Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 612
Filtrar
Mais filtros

Coleção Fiocruz
Intervalo de ano de publicação
1.
Food Microbiol ; 119: 104454, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225054

RESUMO

Tibetan kefir grains (TKGs) are a complex protein-lipid-polysaccharide matrix composed of various microorganisms. Microorganisms have the benefit of being effective, secure, and controllable when used for selenium enrichment. In this study, selenium-enriched Tibetan kefir grains (Se-TKGs) were made, and the microbiology composition was analyzed through a metagenomic analysis, to explore the influence of selenium enrichment. The microbial composition of TKGs and Se-TKGs, as well as the probiotic species, quorum sensing system (QS) and functional genes were compared and evaluated. Lactobacillus kefiranofaciens was the most abundant microbial species in both communities. Compared with TKGs, Se-TKGs had a much higher relative abundance of acetic acid bacteria. Lactobacillus helveticus was the most common probiotic species both in TKGs and Se-TKGs. Probiotics with antibacterial and anti-inflammatory properties were more abundant in Se-TKGs. QS analysis revealed that Se-TKGs contained more QS system-associated genes than TKGs. Moreover, Kyoto Encyclopedia of Genes and Genomes analysis revealed that the pathway for human disease ko01501 had the greatest relative abundance in both TKGs and Se-TKGs. Compared with TKGs, Se-TKGs demonstrated a greater relative abundance of different drug resistance-related metabolic pathways. Additionally, linear discriminant analysis effect size was used to examine the biomarkers responsible for the difference between the two groups. In this study, we focused on the microbiological structure of TKGs and Se-TKGs, with the aim of establishing a foundation for a more thorough investigation of Se-TKGs and providing a basis for exploring potential future use.


Assuntos
Produtos Fermentados do Leite , Kefir , Selênio , Humanos , Produtos Fermentados do Leite/microbiologia , Tibet , Bactérias/genética
2.
Crit Rev Food Sci Nutr ; 63(21): 4819-4841, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34845955

RESUMO

After conversion of lactose to lactic acid, several biochemical changes occur such as enhanced protein digestibility, fatty acids release, and production of bioactive compounds etc. during the fermentation process that brings nutritional and quality improvement in the fermented dairy products (FDP). A diverse range of lactic acid bacteria (LAB) is being utilized for the development of FDP with specific desirable techno-functional attributes. This review contributes to the knowledge of basic pathways and changes during fermentation process and the current research on techniques used for identification and quantification of metabolites. The focus of this article is mainly on the metabolites responsible for maintaining the desired attributes and health benefits of FDP as well as their characterization from raw milk. LAB genera including Lactobacillus, Streptococcus, Leuconostoc, Pediococcus and Lactococcus are involved in the fermentation of milk and milk products. LAB species accrue these benefits and desirable properties of FDP producing the bioactive compounds and metabolites using homo-fermentative and heterofermentative pathways. Generation of metabolites vary with incubation and other processing conditions and are analyzed and quantified using highly advanced and sophisticated instrumentation including nuclear magnetic resonance, mass-spectrometry based techniques. Health benefits of FDP are mainly possible due to the biological roles of such metabolites that also cause technological improvements desired by dairy manufacturers and consumers.


Assuntos
Produtos Fermentados do Leite , Lactobacillales , Lactobacillales/metabolismo , Produtos Fermentados do Leite/microbiologia , Laticínios/microbiologia , Lactobacillus/metabolismo , Ácido Láctico/metabolismo , Fermentação , Microbiologia de Alimentos
3.
Molecules ; 28(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36677715

RESUMO

Recently, increasing attention has been focused on developing new products based on goat's milk. Consumers positively perceive fermented goat's milk products as health-promoting due to their nutritional value, digestibility, and potential source of probiotics. This study aimed to evaluate the possibility of using different doses of collagen and collagen hydrolysate in the production of probiotic goat's milk fermented by four monocultures: Lacticaseibacillus casei 431® Lactobacillus acidophilus LA- 5®, Lacticaseibacillus paracasei LP26, and Lacticaseibicillus rhamnosus Lr- 32®. A total of 20 experimental groups were prepared, including control groups (without additives), and due to the added probiotic (Lacticaseibacillus casei, Lactobacillus acidophilus, Lacticaseibacillus paracasei, and Lacticaseibacillus rhamnosus), various collagen doses (1.5% and 3.0%) and collagen types (hydrolysate and bovine collagen). Physicochemical, organoleptic, and microbiological characteristics were evaluated after 1 and 21 days of cold storage. The applied additives increased the acidity of the milk even before fermentation. However, milk with bovine collagen and hydrolysate had a higher pH value after fermentation than control milk. The study showed higher than 8 log cfu g−1 viability of probiotic bacteria in goat's milk products during storage due to the proper pH, high buffering capacity, and rich nutrient content of goat's milk. The best survival rate was shown for the L. casei strain after 21 days in milk with collagen protein hydrolysate. Moreover, collagen in milk fermented by L. rhamnosus decreased syneresis compared to its control counterpart. The addition of collagen, especially the hydrolysate, increased the gel hardness of the fermented milk. The collagen additives used in the milk, both in the form of hydrolysate and bovine collagen, caused a darkening of the color of the milk and increased the intensity of the milky-creamy and sweet taste.


Assuntos
Produtos Fermentados do Leite , Lacticaseibacillus casei , Probióticos , Animais , Bovinos , Leite/química , Probióticos/química , Produtos Fermentados do Leite/microbiologia , Lactobacillus acidophilus , Cabras , Fermentação
4.
Crit Rev Food Sci Nutr ; 62(7): 1870-1889, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33207956

RESUMO

The emergence of next-generation sequencing (NGS) technologies has revolutionized the way to investigate the microbial diversity in traditional fermentations. In the field of food microbial ecology, different NGS platforms have been used for community analysis, including 454 pyrosequencing from Roche, Illumina's instruments and Thermo Fisher's SOLiD/Ion Torrent sequencers. These recent platforms generate information about millions of rDNA amplicons in a single running, enabling accurate phylogenetic resolution of microbial taxa. This review provides a comprehensive overview of the application of NGS for microbiome analysis of traditional fermented milk products worldwide. Fermented milk products covered in this review include kefir, buttermilk, koumiss, dahi, kurut, airag, tarag, khoormog, lait caillé, and suero costeño. Lactobacillus-mainly represented by Lb. helveticus, Lb. kefiranofaciens, and Lb. delbrueckii-is the most important and frequent genus with 51 reported species. In general, dominant species detected by culturing were also identified by NGS. However, NGS studies have revealed a more complex bacterial diversity, with estimated 400-600 operational taxonomic units, comprising uncultivable microorganisms, sub-dominant populations, and late-growing species. This review explores the importance of these discoveries and address related topics on workflow, NGS platforms, and knowledge bioinformatics devoted to fermented milk products. The knowledge that has been gained is vital in improving the monitoring, manipulation, and safety of these traditional fermented foods.


Assuntos
Produtos Fermentados do Leite , Bactérias/genética , Produtos Fermentados do Leite/microbiologia , Fermentação , Sequenciamento de Nucleotídeos em Larga Escala , Lactobacillus , Filogenia
5.
J Appl Microbiol ; 132(6): 4349-4358, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35301787

RESUMO

AIMS: Although kefir has been known for centuries, there is confusion between the two types of kefir grains, for example, milk kefir (MK) grain and water kefir (WK) grain. This study aimed to unravel the differences and similarities between WK grain and MK grain. METHODS AND RESULTS: Microbiological analyses, identification of grains microbiota and enumeration of microbiological content of the grains as well as scanning electron microscope (SEM) imaging, dry matter, protein, ash, and mineral content, and colour analyses were carried out for the two types of grains. As a result, significant differences were found in microbiological content, chemical properties and colours (p < 0.05). Additionally, SEM images revealed the different intrinsic structures for the microbiota and the structure of the two types of grains. CONCLUSIONS: MK grain has more nutritional content compared to WK grain. Despite not as widely known and used as MK grain, WK grain is a good source for minerals and health-friendly micro-organisms such as lactic acid bacteria and yeasts. WK grain is possibly suitable for vegans and allergic individuals to fulfil nutritional requirements. Moreover, in this study, the variety of WK grain microbial consortia was wider than that of MK grains, and this significantly affected the resultant WK products. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study that comprehensively compares two different kefir grains in microbial, chemical and physical properties.


Assuntos
Produtos Fermentados do Leite , Kefir , Lactobacillales , Animais , Produtos Fermentados do Leite/microbiologia , Fermentação , Humanos , Kefir/microbiologia , Leite/microbiologia , Água/análise , Leveduras/metabolismo
6.
J Dairy Sci ; 105(3): 2082-2093, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34955279

RESUMO

Lactic acid bacteria (LAB) play important roles in acid production and flavor formation in fermented dairy products. Lactic acid bacteria strains with distinct characteristics confer unique features to products. Diverse LAB have been identified in raw milk and traditional fermented milk prepared from raw milk. However, little is known about LAB in raw milk in Japan. To preserve diverse LAB as potential starters or probiotics for future use, we have isolated and identified various kinds of LAB from raw milk produced in Japan. In this study, we focused on Lactobacillus delbrueckii, one of the most important species in the dairy industry. We identified L. delbrueckii subspecies isolated from raw milk in Hokkaido, Japan, by analyzing intraspecific diversity using 4 distinct methods, hsp60 cluster analysis, multilocus sequence analysis, core-genome analysis, and whole-genome analysis based on average nucleotide identity. The subspecies distribution and a new dominant subset of L. delbrueckii from raw milk in Japan were revealed. The discovery of new strains with different genotypes is important for understanding the geographic distribution and characteristics of the bacteria and further their use as a microbial resource with the potential to express unconventional flavors and functionalities. The strains identified in this study may have practical applications in the development of fermented dairy products.


Assuntos
Produtos Fermentados do Leite , Lactobacillus delbrueckii , Probióticos , Animais , Produtos Fermentados do Leite/microbiologia , Variação Genética , Japão , Lactobacillus delbrueckii/genética , Leite/microbiologia
7.
J Dairy Sci ; 105(5): 3703-3715, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35221067

RESUMO

Kefir is a fermented dairy product with well recognized probiotic properties. Recently, consumer interest in fermented products with probiotic microorganisms has increased due to the accumulating evidence of the effects of kefir microorganisms on the modulation of gut microbiota and their antimicrobial activity. Although the health properties of kefir have been reviewed in other works, the present review addresses the antimicrobial effects of kefir microbiota and associated compounds. The antimicrobial activity of kefir microorganisms could derive from different mechanisms. The microorganisms' capacity to adhere to the intestinal epithelium, preventing the adhesion of pathogens, and their immunomodulation properties are among the mechanisms suggested. Bacteria and yeast isolated from kefir have been shown to have in vivo and in vitro antimicrobial activity against enteropathogenic bacteria and spoilage fungi. However, most reports have focused their approach on single-strain antimicrobial properties; evaluation of antimicrobial activity of cocultures of kefir microbiota and their potential mechanisms of action has been neglected. Kefir microbiota and associated compounds have shown promising antimicrobial effects; however, more research needs to be done to discern the mechanisms of action.


Assuntos
Anti-Infecciosos , Produtos Fermentados do Leite , Kefir , Microbiota , Probióticos , Animais , Anti-Infecciosos/farmacologia , Produtos Fermentados do Leite/microbiologia , Kefir/microbiologia
8.
J Sci Food Agric ; 102(2): 862-867, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34173230

RESUMO

BACKGROUND: As a natural food additive, exopolysaccharide (EPS) produced by Streptococcus thermophilus can improve product viscosity and texture. The protein EpsA is a putative pathway-specific transcriptional regulator for EPS biosynthesis in S. thermophilus. RESULTS: According to comparative analysis of EPS biosynthetic gene clusters, a conserved region of epsA (609 bp) was employed to design primer pair epsA-F/R as a molecular marker for the isolation of EPS-producing (EPS+ ) S. thermophilus. Two EPS+ S. thermophiles strains, AR333 and S-3, were band-positive, whereas Lactococcus lactis NZ9000 (non-EPS-producing, EPS- ), Lactobacillus casei LC2W (EPS+ ) and L. plantarum AR113 (EPS+ ) were negative by polymerase chain reaction (PCR) amplicon bands using the epsA probe. This indicated good specificity of the epsA probe to EPS+ S. thermophilus. Moreover, based on PCR screening with the epsA probe, 23 positive strains were isolated and identified as S. thermophilus from our microbial library and natural fermented milk with 141.3-309.2 mg L-1 of EPS production, demonstrating the validity of our molecular marker screening method. CONCLUSION: The designed molecular marker of epsA can rapidly screen EPS+ S. thermophilus, which has potential application in the dairy and other food industries. © 2021 Society of Chemical Industry.


Assuntos
Polissacarídeos Bacterianos/biossíntese , Streptococcus thermophilus/genética , Streptococcus thermophilus/isolamento & purificação , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bovinos , Produtos Fermentados do Leite/microbiologia , Fermentação , Marcadores Genéticos , Família Multigênica , Streptococcus thermophilus/metabolismo
9.
World J Microbiol Biotechnol ; 38(2): 25, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34989904

RESUMO

A total of 272 isolates of lactic acid bacteria (LAB) were isolated from 22 samples of naturally fermented milk products of Sikkim in India viz. dahi, soft-variety chhurpi, hard-variety chhurpi, mohi and philu, out of which, 68 LAB isolates were randomly grouped on the basis of phenotypic characteristics, and were identified by 16S rRNA gene sequence analysis. Leuconostoc mesenteroides was the most dominant genus, followed by Leuc. mesenteroides subsp. jonggajibkimchii, Lactococcus lactis subsp. cremoris, Lc. lactis, Lc. lactis subsp. hordniae, Lc. lactis subsp. tructae, Enterococcus faecalis, E. italicus and E. pseudoavium. LAB strains were tested for probiotics attributes by in vitro and genetic screening, based on marker genes. LAB strains showed tolerance to pH 3.0, bile salt, resistance to lysozyme and ß-galactosidase activity. Enterococcus faecalis YS4-11 and YS4-14 and Lactococcus lactis subsp. cremoris SC3 showed more than 85% of hydrophobicity. Genes clp L and tdc encoding for low pH tolerance, agu A and Ir1516 encoding for bile tolerance, LBA1446 gene encoding for BSH activity, map A, apf, mub 1 and msa encoding for mucosal binding property were detected. Gene mesY for bacteriocin production was detected only in Leuconostoc spp. Based on the in vitro and genetic screening of probiotic attributes, Leuc. mesenteroides; Leuc. mesenteroides subsp. jonggajibkimchii and Lc. lactis subsp. cremoris were tentatively selected for possible probiotic candidates.


Assuntos
Produtos Fermentados do Leite/microbiologia , Fermentação , Testes Genéticos , Lactobacillales/classificação , Lactobacillales/genética , Lactobacillales/isolamento & purificação , Probióticos , Animais , Bactérias/isolamento & purificação , Bacteriocinas , Bovinos , Enterococcus faecalis , Feminino , Microbiologia de Alimentos , Índia , Lactococcus , Leuconostoc/isolamento & purificação , Leite , Filogenia , RNA Ribossômico 16S/genética , Siquim
10.
Arch Microbiol ; 203(1): 305-315, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32926196

RESUMO

Lactobacillus plantarum DMR17 was isolated from homemade cow dahi of Sikkim Himalayan region of India. Here, we report the draft genome sequence of this strain. A total of 21,176,638 paired-end reads were obtained which were assembled into 65 contigs. The reference genome used was L. plantarum WCFS1. The genome size of DMR17 was 3,228,341 bp with G + C content of 46.25%. 3302 coding sequences were predicted including 68 tRNA and 67 rRNA genes. More than 88% of the total pre-processed reads from the sample were mapped to the reference genome. The identified coding proteins were classified into 27 functional categories based on COG classification. The genome was found to possess genes for lactate and mixed acid fermentation. The genome also showed the presence of genes for catabolism of aromatic compounds, phosphorous, and other metabolism. The genome information of L. plantarum DMR17 provides the basis for understanding the functional properties and to consider its use as a potential component of functional foods especially dahi.


Assuntos
Produtos Fermentados do Leite/microbiologia , Fermentação , Genoma Bacteriano/genética , Lactobacillus plantarum/genética , Metabolismo Secundário , Animais , Composição de Bases , Bovinos , Índia , Lactatos/metabolismo , Lactobacillus plantarum/metabolismo , Siquim
11.
Arch Microbiol ; 203(7): 3955-3964, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34021387

RESUMO

Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a microaerophylic anaerobe, which is widely used in the production of yogurt, cheese, and other fermented dairy products. L. bulgaricus and its partner Streptococcus thermophilus were used as starter cultures of yogurt in the world for thousands of years. In our previous study, L. bulgaricus LDB-C1 was obtained from traditional fermented milk, and possessed some characteristics like high exopolysaccharide yield and good fermentation performance. The analysis of its CRISPR-Cas system, antibiotic resistance, virulence factors, and mobile elements, was performed to reveal the stability of the strain LDB-C1. It was found that LDB-C1 contains a plenty of spacers in the CRISPR region, indicating it might have better performance against the infection of phages and plasmids. Furthermore, the acquired or transmittable antibiotic resistance/virulence factor genes were absent in the tested L. bulgaricus strain LDB-C1.


Assuntos
Genoma Bacteriano , Lactobacillus delbrueckii , Produtos Fermentados do Leite/microbiologia , Fermentação , Genoma Bacteriano/genética , Instabilidade Genômica , Lactobacillus delbrueckii/genética , Lactobacillus delbrueckii/metabolismo , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Iogurte/microbiologia
12.
Nutr Metab Cardiovasc Dis ; 31(4): 997-1015, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33612379

RESUMO

AIM: Fermented milk products are suggested as a supplementary therapy to help reduce blood lipid levels. However, the results of clinical studies are conflicting. DATA SYNTHESIS: This study systematically reviewed 39 randomized controlled trials (n = 2237 participants) to investigate the effect of probiotic fermented milk products on blood lipids. A meta-analysis was performed using random effects models, with weighted mean differences (WMDs) and 95% confidence interval (CI). Statistically significant reductions in blood low-density lipoprotein cholesterol (LDL-C) (WMD: -7.34 mg/dL, 95% CI: from -10.04 to -4.65, and P < 0.001) and total cholesterol (TC) concentrations (WMD: -8.30 mg/dL, 95% CI: from -11.42 to -5.18, and P < 0.001) were observed. No statistically significant effect of probiotic fermented milk was observed on blood high-density lipoprotein cholesterol (HDL-C) and triacylglycerol (TAG) levels. The effect on TC and LDL-C level was more pronounced in men, and a greater reduction in TAG was observed in trials with longer interventions (≥8 weeks) as compared to their counterparts. CONCLUSIONS: Available evidence suggests that probiotic fermented milk products may help to reduce serum TC and LDL-C cholesterol levels, particularly in men and when they are consumed for ≥8 weeks.


Assuntos
Colesterol/sangue , Produtos Fermentados do Leite/microbiologia , Dislipidemias/dietoterapia , Probióticos/uso terapêutico , Adulto , Idoso , Biomarcadores/sangue , LDL-Colesterol/sangue , Regulação para Baixo , Dislipidemias/sangue , Dislipidemias/diagnóstico , Dislipidemias/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
13.
J Dairy Res ; 88(2): 210-216, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33934726

RESUMO

This paper reveals the technological properties of lactic acid bacteria isolated from raw milk (colostrum and mature milk) of Wagyu cattle raised in Okayama Prefecture, Japan. Isolates were identified based on their physiological and biochemical characteristics as well as 16S rDNA sequence analysis. Streptococcus lutetiensis and Lactobacillus plantarum showed high acid and diacetyl-acetoin production in milk after 24 h of incubation at 40 and 30°C, respectively. These strains are thought to have potential for use as starter cultures and adjunct cultures for fermented dairy products.


Assuntos
Bovinos/microbiologia , Lactobacillales/fisiologia , Leite/microbiologia , Animais , Carga Bacteriana , Colostro/microbiologia , Produtos Fermentados do Leite/microbiologia , DNA/análise , Fermentação , Japão , Ácido Láctico/biossíntese , Lactobacillales/genética , Lactobacillus plantarum/isolamento & purificação , Lactobacillus plantarum/fisiologia , RNA Ribossômico 16S/genética , Streptococcus/isolamento & purificação , Streptococcus/fisiologia
14.
Molecules ; 26(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34684768

RESUMO

The enrichment of commonly consumed foods with bioactive components might be helpful in promoting health and reducing the risk of disease, so the enrichment of probiotic fermented milk with vitamin C can be considered appropriate. The effect of vitamin C addition depends on the source of origin (rosehip, acerola and ascorbic acid in powder form) on the growth and survival of Lactobacillus rhamnosus and the quality of fermented milk on the 1st and 21st day of storage was analyzed. The pH, total acidity, vitamin C, syneresis, color, texture profile and numbers of bacterial cells in fermented milk were determined. The organoleptic evaluation was also performed. The degradation of vitamin C in milk was shown to depend on its source. The lowest reduction of vitamin C was determined in milk with rosehip. The least stable was vitamin C naturally found in control milk. The addition of rosehip and acerola decreased syneresis and lightness of milk color, increasing the yellow and red color proportion. In contrast, milk with ascorbic acid was the lightest during the whole experimental period and was characterized by a very soft gel. The growth of Lactobacillus rhamnosus during fermentation was most positively affected by the addition of rosehip. However, the best survival of Lactobacillus rhamnosus was demonstrated in milk with acerola. On the 21st day of storage, the number of L. rhamnosus cells in the control milk and the milk with vitamin C was >8 log cfu g-1, so these milks met the criterion of therapeutic minimum. According to the assessors, the taste and odor contributed by the addition of rosehip was the most intense of all the vitamin C sources used in the study.


Assuntos
Ácido Ascórbico/administração & dosagem , Produtos Fermentados do Leite/análise , Produtos Fermentados do Leite/microbiologia , Lacticaseibacillus rhamnosus/metabolismo , Probióticos/metabolismo , Animais , Ácido Ascórbico/isolamento & purificação , Estabilidade de Medicamentos , Fermentação , Armazenamento de Alimentos , Humanos , Concentração de Íons de Hidrogênio , Malpighiaceae/química , Odorantes , Pós , Rosa/química , Paladar
15.
Molecules ; 26(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34641607

RESUMO

The application of bacterial cultures in food fermentation is a novel strategy to increase the "natural" levels of bioactive compounds. The unique ability of lactic acid bacteria (LAB) to produce folate, B vitamins, and conjugated linolenic acid cis9trans11 C18:2 (CLA) during cold storage up to 21 days was studied. Although some species of LAB can produce folates and other important nutrients, little is known about the production ability of yogurt starter cultures. Pasteurized milk samples were inoculated with four different combinations of commercially available yogurt vaccines, including starter cultures of Bifidobacterium bifidum. Both the type of vaccine and the time of storage at 8 °C had a significant effect on the folate and CLA contents in the tested fermented milks. The highest folate content (105.4 µg/kg) was found in fresh fermented milk inoculated with Lactobacillus delbrueckii, Streptococcus thermophilus, and Bifidobacterium bifidum. Only the mix of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Bifidobacterium bifidum showed potential (59% increase) to synthesize folate during seven days of storage. A significant increase in the content of CLA, when compared to fresh fermented milk, was observed during cold storage for up to 21 days in products enriched with Bifidobacterium bifidum.


Assuntos
Produtos Fermentados do Leite/microbiologia , Ácido Fólico/metabolismo , Lactobacillales/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Leite/metabolismo , Leite/microbiologia , Complexo Vitamínico B/metabolismo , Animais , Bifidobacterium bifidum/metabolismo , Biofortificação/métodos , Fermentação , Microbiologia de Alimentos , Lactobacillus delbrueckii/metabolismo , Probióticos , Streptococcus thermophilus/metabolismo , Fatores de Tempo
16.
Molecules ; 26(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34201949

RESUMO

The improvement of milk dairy products' quality and nutritional value during shelf-life storage is the ultimate goal of many studies worldwide. Therefore, in the present study, prospective beneficial effects of adding two different industrial yeasts, Kluyveromyces lactis and Saccharomyces cerevisiae pretreated by heating at 85 °C for 10 min to be inactivated, before fermentation on some properties of ABT fermented milk were evaluated. The results of this study showed that the addition of 3% and 5% (w/v) heat-treated yeasts to the milk enhanced the growth of starter culture, Lactobacillus acidophilus, Bifidobacteria, and Streptococcus thermophilus, during the fermentation period as well as its viability after 20 days of cold storage at 5 ± 1 °C. Furthermore, levels of lactic and acetic acids were significantly increased from 120.45 ± 0.65 and 457.80 ± 0.70 µg/mL in the control without heat-treated yeast to 145.67 ± 0.77 and 488.32 ± 0.33 µg/mL with 5% supplementation of Sacch. cerevisiae respectively. Moreover, the addition of heat-treated yeasts to ABT fermented milk enhanced the antioxidant capacity by increasing the efficiency of free radical scavenging as well as the proteolytic activity. Taken together, these results suggest promising application of non-viable industrial yeasts as nutrients in the fermentation process of ABT milk to enhance the growth and viability of ABT starter cultures before and after a 20-day cold storage period by improving the fermented milk level of organic acids, antioxidant capacity, and proteolytic activities.


Assuntos
Bifidobacterium , Produtos Fermentados do Leite/microbiologia , Kluyveromyces , Lactobacillus acidophilus , Saccharomyces cerevisiae , Streptococcus thermophilus
17.
World J Microbiol Biotechnol ; 37(8): 143, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34328568

RESUMO

Antifungal and antibacterial activities of twenty-six combinations of lactic acid bacteria, propionibacteria, acetic acid bacteria and dairy yeasts inoculated in whey and milk were investigated. Associations including acetic acid bacteria were shown to suppress growth of the opportunistic yeast Candida albicans in well-diffusion assays. The protective effect of milk fermented with the two most promising consortia was confirmed in Caco-2 cell culture infected with C. albicans. Indeed, these fermented milks, after heat-treatment or not, suppressed lactate dehydrogenase release after 48 h while significant increase in LDH release was observed in the positive control (C. albicans alone) and with fermented milk obtained using commercial yogurt starter cultures. The analysis of volatile compounds in the cell-free supernatant using solid phase microextraction (SPME) coupled to gas chromatography-mass spectrometry (GC-MS) showed accumulation of significant amount of acetic acid by the consortium composed of Lactobacillus delbrueckii 5, Lactobacillus gallinarum 1, Lentilactobacillus parabuchneri 3, Lacticaseibacillus paracasei 33-4, Acetobacter syzygii 2 and Kluyveromyces marxianus 19, which corresponded to the zone of partial inhibition of C. albicans growth during well-diffusion assays. Interestingly, another part of anti-Candida activity, yielding small and transparent inhibition zones, was linked with the consortium cell fraction. This study showed a correlation between anti-Candida activity and the presence of acetic acid bacteria in dairy associations as well as a significant effect of two dairy associations against C. albicans in a Caco-2 cell model. These two associations may be promising consortia for developing functional dairy products with antagonistic action against candidiasis agents.


Assuntos
Candida/crescimento & desenvolvimento , Produtos Fermentados do Leite/microbiologia , Lactobacillales/metabolismo , Leite/microbiologia , Animais , Antibiose , Células CACO-2 , Bovinos , Produtos Fermentados do Leite/análise , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Lactobacillales/química , Lactobacillales/classificação , Leite/química
18.
World J Microbiol Biotechnol ; 37(3): 52, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33594545

RESUMO

Fermented milk products are a major source of health-promoting microorganisms known as probiotics. To characterize the probiotic properties of lactic acid bacteria isolated from Ghanaian traditionally fermented milk, thirty (30) isolates comprising Enterococcus faecium (1), Lactobacillus fermentum (14), Lb. plantarum (2) and Pediococcus acidilactici (13) identified by 16S rRNA gene sequencing, were tested for survival at low pH (2.5) and bile salts (0.3% (w/v)), hydrophobicity, co-aggregation, auto-aggregation and antimicrobial activities against selected pathogens. Safety of potential probiotic bacteria was assessed by hemolytic activity on blood agar and susceptibility to nine different antibiotics. Majority (90%) of the strains showed survival rates above 80% at pH (2.5) and in bile salts (0.3% (w/v)). Hydrophobicity ranged from 5 to 61% while cell auto-aggregation ranged from 41 to 80% after 24 h. Co-aggregation with E. coli (3.7-43.9%) and S. Typhimurium (1.3-49.5%) were similar for the LAB strains at 24 h. Cell- free supernatants of all LAB strains inhibited E. coli while S. Typhimurium was not sensitive to cell-free supernatants of five Pd. acidilactici strains: OS24h20, OS18h3, OY9h19, OS9h8 and 24NL38. None of the LAB strains showed ß-hemolysis but 38% of strains showed α-hemolysis. Susceptibilities to antibiotics were strain-specific; only four strains, two Lb. fermentum and two Pd. acidilactici were susceptible to all nine antibiotics tested. Based on high survival rates in bile salts, low pH and generally good hydrophobicity, auto-aggregation, co-aggregation and inhibitory activities, 15 out of 30 strains tested were considered qualified candidates for development of probiotic cultures for fermented milk products in sub-Saharan Africa.


Assuntos
Produtos Fermentados do Leite/microbiologia , Lactobacillales/classificação , Probióticos/farmacologia , Animais , Antibacterianos/farmacologia , Ácidos e Sais Biliares , Tolerância a Medicamentos , Escherichia coli/genética , Fermentação , Gana , Concentração de Íons de Hidrogênio , Lactobacillales/efeitos dos fármacos , Lactobacillales/genética , Lactobacillales/isolamento & purificação , Leite/microbiologia , RNA Ribossômico 16S/genética
19.
Appl Environ Microbiol ; 86(7)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32005739

RESUMO

A prominent feature of lactic acid bacteria (LAB) is their ability to inhibit growth of spoilage organisms in food, but hitherto research efforts to establish the mechanisms underlying bioactivity focused on the production of antimicrobial compounds by LAB. We show, in this study, that competitive exclusion, i.e., competition for a limited resource by different organisms, is a major mechanism of fungal growth inhibition by lactobacilli in fermented dairy products. The depletion of the essential trace element manganese by two Lactobacillus species was uncovered as the main mechanism for growth inhibition of dairy spoilage yeast and molds. A manganese transporter (MntH1), representing one of the highest expressed gene products in both lactobacilli, facilitates the exhaustive manganese scavenging. Expression of the mntH1 gene was found to be strain dependent, affected by species coculturing and the growth phase. Further, deletion of the mntH1 gene in one of the strains resulted in a loss of bioactivity, proving this gene to be important for manganese depletion. The presence of an mntH gene displayed a distinct phylogenetic pattern within the Lactobacillus genus. Moreover, assaying the bioprotective ability in fermented milk of selected lactobacilli from 10 major phylogenetic groups identified a correlation between the presence of mntH and bioprotective activity. Thus, manganese scavenging emerges as a common trait within the Lactobacillus genus, but differences in expression result in some strains showing more bioprotective effect than others. In summary, competitive exclusion through ion depletion is herein reported as a novel mechanism in LAB to delay the growth of spoilage contaminants in dairy products.IMPORTANCE In societies that have food choices, conscious consumers demand natural solutions to keep their food healthy and fresh during storage, simultaneously reducing food waste. The use of "good bacteria" to protect food against spoilage organisms has a long, successful history, even though the molecular mechanisms are not fully understood. In this study, we show that the depletion of free manganese is a major bioprotective mechanism of lactobacilli in dairy products. High manganese uptake and intracellular storage provide a link to the distinct, nonenzymatic, manganese-catalyzed oxidative stress defense mechanism, previously described for certain lactobacilli. The evaluation of representative Lactobacillus species in our study identifies multiple relevant species groups for fungal growth inhibition via manganese depletion. Hence, through the natural mechanism of nutrient depletion, the use of dedicated bioprotective lactobacilli constitutes an attractive alternative to artificial preservation.


Assuntos
Produtos Fermentados do Leite/microbiologia , Microbiologia de Alimentos , Fungos/fisiologia , Lactobacillus/fisiologia , Leveduras/fisiologia
20.
Food Microbiol ; 90: 103465, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32336376

RESUMO

Exopolysaccharides (EPS) production is a characteristic that has been widely described for many lactic acid bacteria (LAB) of different genera and species, but little is known about the relationship between the functional properties of the producing bacteria and EPS synthesis. Although many studies were addressed towards the application of EPS-producing LAB in the manufacture of several dairy products (fermented milk, cheese) due to their interesting technological properties (increased hardness, water holding capacity, viscosity, etc.), there are not many reports about the functional properties of the EPS extract itself, especially for the genus Lactobacillus. The aim of the present revision is to focus on the species Lactobacillus fermentum with reported functional properties, with particular emphasis on those strains capable of producing EPS, and try to establish if there is any linkage between this property and their functional/probiotic roles, considering the most recent bibliography.


Assuntos
Produtos Fermentados do Leite/microbiologia , Microbiologia de Alimentos , Limosilactobacillus fermentum/fisiologia , Polissacarídeos Bacterianos/biossíntese , Animais , Antibiose , Bactérias/patogenicidade , Fenômenos Fisiológicos Bacterianos , Fermentação , Fatores Imunológicos , Limosilactobacillus fermentum/química , Probióticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA