Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 851
Filtrar
1.
Eur J Immunol ; 54(10): e2451094, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38980255

RESUMO

The antiallergic effects of gut microbiota have been attracting attention in recent years, but the underlying cellular and molecular mechanisms have not yet been fully understood. In this study, we aimed to investigate these mechanisms specifically focusing on mast cells. Mast cells retain intracellular granules containing various inflammatory mediators such as histamine, which are released outside the cells upon IgE and allergen stimulation. We previously reported that increased expression of the transcription factor, CCAAT/enhancer-binding protein α (C/EBPα), suppresses granule formation in mast cells and that Lacticaseibacillus casei JCM1134T (LC) upregulates C/EBPα levels. Here, granule formation in mouse bone marrow-derived mast cells was suppressed in a MyD88-dependent manner after LC treatment due to C/EBPα-dependent downregulation of the genes encoding serglycin (SRGN) and mast cell protease 4 (Mcpt4). Furthermore, C/EBPα expression was regulated by DNA methylation in the 5' region far upstream of the transcription start site. LC suppressed DNA methylation of specific CpG motifs in the 5' region of the C/EBPα gene. These results conclude that specific gut microbial components, such as those from LC, suppress granule formation in mast cells by inhibiting SRGN and Mcpt4 expression via reduced C/EBPα gene methylation.


Assuntos
Microbioma Gastrointestinal , Mastócitos , Animais , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos , Microbioma Gastrointestinal/imunologia , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Lacticaseibacillus casei/imunologia , Metilação de DNA , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degranulação Celular/imunologia , Regulação da Expressão Gênica/imunologia
2.
Nat Immunol ; 14(12): 1277-84, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24185616

RESUMO

Notch signaling induces gene expression of the T cell lineage and discourages alternative fate outcomes. Hematopoietic deficiency in the Notch target Hes1 results in severe T cell lineage defects; however, the underlying mechanism is unknown. We found here that Hes1 constrained myeloid gene-expression programs in T cell progenitor cells, as deletion of the myeloid regulator C/EBP-α restored the development of T cells from Hes1-deficient progenitor cells. Repression of Cebpa by Hes1 required its DNA-binding and Groucho-recruitment domains. Hes1-deficient multipotent progenitor cells showed a developmental bias toward myeloid cells and dendritic cells after Notch signaling, whereas Hes1-deficient lymphoid progenitor cells required additional cytokine signaling for diversion into the myeloid lineage. Our findings establish the importance of constraining developmental programs of the myeloid lineage early in T cell development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Proteína alfa Estimuladora de Ligação a CCAAT/imunologia , Proteínas de Homeodomínio/imunologia , Receptor Notch1/imunologia , Linfócitos T/imunologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Linhagem Celular , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Citometria de Fluxo , Expressão Gênica/imunologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Linfopoese/genética , Linfopoese/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Células Mieloides/imunologia , Células Mieloides/metabolismo , Ligação Proteica/imunologia , Receptor Notch1/genética , Receptor Notch1/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células-Tronco/imunologia , Células-Tronco/metabolismo , Linfócitos T/metabolismo , Fatores de Transcrição HES-1
3.
Biochem J ; 481(10): 653-666, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38666590

RESUMO

E3 ubiquitin ligase, ring finger protein 138 (RNF138) is involved in several biological processes; however, its role in myeloid differentiation or tumorigenesis remains unclear. RNAseq data from TNMplot showed that RNF138 mRNA levels are highly elevated in acute myeloid leukemia (AML) bone marrow samples as compared with bone marrow of normal volunteers. Here, we show that RNF138 serves as an E3 ligase for the tumor suppressor CCAAT/enhancer binding protein (C/EBPα) and promotes its degradation leading to myeloid differentiation arrest in AML. Wild-type RNF138 physically interacts with C/EBPα and promotes its ubiquitin-dependent proteasome degradation while a mutant RNF-138 deficient in ligase activity though interacts with C/EBPα, fails to down-regulate it. We show that RNF138 depletion enhances endogenous C/EBPα levels in peripheral blood mononuclear cells (PBMCs) isolated from healthy volunteers. Our data further shows that RNF138-mediated degradation of C/EBPα negatively affects its transactivation potential on its target genes. Furthermore, RNF138 overexpression inhibits all-trans-retinoic acid-induced differentiation of HL-60 cells whereas RNF138 RNAi enhances. In line with RNF138 inhibiting C/EBPα protein turnover, we also observed that RNF138 overexpression inhibited ß-estradiol (E2)-induced C/EBPα driven granulocytic differentiation in C/EBPα inducible K562-p42C/EBPα-estrogen receptor cells. Furthermore, we also recapitulated these findings in PBMCs isolated from AML patients where depletion of RNF138 increased the expression of myeloid differentiation marker CD11b. These results suggest that RNF138 inhibits myeloid differentiation by targeting C/EBPα for proteasomal degradation and may provide a plausible mechanism for loss of C/EBPα expression often observed in myeloid leukemia. Also, targeting RNF138 may resolve differentiation arrest by restoring C/EBPα expression in AML.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT , Diferenciação Celular , Leucemia Mieloide Aguda , Ubiquitina-Proteína Ligases , Humanos , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT , Diferenciação Celular/genética , Células HEK293 , Células HL-60 , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Proteólise , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
J Biol Chem ; 299(5): 104635, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963490

RESUMO

Energy balance and nutrient availability are key determinants of cellular decisions to remain quiescent, proliferate, or differentiate into a mature cell. After assessing its environmental state, the cell must rewire its metabolism to support distinct cellular outcomes. Mechanistically, how metabolites regulate cell fate decisions is poorly understood. We used adipogenesis as our model system to ascertain the role of metabolism in differentiation. We isolated adipose tissue stromal vascular fraction cells and profiled metabolites before and after adipogenic differentiation to identify metabolic signatures associated with these distinct cellular states. We found that differentiation alters nucleotide accumulation. Furthermore, inhibition of nucleotide biosynthesis prevented lipid storage within adipocytes and downregulated the expression of lipogenic factors. In contrast to proliferating cells, in which mechanistic target of rapamycin complex 1 is activated by purine accumulation, mechanistic target of rapamycin complex 1 signaling was unaffected by purine levels in differentiating adipocytes. Rather, our data indicated that purines regulate transcriptional activators of adipogenesis, peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α, to promote differentiation. Although de novo nucleotide biosynthesis has mainly been studied in proliferation, our study points to its requirement in adipocyte differentiation.


Assuntos
Adipogenia , Metabolismo dos Lipídeos , Nucleotídeos , Animais , Camundongos , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Diferenciação Celular , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Nucleotídeos/biossíntese , Purinas/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Transdução de Sinais
5.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35067718

RESUMO

Adipogenesis is closely related to various metabolic diseases, such as obesity, type 2 diabetes, cardiovascular diseases and cancer. This cellular process is highly dependent on the expression and sequential activation of a diverse group of transcription factors. Here, we report that ADAR1 (also known as ADAR) could inhibit adipogenesis through binding with Dicer (also known as DICER1), resulting in enhanced production of miR-155-5p, which downregulates the adipogenic early transcription factor C/EBPß. Consequently, the expression levels of late-stage adipogenic transcription factors (C/EBPα and PPARγ) are reduced and adipogenesis is inhibited. More importantly, in vivo studies reveal that overexpression of ADAR1 suppresses white adipose tissue expansion in high fat diet-induced obese mice, leading to improved metabolic phenotypes, such as insulin sensitivity and glucose tolerance.


Assuntos
Adenosina Desaminase , Adipogenia , RNA Helicases DEAD-box , MicroRNAs , Obesidade , Ribonuclease III , Células 3T3-L1 , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Adipogenia/genética , Tecido Adiposo , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/genética , Obesidade/metabolismo , PPAR gama/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo
6.
Cell Biochem Funct ; 42(5): e4069, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38940455

RESUMO

Stem cells demonstrate differentiation and regulatory functions. In this discussion, we will explore the impacts of cell culture density on stem cell proliferation, adipogenesis, and regulatory abilities. This study aimed to investigate the impact of the initial culture density of human periodontal ligament stem cells (hPDLSCs) on the adipogenic differentiation of autologous cells. Our findings indicate that the proliferation rate of hPDLSCs increased with increasing initial cell density (0.5-8 × 104 cells/cm2). After adipogenic differentiation induced by different initial cell densities of hPDLSC, we found that the mean adipose concentration and the expression levels of lipoprotein lipase (LPL), CCAAT/enhancer binding protein α (CEBPα), and peroxisome proliferator-activated receptor γ (PPAR-γ) genes all increased with increasing cell density. To investigate the regulatory role of hPDLSCs in the adipogenic differentiation of other cells, we used secreted exocrine vesicles derived from hPDLSCs cultivated at different initial cell densities of 50 µg/mL to induce the adipogenic differentiation of human bone marrow stromal cells. We also found that the mean adipose concentration and expression of LPL, CEBPα, and PPARγ genes increased with increasing cell density, with an optimal culture density of 8 × 104 cells/cm2. This study provides a foundation for the application of adipogenic differentiation in stem cells.


Assuntos
Adipogenia , Diferenciação Celular , Ligamento Periodontal , Células-Tronco , Humanos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , PPAR gama/metabolismo , PPAR gama/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células Cultivadas , Lipase Lipoproteica/metabolismo , Lipase Lipoproteica/genética , Proliferação de Células , Contagem de Células , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética
7.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256272

RESUMO

Cornelian cherry (Cornus mas L.) fruits, abundant in iridoids and anthocyanins, are natural products with proven beneficial impacts on the functions of the cardiovascular system and the liver. This study aims to assess and compare whether and to what extent two different doses of resin-purified cornelian cherry extract (10 mg/kg b.w. or 50 mg/kg b.w.) applied in a cholesterol-rich diet rabbit model affect the levels of sterol regulatory element-binding protein 1c (SREBP-1c) and CCAAT/enhancer binding protein α (C/EBPα), and various liver X receptor-α (LXR-α), peroxisome proliferator-activated receptor-α (PPAR-α), and peroxisome proliferator-activated receptor-γ (PPAR-γ) target genes. Moreover, the aim is to evaluate the resistive index (RI) of common carotid arteries (CCAs) and aortas, and histopathological changes in CCAs. For this purpose, the levels of SREBP-1c, C/EBPα, ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), fatty acid synthase (FAS), endothelial lipase (LIPG), carnitine palmitoyltransferase 1A (CPT1A), and adiponectin receptor 2 (AdipoR2) in liver tissue were measured. Also, the levels of lipoprotein lipase (LPL), visceral adipose tissue-derived serine protease inhibitor (Vaspin), and retinol-binding protein 4 (RBP4) in visceral adipose tissue were measured. The RI of CCAs and aortas, and histopathological changes in CCAs, were indicated. The oral administration of the cornelian cherry extract decreased the SREBP-1c and C/EBPα in both doses. The dose of 10 mg/kg b.w. increased ABCA1 and decreased FAS, CPT1A, and RBP4, and the dose of 50 mg/kg b.w. enhanced ABCG1 and AdipoR2. Mitigations in atheromatous changes in rabbits' CCAs were also observed. The obtained outcomes were compared to the results of our previous works. The beneficial results confirm that cornelian cherry fruit extract may constitute a potentially effective product in the prevention and treatment of obesity-related disorders.


Assuntos
Cornus , Lagomorpha , Extratos Vegetais , Animais , Coelhos , Antocianinas , Transportadores de Cassetes de Ligação de ATP , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Cornus/química , Dieta , Frutas/química , Fígado , Receptores X do Fígado/genética , Extratos Vegetais/farmacologia , PPAR alfa/genética , PPAR gama/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
8.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732125

RESUMO

"Ganghwal" is a widely used herbal medicine in Republic of Korea, but it has not been reported as a treatment strategy for obesity and diabetes within adipocytes. In this study, we determined that Ostericum koreanum extract (OKE) exerts an anti-obesity effect by inhibiting adipogenesis and an anti-diabetic effect by increasing the expression of genes related to glucose uptake in adipocytes and inhibiting α-glucosidase activity. 3T3-L1 preadipocytes were differentiated for 8 days in methylisobutylxanthine, dexamethasone, and insulin medium, and the effect of OKE was confirmed by the addition of 50 and 100 µg/mL of OKE during the differentiation process. This resulted in a reduction in lipid accumulation and the expression of PPARγ (Peroxisome proliferator-activated receptor γ) and C/EBPα (CCAAT enhancer binding protein α). Significant activation of AMPK (AMP-activated protein kinase), increased expression of GLUT4 (Glucose Transporter Type 4), and inhibition of α-glucosidase activity were also observed. These findings provide the basis for the anti-obesity and anti-diabetic effects of OKE. In addition, OKE has a significant antioxidant effect. This study presents OKE as a potential natural product-derived material for the treatment of patients with metabolic diseases such as obesity- and obesity-induced diabetes.


Assuntos
Células 3T3-L1 , Adipócitos , Adipogenia , Fármacos Antiobesidade , Hipoglicemiantes , PPAR gama , Extratos Vegetais , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Adipogenia/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , PPAR gama/metabolismo , PPAR gama/genética , Fármacos Antiobesidade/farmacologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , alfa-Glucosidases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Crassulaceae/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos
9.
Molecules ; 29(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731499

RESUMO

Carbon nanodots (CDs) are commonly found in food products and have attracted significant attention from food scientists. There is a high probability of CD exposure in humans, but its impacts on health are unclear. Therefore, health effects associated with CD consumption should be investigated. In this study, we attempted to create a model system of the Maillard reaction between cystine and glucose using a simple cooking approach. The CDs (CG-CDs) were isolated from cystine-glucose-based Maillard reaction products and characterized using fluorescence spectroscopy, X-ray diffractometer (XRD), and transmission electron microscope (TEM). Furthermore, human mesenchymal stem cells (hMCs) were used as a model to unravel the CDs' cytotoxic properties. The physiochemical assessment revealed that CG-CDs emit excitation-dependent fluorescence and possess a circular shape with sizes ranging from 2 to 13 nm. CG-CDs are predominantly composed of carbon, oxygen, and sulfur. The results of the cytotoxicity evaluation indicate good biocompatibility, where no severe toxicity was observed in hMCs up to 400 µg/mL. The DPPH assay demonstrated that CDs exert potent antioxidant abilities. The qPCR analysis revealed that CDs promote the downregulation of the key regulatory genes, PPARγ, C/EBPα, SREBP-1, and HMGCR, coupled with the upregulation of anti-inflammatory genes. Our findings suggested that, along with their excellent biocompatibility, CG-CDs may offer positive health outcomes by modulating critical genes involved in lipogenesis, homeostasis, and obesity pathogenesis.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT , Carbono , Reação de Maillard , Células-Tronco Mesenquimais , PPAR gama , Proteína de Ligação a Elemento Regulador de Esterol 1 , Humanos , Carbono/química , PPAR gama/genética , PPAR gama/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Pontos Quânticos/química , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Enxofre/química
10.
J Cell Biochem ; 124(7): 961-973, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37204112

RESUMO

Adipogenesis, that is, the formation of terminally differentiated adipocytes is intricately regulated by transcription factors where CCAAT/enhancer binding protein alpha (C/EBPα) plays a key role. In the current study, we demonstrate that E3 ubiquitin ligase AIP4 negatively regulates C/EBPα protein stability leading to reduced adipogenesis. While AIP4 overexpression in 3T3-L1 cells preadipocytes inhibited lipid accumulation when treated with differentiation inducing media (MDI), AIP4 depletion was sufficient to partially promote lipid accumulation even in the absence of MDI. Mechanistically, overexpression of AIP4 inhibited protein levels of both ectopically expressed as well as endogenous C/EBPα while catalytically inactive AIP4 failed. On the contrary, AIP4 depletion profoundly enhanced endogenous C/EBPα protein levels. The observation that AIP4 levels decrease with concomitant increase in C/EBPα levels during adipocyte differentiation further indicated that AIP4 negatively regulates C/EBPα levels. We further show that AIP4 physically interacts with C/EBPα and ubiquitinates it leading to its proteasomal degradation. AIP4 promoted K48-linked ubiquitination of C/EBPα while catalytically inactive AIP4-C830A failed. Taken together, our data demonstrate that AIP4 inhibits adipogenesis by targeting C/EBPα for ubiquitin-mediated proteasome degradation.


Assuntos
Adipogenia , Proteína alfa Estimuladora de Ligação a CCAAT , Ubiquitina-Proteína Ligases , Ubiquitina , Animais , Camundongos , Células 3T3-L1 , Adipócitos/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular , Lipídeos , PPAR gama/metabolismo , Ubiquitina/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
Cancer Sci ; 114(3): 781-792, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36341510

RESUMO

CEBPA-IGH, a fusion gene of the immunoglobulin heavy-chain locus (IGH) and the CCAAT enhancer-binding protein α (C/EBPα) gene, is recurrently found in B-ALL cases and causes aberrant expression of C/EBPα, a master regulator of granulocyte differentiation, in B cells. Forced expression of C/EBPα in B cells was reported to cause loss of B-cell identity due to the inhibition of Pax5, a master regulator of B-cell differentiation; however, it is not known whether the same mechanism is applicable for B-ALL development by CEBPA-IGH. It is known that a full-length isoform of C/EBPα, p42, promotes myeloid differentiation, whereas its N-terminal truncated isoform, p30, inhibits myeloid differentiation through the inhibition of p42; however, the differential role between p42 and p30 in ALL development has not been clarified. In the present study, we examined the effect of the expression of p42 and p30 in B cells by performing RNA-seq of mRNA from LCL stably transfected with p42 or p30. Unexpectedly, suppression of PAX5 target genes was barely observed. Instead, both isoforms suppressed the target genes of MEF2 family members (MEF2s), other regulators of B-cell differentiation. Similarly, MEF2s target genes rather than PAX5 target genes were suppressed in CEBP-IGH-positive ALL (n = 8) compared with other B-ALL (n = 315). Furthermore, binding of both isoforms to MEF2s target genes and the reduction of surrounding histone acetylation were observed in ChIP-qPCR. Our data suggest that the inhibition of MEF2s by C/EBPα plays a role in the development of CEBPA-IGH-positive ALL and that both isoforms work co-operatively to achieve it.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Leucemia , Humanos , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/farmacologia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular , Hematopoese , Isoformas de Proteínas/genética , Fatores de Transcrição MEF2/metabolismo
12.
Cell Biol Int ; 47(3): 648-659, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36448374

RESUMO

In this study, methionine sulfoxide (MetO) was identified as an active metabolite that suppresses adipogenesis after screening obese individuals versus the normal population. MetO suppressed the gene and protein expression of CCAAT/enhancer binding protein (C/EBP) α, adipocyte fatty acid binding protein 4 (FABP4), and the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) during human preadipocyte (HPA) differentiation. Adipogenesis decreased following MetO treatment; however, the preadipocyte number, proliferation, and apoptosis were unaffected. The activity of phosphorylated extracellular signal-related kinase (P-ERK) of the mitogen-activated protein kinase (MAPK) pathway was significantly inhibited in HPA after MetO treatment. Furthermore, treatment of preadipocytes with the selective P-ERK1/2 agonist Ro 67-7476 abolished the effect of MetO against adipogenesis suggesting that MetO function is dependent on the MAPK pathway. The mechanistic insights of adipogenesis suppression by MetO presented in this study shows its potential as an antiobesity drug.


Assuntos
Adipócitos , Adipogenia , Humanos , Camundongos , Animais , Adipócitos/metabolismo , Transdução de Sinais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/farmacologia , PPAR gama/metabolismo , Células 3T3-L1 , Diferenciação Celular
13.
Br J Haematol ; 198(6): 1041-1050, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35880261

RESUMO

To create a personal prognostic model and modify the risk stratification of paediatric acute myeloid leukaemia, we downloaded the clinical data of 597 patients from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database as a training set and included 189 patients from our centre as a validation set. In the training set, age at diagnosis, -7/del(7q) or -5/del(5q), core binding factor fusion genes, FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD)/nucleophosmin 1 (NPM1) status, Wilms tumour 1 (WT1) mutation, biallelic CCAAT enhancer binding protein alpha (CEBPA) mutation were strongly correlated with overall survival and included to construct the model. The prognostic model demonstrated excellent discriminative ability with the Harrell's concordance index of 0.68, 3- and 5-year area under the receiver operating characteristic curve of 0.71 and 0.72 respectively. The model was validated in the validation set and outperformed existing prognostic systems. Additionally, patients were stratified into three risk groups (low, intermediate and high risk) with significantly distinct prognosis, and the model successfully identified candidates for haematopoietic stem cell transplantation. The newly developed prognostic model showed robust ability and utility in survival prediction and risk stratification, which could be helpful in modifying treatment selection in clinical routine.


Assuntos
Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/uso terapêutico , Criança , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Mutação , Proteínas Nucleares/genética , Prognóstico , Tirosina Quinase 3 Semelhante a fms/genética
14.
Br J Haematol ; 197(4): 442-451, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35274287

RESUMO

The prognostic factors to stratify acute myeloid leukaemia (AML) with double-mutated CCAAT/enhancer-binding protein alpha (CEBPAdm) into different risk groups remains to be determined. In this retrospective study, we evaluated 171 consecutive patients with newly diagnosed AML with CEBPAdm by a Cox proportional hazards regression model. In univariate analyses, colony stimulating factor 3 receptor (CSF3R) and Wilms tumour 1 (WT1) mutations were associated with poor relapse-free survival (RFS). The induction regimens including homoharringtonine (omacetaxine mepesuccinate) or intermediate-dose cytarabine was associated with favourable RFS and overall survival (OS). The induction regimen including both homoharringtonine and intermediate-dose cytarabine was associated with the most favourable RFS (3-year RFS 84.7%) and OS (3-year OS 92.8%) compared to the conventional cytarabine and daunorubicin regimen (3-year RFS 27.7%, hazard ratio [HR] 0.126, 95% confidence interval [CI] 0.051-0.313, Wald p < 0.001; and 3-year OS 56.4%, HR 0.179, 95% CI 0.055-0.586, Wald p = 0.005). In multivariate analyses, the induction regimen including intermediate-dose cytarabine (HR 0.364, 95% CI 0.205-0.646, Wald p < 0.001) and CSF3R mutations (HR 2.667, 95% CI 1.276-5.572, Wald p = 0.009) were independently associated with RFS. Taken together, we found that induction regimen and CSF3R mutations were independent prognostic factors for AML with CEBPAdm.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT , Leucemia Mieloide Aguda , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Citarabina/uso terapêutico , Mepesuccinato de Omacetaxina , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Recidiva Local de Neoplasia , Prognóstico , Receptores de Fator Estimulador de Colônias , Estudos Retrospectivos
15.
Biochem Biophys Res Commun ; 612: 126-133, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35525196

RESUMO

CeRNA effect was an important regulation mode of miRNA mediated bio-activities, however, most of the researches of ceRNA were on ncRNAs synergetic with mRNAs, the exploration of ceRNA effect regulated mRNA interaction was still lack of. Besides, C/EBPα was one of the most crucial adipogenic regulators, which has been demonstrated to form a protein complex with FOXO1 to mediate AdipoQ expression. So that, we try to explore whether the ceRNA effect mediated the interaction of C/EBPα and FOXO1, and identified the key miRNAs of their ceRNA effect. In this paper, we found the ceRNA effect of C/EBPα and FOXO1 mediated their protein complex formation, furthermore regulated its transcriptional role for AdipoQ, thereby influencing pre-adipocytes adipogenesis. More importantly, we demonstrated that the miR-144 was the decisive factor that mediated the ceRNA effect of C/EBPα and FOXO1 to influence AdipoQ, thus regulated pre-adipocytes adipogenesis. This research will provide a new supplementary idea of the miRNA role in mediating coding RNA interaction that regulates pre-adipocyte adipogenesis.


Assuntos
Adipogenia , MicroRNAs , Células 3T3-L1 , Adipócitos/metabolismo , Adipogenia/genética , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Camundongos , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo
16.
Biochem Biophys Res Commun ; 601: 79-85, 2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35231655

RESUMO

Long non-coding RNAs (lncRNAs) have gained extensive attentions due to their significant roles in diverse biological process. However, the potential functions of lncRNAs participation in adipocyte differentiation have not been fully explored. In the present study, we globally profiled lncRNA expression using lncRNA microarray and identified 1745 lncRNA probes with differential expression on day 0 and day 4 post-induction in both C3H10T1/2 mesenchymal stem cells and 3T3-L1 preadipocytes. Furthermore, we showed that stable shRNA knockdown (KD) of NR_015556, a novel lncRNA that was significantly down-regulated in adipocyte differentiation, promoted adipocyte differentiation by increasing the number of lipid droplets and adipocyte markers such as Fabp4, Adipsin and Fasn. Mechanistically, NR_015556 KD attenuated the expression of Wnt signaling components Wnt10b and non-phospho (active) ß-catenin, and elevated adipocyte master factors Ppar-γ and C/EBPα levels. Conversely, pharmacological activation of Wnt10b-ß-catenin signaling by LiCl suppressed NR_015556 KD-induced enhancement of adipocyte differentiation and Ppar-γ and C/EBPα expression levels. Taken together, these results indicate that down-regulation of NR_015556 promotes adipocyte differentiation through inhibiting Wnt10b-ß-catenin signaling pathway and then elevating Ppar-γ and C/EBPα triggered transcriptional cascades.


Assuntos
RNA Longo não Codificante , Células 3T3-L1 , Adipócitos/metabolismo , Adipogenia/genética , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Camundongos , PPAR gama/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
17.
Int J Obes (Lond) ; 46(3): 523-534, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34789850

RESUMO

BACKGROUND/OBJECTIVES: This study investigated the functions of CCAAT/enhancer-binding protein zeta (C/EBPZ; Gene ID: 10153) in adipose tissue. SUBJECTS/METHODS: Bioinformatics analysis were used to study the expression pattern of C/EBPZ in human adipose tissue. The expression and function of C/EBPZ in adipose tissue were further studied using chicken as animal model in vivo and in vitro. RESULTS: The human C/EBPZ transcripts were greater and more stable in subcutaneous adipose tissue than in visceral adipose tissue (P < 0.01), and they were increased with age in adipose tissue (P < 0.05). In addition, the chicken C/EBPZ transcripts (C/EBPZ /ACTB) of visceral (abdominal) adipose tissue were significantly different between fat and lean broilers and decreased with age during development (P < 0.01). RNA-seq analysis showed that the C/EBPZ overexpression associated with adipose tissue development and DNA replication in chicken preadipocytes (P < 0.05). Additionally, overexpression of chicken C/EBPZ inhibited preadipocytes differentiation and promoted preadipoytes proliferation in vitro (P < 0.05). In addition, C/EBPZ overexpression suppressed the promoter activities of PPARγ, C/EBPα, FASN and LPL, and promoted the promoter activities of GATA2 and FABP4 in chicken preadipocytes (P < 0.05). CONCLUSIONS: C/EBPZ modulated the differentiation and proliferation of preadipocytes, and it might be a new negative regulator of adipogenesis.


Assuntos
Adipócitos , Galinhas , Adipócitos/metabolismo , Adipogenia/genética , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular , Proliferação de Células , Galinhas/genética , Galinhas/metabolismo , PPAR gama/metabolismo
18.
Immunity ; 39(1): 97-110, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23871207

RESUMO

It remains unclear whether basophils and mast cells are derived from a common progenitor. Furthermore, how basophil versus mast cell fate is specified has not been investigated. Here, we have identified a population of granulocyte-macrophage progenitors (GMPs) that were highly enriched in the capacity to differentiate into basophils and mast cells while retaining a limited capacity to differentiate into myeloid cells. We have designated these progenitor cells "pre-basophil and mast cell progenitors" (pre-BMPs). STAT5 signaling was required for the differentiation of pre-BMPs into both basophils and mast cells and was critical for inducing two downstream molecules: C/EBPα and MITF. We have identified C/EBPα as the critical basophil transcription factor for specifying basophil cell fate and MITF as the crucial transcription factor for specifying mast cell fate. C/EBPα and MITF silenced each other's transcription in a directly antagonistic fashion. Our study reveals how basophil and mast cell fate is specified.


Assuntos
Basófilos/imunologia , Proteína alfa Estimuladora de Ligação a CCAAT/imunologia , Mastócitos/imunologia , Fator de Transcrição Associado à Microftalmia/imunologia , Animais , Basófilos/citologia , Basófilos/metabolismo , Western Blotting , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Células Cultivadas , Citometria de Fluxo , Perfilação da Expressão Gênica , Células Progenitoras de Granulócitos e Macrófagos/citologia , Células Progenitoras de Granulócitos e Macrófagos/imunologia , Células Progenitoras de Granulócitos e Macrófagos/metabolismo , Células HEK293 , Humanos , Mastócitos/citologia , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/imunologia , Fator de Transcrição STAT5/metabolismo , Células-Tronco/imunologia , Células-Tronco/metabolismo
19.
Bioessays ; 42(2): e1900178, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31867767

RESUMO

Mutations in the CEBPA gene are present in 10-15% of acute myeloid leukemia (AML) patients. The most frequent type of mutations leads to the expression of an N-terminally truncated variant of the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα), termed p30. While initial reports proposed that p30 represents a dominant-negative version of the wild-type C/EBPα protein, other studies show that p30 retains the capacity to actively regulate gene expression. Recent global transcriptomic and epigenomic analyses have advanced the understanding of the distinct roles of the p30 isoform in leukemogenesis. This review outlines direct and indirect effects of the C/EBPα p30 variant on oncogenic transformation of hematopoietic progenitor cells and discusses how studies of N-terminal CEBPA mutations in AML can be extrapolated to identify novel gain-of-function features in oncoproteins that arise from recurrent truncating mutations in transcription factors.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/genética , Mutação com Ganho de Função/genética , Leucemia Mieloide Aguda/genética , Animais , Regulação Neoplásica da Expressão Gênica/genética , Células-Tronco Hematopoéticas/fisiologia , Humanos
20.
Molecules ; 27(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807476

RESUMO

We investigated the effects of derhamnosylmaysin (DM) on adipogenesis and lipid accumulation in 3T3-L1 adipocytes. Our data showed that DM inhibited lipid accumulation and adipocyte differentiation in 3T3-L1 cells. Treatment of 3T3-L1 adipocytes with DM decreased the expression of major transcription factors, such as sterol regulatory element-binding protein-1c (SREBP-1c), the CCAAT-enhancer-binding protein (CEBP) family, and peroxisome proliferator-activated receptor gamma (PPARγ), in the regulation of adipocyte differentiation. Moreover, the expression of their downstream target genes related to adipogenesis and lipogenesis, including adipocyte fatty acid-binding protein (aP2), lipoprotein lipase (LPL), stearyl-CoA-desaturase-1 (SCD-1), acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS), was also decreased by treatment with DM during adipogenesis. Additionally, DM attenuated insulin-stimulated phosphorylation of Akt. These results first demonstrated that DM inhibited adipogenesis and lipogenesis through downregulation of the key adipogenic transcription factors SREBP-1c, the CEBP family, and PPARγ and inactivation of the major adipogenesis signaling factor Akt, which is intermediated in insulin. These studies demonstrated that DM is a new bioactive compound for antiadipogenic reagents for controlling overweight and obesity.


Assuntos
Adipogenia , Fármacos Antiobesidade , Flavonoides , Glucosídeos , Insulinas , Células 3T3-L1 , Adipogenia/efeitos dos fármacos , Animais , Fármacos Antiobesidade/farmacologia , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular/efeitos dos fármacos , Flavonoides/farmacologia , Glucosídeos/farmacologia , Insulinas/farmacologia , Lipídeos/farmacologia , Camundongos , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA