , Técnicas de Patch-Clamp , Receptores Nicotínicos/metabolismo , Proteínas S100/metabolismo , Sinaptofisina/metabolismo , Fatores de Tempo
6.
J Neurosci ; 30(3): 876-84, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20089896

RESUMO

The release of arginine vasopressin (AVP) from the magnocellular neurosecretory cells (MNCs) in the supraoptic nucleus (SON) is crucial for body fluid homeostasis. The MNC activity is modulated by synaptic inputs and humoral factors. A recent study demonstrated that an N-terminal splice variant of the transient receptor potential vanilloid type 1 (TRPV1) is essential for osmosensory transduction in the SON. In the present study, we examined the effects of mannitol and angiotensin II on miniature EPSCs (mEPSCs) in the supraoptic MNCs using whole-cell patch-clamp recording in in vitro slice preparation. Mannitol (60 mm) and angiotensin II (0.1 microm) increased the frequency of mEPSCs without affecting the amplitude. These effects were attenuated by pre-exposure to a nonspecific TRPV channel blocker, ruthenium red (10 microm) and enhanced by pre-exposure to cannabinoid type1 receptor antagonist, AM251 (2 microm). Mannitol-induced potentiation of mEPSCs was not attenuated by angiotensin II receptor antagonist, losartan (10 microm), indicating independent pathways of mannitol and angiotensin II to the TRPV channels. The potentiation of mEPSCs by mannitol was not mimicked by a TRPV1 agonist, capsaicin, and also not attenuated by TRPV1 blockers, capsazepine (10 microm). PKC was involved in angiotensin II-induced potentiation of mEPSCs. The effects of mannitol and angiotensin II on the supraoptic MNCs in trpv1 knock-out mice were significantly attenuated compared with those in wild-type mice counterparts. The results suggest that hyperosmotic stimulation and angiotensin II independently modulate mEPSCs through capsaicin-insensitive TRPV1 channel in the presynaptic terminals of the SON.


Assuntos
Angiotensina II/farmacologia , Diuréticos Osmóticos/farmacologia , Manitol/farmacologia , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Potenciais Pós-Sinápticos em Miniatura/genética , Neurônios/efeitos dos fármacos , Núcleo Supraóptico/citologia , Canais de Cátion TRPV/deficiência , Vasoconstritores/farmacologia , Análise de Variância , Anilidas/farmacologia , Animais , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Quelantes/farmacologia , Cinamatos/farmacologia , Interações Medicamentosas , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Inibidores Enzimáticos/farmacologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piperidinas/farmacologia , Pirazinas/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
7.
J Neurosci ; 30(36): 12005-19, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20826664

RESUMO

Spinal muscular atrophy (SMA) is a common (approximately 1:6400) autosomal recessive neuromuscular disorder caused by a paucity of the survival of motor neuron (SMN) protein. Although widely recognized to cause selective spinal motor neuron loss when deficient, the precise cellular site of action of the SMN protein in SMA remains unclear. In this study we sought to determine the consequences of selectively depleting SMN in the motor neurons of model mice. Depleting but not abolishing the protein in motor neuronal progenitors causes an SMA-like phenotype. Neuromuscular weakness in the model mice is accompanied by peripheral as well as central synaptic defects, electrophysiological abnormalities of the neuromuscular junctions, muscle atrophy, and motor neuron degeneration. However, the disease phenotype is more modest than that observed in mice expressing ubiquitously low levels of the SMN protein, and both symptoms as well as early electrophysiological abnormalities that are readily apparent in neonates were attenuated in an age-dependent manner. We conclude that selective knock-down of SMN in motor neurons is sufficient but may not be necessary to cause a disease phenotype and that targeting these cells will be a requirement of any effective therapeutic strategy. This realization is tempered by the relatively mild SMA phenotype in our model mice, one explanation for which is the presence of normal SMN levels in non-neuronal tissue that serves to modulate disease severity.


Assuntos
Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Células-Tronco/metabolismo , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Comportamento Animal , Contagem de Células/métodos , Colina O-Acetiltransferase/metabolismo , Modelos Animais de Doenças , Eletromiografia/métodos , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Contração Isométrica/fisiologia , Estimativa de Kaplan-Meier , Proteínas Luminescentes/genética , Potenciais da Membrana/genética , Camundongos , Camundongos Transgênicos , Potenciais Pós-Sinápticos em Miniatura/genética , Atividade Motora/genética , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/mortalidade , Mutação/genética , Degeneração Neural/genética , Proteínas do Tecido Nervoso/metabolismo , Junção Neuromuscular/patologia , Fator de Transcrição 2 de Oligodendrócitos , Técnicas de Patch-Clamp , Receptores Colinérgicos/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo , Sinapses/patologia , Sinapses/fisiologia , Transmissão Sináptica/genética
8.
J Neurochem ; 119(4): 826-38, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21883225

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a gradual loss of motoneurons. The majority of ALS cases are associated with a sporadic form whose etiology is unknown. Several pieces of evidence favor autoimmunity as a potential contributor to sporadic ALS pathology. To gain understanding concerning possible antigens interacting with IgGs from sporadic ALS patients (ALS-IgGs), we studied immunoreactivity against neuromuscular junction (NMJ), spinal cord and cerebellum of mice with and without the Ca(V) 2.1 pore-forming subunit of the P/Q-type voltage-gated calcium (Ca(2+)) channel. ALS-IgGs showed a strong reactivity against NMJs of wild-type diaphragms. ALS-IgGs also increased muscle miniature end-plate potential frequency, suggesting a functional role for ALS-IgGs on synaptic signaling. In support, in mice lacking the Ca(V) 2.1 subunit ALS-IgGs showed significantly reduced NMJ immunoreactivity and did not alter spontaneous acetylcholine release. This difference in reactivity was absent when comparing N-type Ca(2+) channel wild-type or null mice. These results are particularly relevant because motoneurons are known to be early pathogenic targets in ALS. Our findings add further evidence supporting autoimmunity as one of the possible mechanisms contributing to ALS pathology. They also suggest that serum autoantibodies in a subset of ALS patients would interact with NMJ proteins down-regulated when P/Q-type channels are absent.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Canais de Cálcio Tipo N/metabolismo , Imunoglobulina G/farmacologia , Junção Neuromuscular/efeitos dos fármacos , Idoso , Análise de Variância , Animais , Animais Recém-Nascidos , Bungarotoxinas/farmacocinética , Canais de Cálcio Tipo N/deficiência , Linhagem Celular Transformada , Sistema Nervoso Central/metabolismo , Diafragma/citologia , Feminino , Humanos , Imunoprecipitação/métodos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Potenciais Pós-Sinápticos em Miniatura/genética , Junção Neuromuscular/metabolismo , Sinaptofisina/metabolismo , Transfecção/métodos , Proteína 2 Associada à Membrana da Vesícula/metabolismo
9.
J Neurosci ; 29(24): 7929-43, 2009 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-19535604

RESUMO

A-kinase anchoring protein (AKAP) 79/150 is a scaffold protein found in dendritic spines that recruits the cAMP-dependent protein kinase (PKA) and protein phosphatase 2B-calcineurin (CaN) to membrane-associated guanylate kinase (MAGUK)-linked AMPA receptors (AMPARs) to control receptor phosphorylation and synaptic plasticity. However, AKAP79/150 may also coordinate regulation of AMPAR activity with spine structure directly through MAGUK binding and membrane-cytoskeletal interactions of its N-terminal targeting domain. In cultured hippocampal neurons, we observed that rat AKAP150 expression was low early in development but then increased coincident with spine formation and maturation. Overexpression of human AKAP79 in immature or mature neurons increased the number of dendritic filopodia and spines and enlarged spine area. However, RNA interference knockdown of AKAP150 decreased dendritic spine area only in mature neurons. Importantly, AKAP79 overexpression in immature neurons increased AMPAR postsynaptic localization and activity. Neither the AKAP79 PKA nor CaN anchoring domain was required for increasing dendritic protrusion numbers, spine area, or AMPAR synaptic localization; however, an internal region identified as the MAGUK binding domain was found to be essential as shown by expression of a MAGUK binding mutant that formed mainly filopodia and decreased AMPAR synaptic localization and activity. Expression of the AKAP79 N-terminal targeting domain alone also increased filopodia numbers but not spine area. Overall, these results demonstrate a novel structural role for AKAP79/150 in which the N-terminal targeting domain induces dendritic filopodia and binding to MAGUKs promotes spine enlargement and AMPAR recruitment.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Guanilato Quinases/metabolismo , Neurônios/citologia , Terminações Pré-Sinápticas/fisiologia , Sinapses/fisiologia , Proteínas de Ancoragem à Quinase A/genética , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Calcineurina/genética , Calcineurina/metabolismo , Células Cultivadas , Espinhas Dendríticas/metabolismo , Proteína 4 Homóloga a Disks-Large , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Guanilato Quinases/genética , Hipocampo/citologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Luminescentes/genética , Proteínas de Membrana/genética , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Potenciais Pós-Sinápticos em Miniatura/genética , Mutação/fisiologia , Neurônios/fisiologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Interferência de RNA/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/genética , Fatores de Tempo , Transfecção/métodos
10.
BMC Neurosci ; 10: 124, 2009 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-19788723

RESUMO

BACKGROUND: The magnitude and longevity of synaptic activity-induced changes in synaptic efficacy is quantified by measuring evoked responses whose potentiation requires gene transcription to persist for more than 2-3 hours. While miniature EPSCs (mEPSCs) are also increased in amplitude and/or frequency during long-term potentiation (LTP), it is not known how long such changes persist or whether gene transcription is required. RESULTS: We use whole-cell patch clamp recordings from dissociated hippocampal cultures to characterise for the first time the persistence and transcription dependency of mEPSC upregulation during synaptic potentiation. The persistence of recurrent action potential bursting in these cultures is transcription-, translation- and NMDA receptor-dependent thus providing an accessible model for long-lasting plasticity. Blockade of GABAA-receptors with bicuculline for 15 minutes induced action potential bursting in all neurons and was maintained in 50-60% of neurons for more than 6 hours. Throughout this period, the frequency but neither the amplitude of mEPSCs nor whole-cell AMPA currents was markedly increased. The transcription blocker actinomycin D abrogated, within 2 hours of burst induction, both action potential bursting and the increase in mEPSCs. Reversible blockade of action potentials during, but not after this 2 hour transcription period suppressed the increase in mEPSC frequency and the recovery of burst activity at a time point 6 hours after induction. CONCLUSION: These results indicate that increased mEPSC frequency persists well beyond the 2 hour transcription-independent phase of plasticity in this model. This long-lasting mEPSC upregulation is transcription-dependent and requires ongoing action potential activity during the initial 2 hour period but not thereafter. Thus mEPSC upregulation may underlie the long term, transcription-dependent persistence of action potential bursting. This provides mechanistic insight to link gene candidates already identified by gene chip analysis to long lasting plasticity in this in vitro model.


Assuntos
Potenciais Pós-Sinápticos Excitadores/genética , Hipocampo/fisiologia , Potenciais Pós-Sinápticos em Miniatura/genética , Plasticidade Neuronal/genética , Neurônios/fisiologia , Transcrição Gênica/fisiologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Western Blotting , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/citologia , Hipocampo/metabolismo , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Rede Nervosa/metabolismo , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Fatores de Tempo
11.
Neuropharmacology ; 100: 56-65, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26142252

RESUMO

Neuroligin 2 (Nlgn2) is a synaptic adhesion protein that plays a central role in the maturation and function of inhibitory synapses. Nlgn2 mutations have been associated with psychiatric disorders such as schizophrenia, and in mice, deletion of Nlgn2 results in a pronounced anxiety phenotype. To date, however, the molecular and cellular mechanisms linking Nlgn2 deletion to psychiatric phenotypes remain completely unknown. The aim of this study was therefore to define the role of Nlgn2 in anxiety-related neural circuits. To this end, we used a combination of behavioral, immunohistochemical, and electrophysiological approaches in Nlgn2 knockout (KO) mice to expand the behavioral characterization of these mice and to assess the functional consequences of Nlgn2 deletion in the amygdala. Moreover, we investigated the differential activation of anxiety-related circuits in Nlgn2 KO mice using a cFOS activation assay following exposure to an anxiogenic stimulus. We found that Nlgn2 is present at the majority of inhibitory synapses in the basal amygdala, where its deletion affects postsynaptic structures specifically at perisomatic sites and leads to impaired inhibitory synaptic transmission. Following exposure to an anxiogenic environment, Nlgn2 KO mice show a robust anxiety phenotype as well as exacerbated induction of cFOS expression specifically in CaMKII-positive projection neurons, but not in parvalbumin- or somatostatin-positive interneurons. Our data indicate that Nlgn2 deletion predominantly affects inhibitory synapses onto projection neurons in basal amygdala, resulting in decreased inhibitory drive onto these neurons and leading to their excessive activation under anxiogenic conditions. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.


Assuntos
Tonsila do Cerebelo/metabolismo , Ansiedade/genética , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Potenciais Pós-Sinápticos Inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Sinapses/genética , Tonsila do Cerebelo/fisiopatologia , Animais , Ansiedade/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Potenciais Pós-Sinápticos em Miniatura/genética , Atividade Motora/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Sinapses/metabolismo
12.
J Comp Neurol ; 522(5): 1171-90, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24264880

RESUMO

Mutations in phosphatase and tensin homolog deleted on chromosome 10 (PTEN) are implicated in neuropsychiatric disorders including autism. Previous studies report that PTEN knockdown in neurons in vivo leads to increased spine density and synaptic activity. To better characterize synaptic changes in neurons lacking PTEN, we examined the effects of shRNA knockdown of PTEN in basolateral amygdala neurons on synaptic spine density and morphology by using fluorescent dye confocal imaging. Contrary to previous studies in the dentate gyrus, we find that knockdown of PTEN in basolateral amygdala leads to a significant decrease in total spine density in distal dendrites. Curiously, this decreased spine density is associated with increased miniature excitatory postsynaptic current frequency and amplitude, suggesting an increase in number and function of mature spines. These seemingly contradictory findings were reconciled by spine morphology analysis demonstrating increased mushroom spine density and size with correspondingly decreased thin protrusion density at more distal segments. The same analysis of PTEN conditional deletion in the dentate gyrus demonstrated that loss of PTEN does not significantly alter total density of dendritic protrusions in the dentate gyrus, but does decrease thin protrusion density and increases density of more mature mushroom spines. These findings suggest that, contrary to previous reports, PTEN knockdown may not induce de novo spinogenesis, but instead may increase synaptic activity by inducing morphological and functional maturation of spines. Furthermore, behavioral analysis of basolateral amygdala PTEN knockdown suggests that these changes limited only to the basolateral amygdala complex may not be sufficient to induce increased anxiety-related behaviors.


Assuntos
Tonsila do Cerebelo/citologia , Espinhas Dendríticas/fisiologia , Hipocampo/citologia , Mutação/genética , Neurônios/ultraestrutura , PTEN Fosfo-Hidrolase/genética , Animais , Ansiedade/genética , Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Locomoção/genética , Camundongos , Camundongos Transgênicos , Potenciais Pós-Sinápticos em Miniatura/genética , Proteína Oncogênica v-akt/metabolismo , Fosfopiruvato Hidratase/metabolismo , Reflexo de Sobressalto/genética , Transdução Genética
13.
Exp Neurol ; 248: 286-98, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23797154

RESUMO

In the slow channel congenital myasthenic syndrome mutations in genes encoding the muscle acetylcholine receptor give rise to prolonged ion channel activations. The resulting cation overload in the postsynaptic region leads to damage of synaptic structures, impaired neuromuscular transmission and fatigable muscle weakness. Previously we identified and characterised in detail the properties of the slow channel syndrome mutation εL221F. Here, using this mutation, we generate a transgenic mouse model for the slow channel syndrome that expresses mutant human ε-subunits harbouring an EGFP tag within the M3-M4 cytoplasmic region, driven by a ~1500 bp region of the CHRNB promoter. Fluorescent mutant acetylcholine receptors are assembled, cluster at the motor endplates and give rise to a disease model that mirrors the human condition. Mice demonstrate mild fatigable muscle weakness, prolonged endplate and miniature endplate potentials, and variable degeneration of the postsynaptic membrane. We use our model to investigate ephedrine as a potential treatment. Mice were assessed before and after six weeks on oral ephedrine (serum ephedrine concentration 89 ± 3 ng/ml) using an inverted screen test and in vivo electromyography. Treated mice demonstrated modest benefit for screen hang time, and in measures of compound muscle action potentials and mean jitter that did not reach statistical significance. Ephedrine and salbutamol show clear benefit when used in the treatment of DOK7 or COLQ congenital myasthenic syndromes. Our results highlight only a modest potential benefit of these ß2-adrenergic receptor agonists for the treatment of the slow channel syndrome.


Assuntos
Adrenérgicos/uso terapêutico , Efedrina/uso terapêutico , Síndromes Miastênicas Congênitas/fisiopatologia , Junção Neuromuscular/fisiopatologia , Adrenérgicos/farmacologia , Animais , Modelos Animais de Doenças , Efedrina/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Transgênicos , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Potenciais Pós-Sinápticos em Miniatura/genética , Mutação , Síndromes Miastênicas Congênitas/tratamento farmacológico , Síndromes Miastênicas Congênitas/genética , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/genética , Receptores Colinérgicos/genética , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Resultado do Tratamento
14.
Neurobiol Aging ; 32(1): 157-67, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19233512

RESUMO

Gangliosides are sialylated glycosphingolipids that are present in high density on neuronal membranes, especially at synapses, where they are assumed to play functional or modulating roles. Mice lacking GM2/GD2-synthase express only the simple gangliosides GD3 and GM3 and develop progressive motor behaviour deficits upon ageing, apparently due to failing complex ganglioside-dependent maintenance and/or repair processes or, alternatively, toxic GM3/GD3 accumulation. We investigated the function of neuromuscular junctions (NMJs) of aged (>9 month-old) GM2/GD2-synthase null-mutant mice, because synaptic dysfunction might develop with age and could potentially contribute to the late-onset motor phenotype. In addition, we studied NMJs of old mice lacking GD3-synthase (expressing only O- and a-series gangliosides), which do not show an overt neurological phenotype but may develop subclinical synaptic deficits. Detailed electrophysiological analyses showed subtle changes in presynaptic neurotransmitter release. Acetylcholine release at 40 Hz nerve stimulation at aged GM2/GD2-synthase null-mutant NMJs ran down slightly more pronounced than at wild-type NMJs, and spontaneous acetylcholine release rate at GD3-synthase null-mutant NMJs was somewhat higher than at wild-type, selectively at 25 °C bath temperature. Interestingly, we observed faster kinetics of postsynaptic electrophysiological responses at aged GD3-synthase null-mutant NMJs, not previously seen by us at NMJs of young GD3-synthase null-mutants or other types of (aged or young) ganglioside-deficient mice. These kinetic changes might reflect a change in postsynaptic acetylcholine receptor behaviour. Our data indicate that it is highly unlikely that transmission failure at NMJs contributes to the progressive motor defects of aged GM2/GD2-synthase null-mutants and that, despite some kinetic changes of synaptic signals, neuromuscular transmission remains successful in aged GD3-synthase null-mutant mice. Apparently, mutual redundancy of the different gangliosides in supporting presynaptic function, as observed previously by us in young mice, remains adequate upon ageing or, alternatively, gangliosides have only relatively little direct impact on neuromuscular synaptic function, even in aged mice.


Assuntos
Envelhecimento/fisiologia , N-Acetilgalactosaminiltransferases/deficiência , Junção Neuromuscular/genética , Sialiltransferases/deficiência , Transmissão Sináptica/genética , Acetilcolina/metabolismo , Envelhecimento/genética , Análise de Variância , Animais , Cálcio/metabolismo , Feminino , Força da Mão/fisiologia , Soluções Hipertônicas/farmacologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Knockout , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Potenciais Pós-Sinápticos em Miniatura/genética , Potássio/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Temperatura
15.
Neuron ; 66(2): 191-7, 2010 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-20434996

RESUMO

Fragile X syndrome (FXS), the most common genetic form of mental retardation and autism, is caused by loss-of-function mutations in an RNA-binding protein, Fragile X Mental Retardation Protein (FMRP). Neurons from patients and the mouse Fmr1 knockout (KO) model are characterized by an excess of dendritic spines, suggesting a deficit in excitatory synapse elimination. In response to neuronal activity, myocyte enhancer factor 2 (MEF2) transcription factors induce robust synapse elimination. Here, we demonstrate that MEF2 activation fails to eliminate functional or structural excitatory synapses in hippocampal neurons from Fmr1 KO mice. Similarly, inhibition of endogenous MEF2 increases synapse number in wild-type but not Fmr1 KO neurons. MEF2-dependent synapse elimination is rescued in Fmr1 KO neurons by acute postsynaptic expression of wild-type but not RNA-binding mutants of FMRP. Our results reveal that active MEF2 and FMRP function together in an acute, cell-autonomous mechanism to eliminate excitatory synapses.


Assuntos
Espinhas Dendríticas/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Hipocampo/metabolismo , Fatores de Regulação Miogênica/metabolismo , Sinapses/metabolismo , Animais , Espinhas Dendríticas/genética , Potenciais Pós-Sinápticos Excitadores/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Fatores de Transcrição MEF2 , Camundongos , Camundongos Knockout , Microscopia de Fluorescência por Excitação Multifotônica , Potenciais Pós-Sinápticos em Miniatura/genética , Fatores de Regulação Miogênica/genética , Rede Nervosa/metabolismo , Plasticidade Neuronal/genética , Neurônios/metabolismo , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Sinapses/genética , Transcrição Gênica/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA