Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.090
Filtrar
1.
Cell ; 167(2): 313-324, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27716505

RESUMO

As sessile organisms, plants must cope with abiotic stress such as soil salinity, drought, and extreme temperatures. Core stress-signaling pathways involve protein kinases related to the yeast SNF1 and mammalian AMPK, suggesting that stress signaling in plants evolved from energy sensing. Stress signaling regulates proteins critical for ion and water transport and for metabolic and gene-expression reprogramming to bring about ionic and water homeostasis and cellular stability under stress conditions. Understanding stress signaling and responses will increase our ability to improve stress resistance in crops to achieve agricultural sustainability and food security for a growing world population.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Produtos Agrícolas/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Cloroplastos/enzimologia , Resposta ao Choque Frio , Produtos Agrícolas/enzimologia , Produtos Agrícolas/genética , Secas , Estresse do Retículo Endoplasmático , Metabolismo Energético , Abastecimento de Alimentos , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Mitocôndrias/enzimologia , Pressão Osmótica , Peroxissomos/enzimologia , Proteínas Serina-Treonina Quinases/genética , Salinidade , Transdução de Sinais , Estresse Fisiológico/genética
2.
Cell ; 151(6): 1358-69, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23217716

RESUMO

Determining the drivers of gene expression patterns is more straightforward in laboratory conditions than in the complex fluctuating environments where organisms typically live. We gathered transcriptome data from the leaves of rice plants in a paddy field along with the corresponding meteorological data and used them to develop statistical models for the endogenous and external influences on gene expression. Our results indicate that the transcriptome dynamics are predominantly governed by endogenous diurnal rhythms, ambient temperature, plant age, and solar radiation. The data revealed diurnal gates for environmental stimuli to influence transcription and pointed to relative influences exerted by circadian and environmental factors on different metabolic genes. The model also generated predictions for the influence of changing temperatures on transcriptome dynamics. We anticipate that our models will help translate the knowledge amassed in laboratories to problems in agriculture and that our approach to deciphering the transcriptome fluctuations in complex environments will be applicable to other organisms.


Assuntos
Regulação da Expressão Gênica de Plantas , Modelos Estatísticos , Oryza/genética , Transcriptoma , Clima , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Meio Ambiente , Genes de Plantas , Luz , Oryza/fisiologia
3.
Plant J ; 118(3): 626-644, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38241088

RESUMO

Drought is one of the major and growing threats to agriculture productivity and food security. Metabolites are involved in the regulation of plant responses to various environmental stresses, including drought stress. The complex drought tolerance can be ascribed to several simple metabolic traits. These traits could then be used for detecting the genetic architecture of drought tolerance. Plant metabolomes show dynamic differences when drought occurs during different developmental stages or upon different levels of drought stress. Here, we reviewed the major and most recent findings regarding the metabolite-mediated plant drought response. Recent progress in the development of drought-tolerant agents is also discussed. We provide an updated schematic overview of metabolome-driven solutions for increasing crop drought tolerance and thereby addressing an impending agricultural challenge.


Assuntos
Adaptação Fisiológica , Produtos Agrícolas , Secas , Metaboloma , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Produtos Agrícolas/fisiologia , Estresse Fisiológico
4.
Plant J ; 119(1): 56-64, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38581375

RESUMO

Food security is threatened by climate change, with heat and drought being the main stresses affecting crop physiology and ecosystem services, such as plant-pollinator interactions. We hypothesize that tracking and ranking pollinators' preferences for flowers under environmental pressure could be used as a marker of plant quality for agricultural breeding to increase crop stress tolerance. Despite increasing relevance of flowers as the most stress sensitive organs, phenotyping platforms aim at identifying traits of resilience by assessing the plant physiological status through remote sensing-assisted vegetative indexes, but find strong bottlenecks in quantifying flower traits and in accurate genotype-to-phenotype prediction. However, as the transport of photoassimilates from leaves (sources) to flowers (sinks) is reduced in low-resilient plants, flowers are better indicators than leaves of plant well-being. Indeed, the chemical composition and amount of pollen and nectar that flowers produce, which ultimately serve as food resources for pollinators, change in response to environmental cues. Therefore, pollinators' preferences could be used as a measure of functional source-to-sink relationships for breeding decisions. To achieve this challenging goal, we propose to develop a pollinator-assisted phenotyping and selection platform for automated quantification of Genotype × Environment × Pollinator interactions through an insect geo-positioning system. Pollinator-assisted selection can be validated by metabolic, transcriptomic, and ionomic traits, and mapping of candidate genes, linking floral and leaf traits, pollinator preferences, plant resilience, and crop productivity. This radical new approach can change the current paradigm of plant phenotyping and find new paths for crop redomestication and breeding assisted by ecological decisions.


Assuntos
Produtos Agrícolas , Flores , Fenótipo , Melhoramento Vegetal , Polinização , Estresse Fisiológico , Polinização/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Melhoramento Vegetal/métodos , Flores/fisiologia , Flores/genética , Animais , Genótipo
5.
Plant J ; 118(6): 2188-2201, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581688

RESUMO

Moving from sole cropping to intercropping is a transformative change in agriculture, contributing to yield. Soybeans adapt to light conditions in intercropping by adjusting the onset of reproduction and the inflorescence architecture to optimize reproductive success. Maize-soybean strip intercropping (MS), maize-soybean relay strip intercropping (IS), and sole soybean (SS) systems are typical soybean planting systems with significant differences in light environments during growth periods. To elucidate the effect of changes in the light environment on soybean flowering processes and provide a theoretical basis for selecting suitable varieties in various planting systems to improve yields, field experiments combining planting systems (IS, MS, and SS) and soybean varieties (GQ8, GX7, ND25, and NN996) were conducted in 2021 and 2022. Results showed that growth recovery in the IS resulted in a balance in the expression of TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS T (FT) in the meristematic tissues of soybeans, which promoted the formation of new branches or flowers. IS prolonged the flowering time (2-7 days) and increased the number of forming flowers compared with SS (93.0 and 169%) and MS (67.3 and 103.3%) at the later soybean flowering stage. The higher carbon and nitrogen content in the middle and bottom canopies of soybean contributed to decreased flower abscission by 26.7 and 30.2%, respectively, compared with SS. Canopy light environment recovery promoted branch and flower formation and transformation of flowers into pods with lower flower-pod abscission, which contributed to elevating soybean yields in late-maturing and multibranching varieties (ND25) in IS.


Assuntos
Flores , Glycine max , Luz , Zea mays , Glycine max/fisiologia , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Zea mays/fisiologia , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Flores/fisiologia , Flores/genética , Flores/crescimento & desenvolvimento , Agricultura/métodos , Produção Agrícola/métodos , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Produtos Agrícolas/crescimento & desenvolvimento
6.
Plant Physiol ; 195(3): 1969-1980, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38446735

RESUMO

Root angle is a critical factor in optimizing the acquisition of essential resources from different soil depths. The regulation of root angle relies on the auxin-mediated root gravitropism machinery. While the influence of ethylene on auxin levels is known, its specific role in governing root gravitropism and angle remains uncertain, particularly when Arabidopsis (Arabidopsis thaliana) core ethylene signaling mutants show no gravitropic defects. Our research, focusing on rice (Oryza sativa L.) and maize (Zea mays), clearly reveals the involvement of ethylene in root angle regulation in cereal crops through the modulation of auxin biosynthesis and the root gravitropism machinery. We elucidated the molecular components by which ethylene exerts its regulatory effect on auxin biosynthesis to control root gravitropism machinery. The ethylene-insensitive mutants ethylene insensitive2 (osein2) and ethylene insensitive like1 (oseil1), exhibited substantially shallower crown root angle compared to the wild type. Gravitropism assays revealed reduced root gravitropic response in these mutants. Hormone profiling analysis confirmed decreased auxin levels in the root tips of the osein2 mutant, and exogenous auxin (NAA) application rescued root gravitropism in both ethylene-insensitive mutants. Additionally, the auxin biosynthetic mutant mao hu zi10 (mhz10)/tryptophan aminotransferase2 (ostar2) showed impaired gravitropic response and shallow crown root angle phenotypes. Similarly, maize ethylene-insensitive mutants (zmein2) exhibited defective gravitropism and root angle phenotypes. In conclusion, our study highlights that ethylene controls the auxin-dependent root gravitropism machinery to regulate root angle in rice and maize, revealing a functional divergence in ethylene signaling between Arabidopsis and cereal crops. These findings contribute to a better understanding of root angle regulation and have implications for improving resource acquisition in agricultural systems.


Assuntos
Etilenos , Gravitropismo , Ácidos Indolacéticos , Oryza , Raízes de Plantas , Zea mays , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Gravitropismo/efeitos dos fármacos , Gravitropismo/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Raízes de Plantas/genética , Oryza/genética , Oryza/fisiologia , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos , Zea mays/genética , Zea mays/fisiologia , Zea mays/crescimento & desenvolvimento , Grão Comestível/efeitos dos fármacos , Grão Comestível/fisiologia , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Mutação/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
7.
Plant Cell ; 34(2): 759-783, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34791424

RESUMO

Rice (Oryza sativa) was domesticated around 10,000 years ago and has developed into a staple for half of humanity. The crop evolved and is currently grown in stably wet and intermittently dry agro-ecosystems, but patterns of adaptation to differences in water availability remain poorly understood. While previous field studies have evaluated plant developmental adaptations to water deficit, adaptive variation in functional and hydraulic components, particularly in relation to gene expression, has received less attention. Here, we take an evolutionary systems biology approach to characterize adaptive drought resistance traits across roots and shoots. We find that rice harbors heritable variation in molecular, physiological, and morphological traits that is linked to higher fitness under drought. We identify modules of co-expressed genes that are associated with adaptive drought avoidance and tolerance mechanisms. These expression modules showed evidence of polygenic adaptation in rice subgroups harboring accessions that evolved in drought-prone agro-ecosystems. Fitness-linked expression patterns allowed us to identify the drought-adaptive nature of optimizing photosynthesis and interactions with arbuscular mycorrhizal fungi. Taken together, our study provides an unprecedented, integrative view of rice adaptation to water-limited field conditions.


Assuntos
Adaptação Fisiológica/fisiologia , Secas , Variação Genética , Oryza/fisiologia , Produtos Agrícolas/fisiologia , Domesticação , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Micorrizas/fisiologia , Fotossíntese/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Seleção Genética , Biologia de Sistemas
8.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35145033

RESUMO

Intensive crop production on grassland-derived Mollisols has liberated massive amounts of carbon (C) to the atmosphere. Whether minimizing soil disturbance, diversifying crop rotations, or re-establishing perennial grasslands and integrating livestock can slow or reverse this trend remains highly uncertain. We investigated how these management practices affected soil organic carbon (SOC) accrual and distribution between particulate (POM) and mineral-associated (MAOM) organic matter in a 29-y-old field experiment in the North Central United States and assessed how soil microbial traits were related to these changes. Compared to conventional continuous maize monocropping with annual tillage, systems with reduced tillage, diversified crop rotations with cover crops and legumes, or manure addition did not increase total SOC storage or MAOM-C, whereas perennial pastures managed with rotational grazing accumulated more SOC and MAOM-C (18 to 29% higher) than all annual cropping systems after 29 y of management. These results align with a meta-analysis of data from published studies comparing the efficacy of soil health management practices in annual cropping systems on Mollisols worldwide. Incorporating legumes and manure into annual cropping systems enhanced POM-C, microbial biomass, and microbial C-use efficiency but did not significantly increase microbial necromass accumulation, MAOM-C, or total SOC storage. Diverse, rotationally grazed pasture management has the potential to increase persistent soil C on Mollisols, highlighting the key role of well-managed grasslands in climate-smart agriculture.


Assuntos
Agricultura/métodos , Ração Animal , Carbono/química , Produtos Agrícolas/fisiologia , Pradaria , Solo/química , Animais , Bovinos , Indústria de Laticínios
9.
BMC Plant Biol ; 24(1): 749, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39103780

RESUMO

BACKGROUND: Climate change induces perturbation in the global water cycle, profoundly impacting water availability for agriculture and therefore global food security. Water stress encompasses both drought (i.e. water scarcity) that causes the drying of soil and subsequent plant desiccation, and flooding, which results in excess soil water and hypoxia for plant roots. Terrestrial plants have evolved diverse mechanisms to cope with soil water stress, with the root system serving as the first line of defense. The responses of roots to water stress can involve both structural and physiological changes, and their plasticity is a vital feature of these adaptations. Genetic methodologies have been extensively employed to identify numerous genetic loci linked to water stress-responsive root traits. This knowledge is immensely important for developing crops with optimal root systems that enhance yield and guarantee food security under water stress conditions. RESULTS: This review focused on the latest insights into modifications in the root system architecture and anatomical features of legume roots in response to drought and flooding stresses. Special attention was given to recent breakthroughs in understanding the genetic underpinnings of legume root development under water stress. The review also described various root phenotyping techniques and examples of their applications in different legume species. Finally, the prevailing challenges and prospective research avenues in this dynamic field as well as the potential for using root system architecture as a breeding target are discussed. CONCLUSIONS: This review integrated the latest knowledge of the genetic components governing the adaptability of legume roots to water stress, providing a reference for using root traits as the new crop breeding targets.


Assuntos
Mapeamento Cromossômico , Desidratação , Fabaceae , Fenótipo , Raízes de Plantas , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Fabaceae/genética , Fabaceae/fisiologia , Adaptação Fisiológica/genética , Secas , Inundações , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia
10.
BMC Plant Biol ; 24(1): 809, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198743

RESUMO

Climate change has become a concern, emphasizing the need for the development of crops tolerant to drought. Therefore, this study is designed to explore the physiological characteristics of quinoa that enable it to thrive under drought and other extreme stress conditions by investigating the combined effects of irrigation water levels (100%, 75%, and 50% of quinoa's water requirements, WR as I1, I2 and I3) and different planting methods (basin, on-ridge, and in-furrow as P1, P2 and P3) on quinoa's physiological traits and gas exchange. Results showed that quinoa's yield is lowest with on-ridge planting and highest in the in-furrow planting method. Notably, the seed protein concentrations in I2 and I3 did not significantly differ but they were 25% higher than those obtained in I1, which highlighted the possibility of using a more effective irrigation method without compromising the seed quality. On the other hand, protein yield (PY) was lowest in P2 (mean of I1 and I2 as 257 kg ha-1) and highest in P3 (mean of I1 and I2 as 394 kg ha-1, 53% higher). Interestingly, PY values were not significantly different in I1 and I2, but they were lower significantly in I3 by 28%, 27% and 20% in P1, P2, and P3, respectively. Essential plant characteristics including plant height, stem diameter, and panicle number were 6.1-16.7%, 6.4-24.5%, and 18.4-36.5% lower, respectively, in I2 and I3 than those in I1. The highest Leaf Area Index (LAI) value (5.34) was recorded in the in-furrow planting and I1, while the lowest value was observed in the on-ridge planting method and I3 (3.47). In I3, leaf temperature increased by an average of 2.5-3 oC, particularly during the anthesis stage. The results also showed that at a similar leaf water potential (LWP) higher yield and dry matter were obtained in the in-furrow planting compared to those obtained in the basin and on-ridge planting methods. The highest stomatal conductance (gs) value was observed within the in-furrow planting method and full irrigation (I1P3), while the lowest values were obtained in the on-ridge and 50%WR (I3P2). Finally, photosynthesis rate (An) reduction with diminishing LWP was mild, providing insights into quinoa's adaptability to drought. In conclusion, considering the thorough evaluation of all the measured parameters, the study suggests using the in-furrow planting method with a 75%WR as the best approach for growing quinoa in arid and semi-arid regions to enhance production and resource efficiency.


Assuntos
Irrigação Agrícola , Chenopodium quinoa , Chenopodium quinoa/fisiologia , Chenopodium quinoa/crescimento & desenvolvimento , Chenopodium quinoa/metabolismo , Irrigação Agrícola/métodos , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/fisiologia , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Secas , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Produção Agrícola/métodos , Água/metabolismo
11.
Planta ; 260(4): 100, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302508

RESUMO

MAIN CONCLUSION: A comprehensive understanding of the nucleocytoplasmic interactions that occur between genes related to the restoration of fertility and cytoplasmic male sterility (CMS) provides insight into the development of hybrids of important crop species. Modern biotechnological techniques allow this to be achieved in an efficient and quick manner. Heterosis is paramount for increasing the yield and quality of a crop. The development of hybrids for achieving heterosis has been well-studied and proven to be robust and efficient. Cytoplasmic male sterility (CMS) has been explored extensively in the production of hybrids. The underlying mechanisms of CMS include the role of cytotoxic proteins, PCD of tapetal cells, and improper RNA editing of restoration factors. On the other hand, the restoration of fertility is caused by the presence of restorer-of-fertility (Rf) genes or restorer genes, which inhibit the effects of sterility-causing genes. The interaction between mitochondria and the nuclear genome is crucial for several regulatory pathways, as observed in the CMS-Rf system and occurs at the genomic, transcriptional, post-transcriptional, translational, and post-translational levels. These CMS-Rf mechanisms have been validated in several crop systems. This review aims to summarize the nucleo-mitochondrial interaction mechanism of the CMS-Rf system. It also sheds light on biotechnological interventions, such as genetic engineering and genome editing, to achieve CMS-based hybrids.


Assuntos
Citoplasma , Infertilidade das Plantas , Infertilidade das Plantas/genética , Citoplasma/genética , Vigor Híbrido/genética , Hibridização Genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Edição de Genes
12.
Planta ; 260(1): 29, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38879859

RESUMO

MAIN CONCLUSION: The review discusses growth and drought-response mechanisms in minor millets under three themes: drought escape, drought avoidance and drought tolerance. Drought is one of the most prominent abiotic stresses impacting plant growth, performance, and productivity. In the context of climate change, the prevalence and severity of drought is expected to increase in many agricultural regions worldwide. Millets (coarse grains) are a group of small-seeded grasses cultivated in arid and semi-arid regions throughout the world and are an important source of food and feed for humans and livestock. Although minor millets, i.e., foxtail millet, finger millet, proso millet, barnyard millet, kodo millet and little millet are generally hardier and more drought-resistant than cereals and major millets (sorghum and pearl millet), understanding their responses, processes and strategies in response to drought is more limited. Here, we review drought resistance strategies in minor millets under three themes: drought escape (e.g., short crop cycle, short vegetative period, developmental plasticity and remobilization of assimilates), drought avoidance (e.g., root traits for better water absorption and leaf traits to control water loss), and drought tolerance (e.g., osmotic adjustment, maintenance of photosynthetic ability and antioxidant potential). Data from 'omics' studies are summarized to provide an overview of the molecular mechanisms important in drought tolerance. In addition, the final section highlights knowledge gaps and challenges to improving minor millets. This review is intended to enhance major cereals and millet per se in light of climate-related increases in aridity.


Assuntos
Secas , Milhetes/fisiologia , Estresse Fisiológico , Fotossíntese/fisiologia , Mudança Climática , Água/metabolismo , Água/fisiologia , Adaptação Fisiológica , Produtos Agrícolas/fisiologia , Produtos Agrícolas/crescimento & desenvolvimento , Resistência à Seca
13.
Planta ; 260(4): 81, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196449

RESUMO

MAIN CONCLUSION: This review comprehensively elucidates maize drought tolerance mechanisms, vital for global food security. It highlights genetic networks, key genes, CRISPR-Cas applications, and physiological responses, guiding resilient variety development. Maize, a globally significant crop, confronts the pervasive challenge of drought stress, impacting its growth and yield significantly. Drought, an important abiotic stress, triggers a spectrum of alterations encompassing maize's morphological, biochemical, and physiological dimensions. Unraveling and understanding these mechanisms assumes paramount importance for ensuring global food security. Approaches like developing drought-tolerant varieties and harnessing genomic and molecular applications emerge as effective measures to mitigate the negative effects of drought. The multifaceted nature of drought tolerance in maize has been unfolded through complex genetic networks. Additionally, quantitative trait loci mapping and genome-wide association studies pinpoint key genes associated with drought tolerance, influencing morphophysiological traits and yield. Furthermore, transcription factors like ZmHsf28, ZmNAC20, and ZmNF-YA1 play pivotal roles in drought response through hormone signaling, stomatal regulation, and gene expression. Genes, such as ZmSAG39, ZmRAFS, and ZmBSK1, have been reported to be pivotal in enhancing drought tolerance through diverse mechanisms. Integration of CRISPR-Cas9 technology, targeting genes like gl2 and ZmHDT103, emerges as crucial for precise genetic enhancement, highlighting its role in safeguarding global food security amid pervasive drought challenges. Thus, decoding the genetic and molecular underpinnings of drought tolerance in maize sheds light on its resilience and paves the way for cultivating robust and climate-smart varieties, thus safeguarding global food security amid climate challenges. This comprehensive review covers quantitative trait loci mapping, genome-wide association studies, key genes and functions, CRISPR-Cas applications, transcription factors, physiological responses, signaling pathways, offering a nuanced understanding of intricate mechanisms involved in maize drought tolerance.


Assuntos
Secas , Locos de Características Quantitativas , Zea mays , Zea mays/genética , Zea mays/fisiologia , Locos de Características Quantitativas/genética , Estresse Fisiológico/genética , Estudo de Associação Genômica Ampla , Regulação da Expressão Gênica de Plantas , Agricultura/métodos , Sistemas CRISPR-Cas , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Redes Reguladoras de Genes , Resistência à Seca
14.
Planta ; 259(6): 130, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647733

RESUMO

MAIN CONCLUSION: This article discusses the complex network of ion transporters, genes, microRNAs, and transcription factors that regulate crop tolerance to saline-alkaline stress. The framework aids scientists produce stress-tolerant crops for smart agriculture. Salinity and alkalinity are frequently coexisting abiotic limitations that have emerged as archetypal mediators of low yield in many semi-arid and arid regions throughout the world. Saline-alkaline stress, which occurs in an environment with high concentrations of salts and a high pH, negatively impacts plant metabolism to a greater extent than either stress alone. Of late, saline stress has been the focus of the majority of investigations, and saline-alkaline mixed studies are largely lacking. Therefore, a thorough understanding and integration of how plants and crops rewire metabolic pathways to repair damage caused by saline-alkaline stress is of particular interest. This review discusses the multitude of resistance mechanisms that plants develop to cope with saline-alkaline stress, including morphological and physiological adaptations as well as molecular regulation. We examine the role of various ion transporters, transcription factors (TFs), differentially expressed genes (DEGs), microRNAs (miRNAs), or quantitative trait loci (QTLs) activated under saline-alkaline stress in achieving opportunistic modes of growth, development, and survival. The review provides a background for understanding the transport of micronutrients, specifically iron (Fe), in conditions of iron deficiency produced by high pH. Additionally, it discusses the role of calcium in enhancing stress tolerance. The review highlights that to encourage biomolecular architects to reconsider molecular responses as auxiliary for developing tolerant crops and raising crop production, it is essential to (a) close the major gaps in our understanding of saline-alkaline resistance genes, (b) identify and take into account crop-specific responses, and (c) target stress-tolerant genes to specific crops.


Assuntos
MicroRNAs , Estresse Fisiológico , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Salinidade , Concentração de Íons de Hidrogênio , Locos de Características Quantitativas/genética , Álcalis , Plantas/metabolismo , Plantas/genética , Adaptação Fisiológica/genética
15.
Planta ; 260(6): 125, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39448443

RESUMO

MAIN CONCLUSION: In the present review, we discussed the detailed signaling cascades via membrane transporters that confer plant tolerance to abiotic stresses and possible significant use in plant development for climate-resilient crops. Plant transporters play significant roles in nutrient uptake, cellular balance, and stress responses. They facilitate the exchange of chemicals and signals across the plant's membrane by signal transduction, osmotic adjustment, and ion homeostasis. Therefore, research into plant transporters is crucial for understanding the mechanics of plant stress tolerance. Transporters have potential applications in crop breeding for increased stress resistance. We discuss new results about various transporter families (ABC, MATE, NRAMP, NRT, PHT, ZIP), including their functions in abiotic stress tolerance and plant development. Furthermore, we emphasize the importance of transporters in plant responses to abiotic stresses such as drought, cold, salt, and heavy metal toxicity, low light, flooding, and nutrient deficiencies. We discuss the transporter pathways and processes involved in diverse plant stress responses. This review discusses recent advances in the role of membrane transporters in abiotic stress tolerance in Arabidopsis and other crops. The review contains the genes discovered in recent years and associated molecular mechanisms that improve plants' ability to survive abiotic stress and their possible future applications by integrating membrane transporters with other technologies.


Assuntos
Proteínas de Membrana Transportadoras , Estresse Fisiológico , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Plantas/genética , Regulação da Expressão Gênica de Plantas , Transdução de Sinais , Secas , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo
16.
New Phytol ; 242(6): 2479-2494, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38622763

RESUMO

Climate change-induced drought is a major threat to agriculture. C4 crops have a higher water use efficiency (WUE) and better adaptability to drought than C3 crops due to their smaller stomatal morphology and faster response. However, our understanding of stomatal behaviours in both C3 and C4 Poaceae crops is limited by knowledge gaps in physical traits of guard cell (GC) and subsidiary cell (SC). We employed infrared gas exchange analysis and a stomatal assay to explore the relationship between GC/SC sizes and stomatal kinetics across diverse drought conditions in two C3 (wheat and barley) and three C4 (maize, sorghum and foxtail millet) upland Poaceae crops. Through statistical analyses, we proposed a GCSC-τ model to demonstrate how morphological differences affect stomatal kinetics in C4 Poaceae crops. Our findings reveal that morphological variations specifically correlate with stomatal kinetics in C4 Poaceae crops, but not in C3 ones. Subsequent modelling and experimental validation provide further evidence that GC/SC sizes significantly impact stomatal kinetics, which affects stomatal responses to different drought conditions and thereby WUE in C4 Poaceae crops. These findings emphasize the crucial advantage of GC/SC morphological characteristics and stomatal kinetics for the drought adaptability of C4 Poaceae crops, highlighting their potential as future climate-resilient crops.


Assuntos
Adaptação Fisiológica , Tamanho Celular , Produtos Agrícolas , Secas , Grão Comestível , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Grão Comestível/fisiologia , Cinética , Produtos Agrícolas/fisiologia , Modelos Biológicos , Água/metabolismo , Água/fisiologia
17.
New Phytol ; 244(2): 708-718, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39183372

RESUMO

Relationships between crop genetic and functional diversity are key to addressing contemporary agricultural challenges. Yet, there are few approaches for quantifying the relationship between genetic diversity and crop functional trait expression. Here, we introduce 'functional space accumulation curves' to analyze how trait space increases with the number of crop genotypes within a species. We explore the potential for functional space accumulating curves to quantify genotype-trait space relationships in four common annual crop species: barley (Hordeum vulgare), rice (Oryza sativa), soybean (Glycine max), and durum wheat (Triticum durum). We also employ these curves to describe genotype-trait space relationships in the wild annual Arabidopsis thaliana, which has not been subjected to artificial selection. All five species exhibited asymptotic functional space accumulation curves, suggesting a limit to intraspecific functional crop diversity, likely due to: dominant phenotypes represented by several genotypes; or functional redundancy that might exist among genotypes. Our findings indicate that there is a diminishing return of functional diversity with increasing number of genotypes. Our analysis demonstrates the efficacy of functional space accumulation curves in quantifying trait space occupancy of crops, with implications for managing crop diversity in agroecosystems, and genetic diversity in crop breeding programs.


Assuntos
Produtos Agrícolas , Variação Genética , Genótipo , Fenótipo , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Característica Quantitativa Herdável , Arabidopsis/genética , Arabidopsis/fisiologia , Hordeum/genética , Hordeum/fisiologia , Biodiversidade
18.
New Phytol ; 244(4): 1223-1237, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39288438

RESUMO

Understanding trait-trait coordination is essential for successful plant breeding and crop modeling. Notably, plant size drives variation in morphological, physiological, and performance-related traits, as described by allometric laws in ecology. Yet, as allometric relationships have been limitedly studied in crops, how they influence and possibly limit crop performance remains unknown. Here, we review how an allometry perspective on crops gains insights into the phenotypic evolution during crop domestication, the breeding of varieties adapted to novel conditions, and the prediction of crop yields. As allometry is an active field of research, modeling and manipulating crop allometric relationships can help to develop more resilient and productive agricultural systems to face future challenges.


Assuntos
Produtos Agrícolas , Produtos Agrícolas/genética , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Fenótipo , Característica Quantitativa Herdável , Domesticação , Melhoramento Vegetal , Evolução Biológica
19.
New Phytol ; 243(1): 466-476, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38757753

RESUMO

Crops generally have seeds larger than their wild progenitors´ and with reduced dormancy. In wild plants, seed mass and allocation to the seed coat (a proxy for physical dormancy) scale allometrically so that larger seeds tend to allocate less to the coats. Larger seeds and lightweight coats might thus have evolved as correlated traits in crops. We tested whether 34 crops and 22 of their wild progenitors fit the allometry described in the literature, which would indicate co-selection of both traits during crop evolution. Deviations from the allometry would suggest that other evolutionary processes contribute to explain the emergence of larger, lightweight-coated seeds in crops. Crops fitted the scaling slope but deviated from its intercept in a consistent way: Seed coats of crops were lighter than expected by their seed size. The wild progenitors of crops displayed the same trend, indicating that deviations cannot be solely attributed to artificial selection during or after domestication. The evolution of seeds with small coats in crops likely resulted from a combination of various pressures, including the selection of wild progenitors with coats smaller than other wild plants, further decreases during early evolution under cultivation, and indirect selection due to the seed coat-seed size allometry.


Assuntos
Evolução Biológica , Biomassa , Produtos Agrícolas , Sementes , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/anatomia & histologia , Sementes/fisiologia
20.
New Phytol ; 244(2): 618-634, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39183371

RESUMO

Phenotypic plasticity describes a genotype's ability to produce different phenotypes in response to different environments. Breeding crops that exhibit appropriate levels of plasticity for future climates will be crucial to meeting global demand, but knowledge of the critical environmental factors is limited to a handful of well-studied major crops. Using 727 maize (Zea mays L.) hybrids phenotyped for grain yield in 45 environments, we investigated the ability of a genetic algorithm and two other methods to identify environmental determinants of grain yield from a large set of candidate environmental variables constructed using minimal assumptions. The genetic algorithm identified pre- and postanthesis maximum temperature, mid-season solar radiation, and whole season net evapotranspiration as the four most important variables from a candidate set of 9150. Importantly, these four variables are supported by previous literature. After calculating reaction norms for each environmental variable, candidate genes were identified and gene annotations investigated to demonstrate how this method can generate insights into phenotypic plasticity. The genetic algorithm successfully identified known environmental determinants of hybrid maize grain yield. This demonstrates that the methodology could be applied to other less well-studied phenotypes and crops to improve understanding of phenotypic plasticity and facilitate breeding crops for future climates.


Assuntos
Algoritmos , Clima , Fenótipo , Zea mays , Zea mays/genética , Zea mays/fisiologia , Zea mays/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Meio Ambiente , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Genótipo , Grão Comestível/genética , Grão Comestível/fisiologia , Grão Comestível/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA