Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.367
Filtrar
1.
Ann Neurol ; 90(2): 274-284, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34185323

RESUMO

OBJECTIVE: The MAST family of microtubule-associated serine-threonine kinases (STKs) have distinct expression patterns in the developing and mature human and mouse brain. To date, only MAST1 has been conclusively associated with neurological disease, with de novo variants in individuals with a neurodevelopmental disorder, including a mega corpus callosum. METHODS: Using exome sequencing, we identify MAST3 missense variants in individuals with epilepsy. We also assess the effect of these variants on the ability of MAST3 to phosphorylate the target gene product ARPP-16 in HEK293T cells. RESULTS: We identify de novo missense variants in the STK domain in 11 individuals, including 2 recurrent variants p.G510S (n = 5) and p.G515S (n = 3). All 11 individuals had developmental and epileptic encephalopathy, with 8 having normal development prior to seizure onset at <2 years of age. All patients developed multiple seizure types, 9 of 11 patients had seizures triggered by fever and 9 of 11 patients had drug-resistant seizures. In vitro analysis of HEK293T cells transfected with MAST3 cDNA carrying a subset of these patient-specific missense variants demonstrated variable but generally lower expression, with concomitant increased phosphorylation of the MAST3 target, ARPP-16, compared to wild-type. These findings suggest the patient-specific variants may confer MAST3 gain-of-function. Moreover, single-nuclei RNA sequencing and immunohistochemistry shows that MAST3 expression is restricted to excitatory neurons in the cortex late in prenatal development and postnatally. INTERPRETATION: In summary, we describe MAST3 as a novel epilepsy-associated gene with a potential gain-of-function pathogenic mechanism that may be primarily restricted to excitatory neurons in the cortex. ANN NEUROL 2021;90:274-284.


Assuntos
Epilepsia/diagnóstico por imagem , Epilepsia/genética , Variação Genética/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Serina-Treonina Quinases/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Criança , Estudos de Coortes , Epilepsia/metabolismo , Feminino , Seguimentos , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Serina-Treonina Quinases/biossíntese , Adulto Jovem
2.
Am J Physiol Lung Cell Mol Physiol ; 320(3): L339-L355, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33236922

RESUMO

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor whose physiological function is poorly understood. The AhR is highly expressed in barrier organs such as the skin, intestine, and lung. The lungs are continuously exposed to environmental pollutants such as cigarette smoke (CS) that can induce cell death mechanisms such as apoptosis, autophagy, and endoplasmic reticulum (ER) stress. CS also contains toxicants that are AhR ligands. We have previously shown that the AhR protects against apoptosis, but whether the AhR also protects against autophagy or ER stress is not known. Using cigarette smoke extract (CSE) as our in vitro surrogate of environmental tobacco exposure, we first assessed the conversion of LC3I to LC3II, a classic feature of both autophagic and ER stress-mediated cell death pathways. LC3II was elevated in CSE-exposed lung structural cells [mouse lung fibroblasts (MLFs), MLE12 and A549 cells] when AhR was absent. However, this heightened LC3II expression could not be explained by increased expression of key autophagy genes (Gabarapl1, Becn1, Map1lc3b), upregulation of upstream autophagic machinery (Atg5-12, Atg3), or impaired autophagic flux, suggesting that LC3II may be autophagy independent. This was further supported by the absence of autophagosomes in Ahr-/- lung cells. However, Ahr-/- lung cells had widespread ER dilation, elevated expression of the ER stress markers CHOP and GADD34, and an accumulation of ubiquitinated proteins. These findings collectively illustrate a novel role for the AhR in attenuating ER stress by a mechanism that may be autophagy independent.


Assuntos
Estresse do Retículo Endoplasmático , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Pulmão/metabolismo , Proteínas Associadas aos Microtúbulos/biossíntese , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Autofagia , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
3.
Biochem Biophys Res Commun ; 561: 80-87, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34020142

RESUMO

Emerging evidence suggests that microRNAs (miRNAs) participate in hepatocellular carcinoma (HCC) progression. Nevertheless, the mechanism of miR-7-5p in HCC cells has not been researched. In the research, the underlying biological function of miR-7-5p and SPC24 in HCC was explored. qRT-PCR was performed to measure the miR-7-5p and SPC24 level in HCC tissues and cells. The effect of miR-7-5p on HCC progression was detected by performing CCK-8, BrdU, and transwell assay. The relationship between miR-7-5p and SPC24 was determined using luciferase and RNA pull-down assays. Our findings showed that miR-7-5p was downregulated in HCC whereas SPC24 was upregulated in HCC. It was also showed that miR-7-5p upregulation restricted malignant behaviors of HCC cells, but this inhibitory effect of miR-7-5p could be relieved by its target gene SPC24. In conclusion, this research suggested that by inhibiting SPC24, miR-7-5p could act as a tumor inhibitory factor in HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Apoptose/fisiologia , Carcinoma Hepatocelular/genética , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Biologia Computacional/métodos , Humanos , Neoplasias Hepáticas/genética , MicroRNAs/metabolismo , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Transdução de Sinais
4.
J Hepatol ; 73(4): 771-782, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32376415

RESUMO

BACKGROUND & AIMS: Currently, only a few genetic variants explain the heritability of fatty liver disease. Quantitative trait loci (QTL) analysis of mouse strains has identified the susceptibility locus Ltg/NZO (liver triglycerides from New Zealand obese [NZO] alleles) on chromosome 18 as associating with increased hepatic triglycerides. Herein, we aimed to identify genomic variants responsible for this association. METHODS: Recombinant congenic mice carrying 5.3 Mbp of Ltg/NZO were fed a high-fat diet and characterized for liver fat. Bioinformatic analysis, mRNA profiles and electrophoretic mobility shift assays were performed to identify genes responsible for the Ltg/NZO phenotype. Candidate genes were manipulated in vivo by injecting specific microRNAs into C57BL/6 mice. Pulldown coupled with mass spectrometry-based proteomics and immunoprecipitation were performed to identify interaction partners of IFGGA2. RESULTS: Through positional cloning, we identified 2 immunity-related GTPases (Ifgga2, Ifgga4) that prevent hepatic lipid storage. Expression of both murine genes and the human orthologue IRGM was significantly lower in fatty livers. Accordingly, liver-specific suppression of either Ifgga2 or Ifgga4 led to a 3-4-fold greater increase in hepatic fat content. In the liver of low-fat diet-fed mice, IFGGA2 localized to endosomes/lysosomes, while on a high-fat diet it associated with lipid droplets. Pulldown experiments and proteomics identified the lipase ATGL as a binding partner of IFGGA2 which was confirmed by co-immunoprecipitation. Both proteins partially co-localized with the autophagic marker LC3B. Ifgga2 suppression in hepatocytes reduced the amount of LC3B-II, whereas overexpression of Ifgga2 increased the association of LC3B with lipid droplets and decreased triglyceride storage. CONCLUSION: IFGGA2 interacts with ATGL and protects against hepatic steatosis, most likely by enhancing the binding of LC3B to lipid droplets. LAY SUMMARY: The genetic basis of non-alcoholic fatty liver disease remains incompletely defined. Herein, we identified members of the immunity-related GTPase family in mice and humans that act as regulators of hepatic fat accumulation, with links to autophagy. Overexpression of the gene Ifgga2 was shown to reduce hepatic lipid storage and could be a therapeutic target for the treatment of fatty liver disease.


Assuntos
Fígado Gorduroso/genética , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Lipase/genética , Metabolismo dos Lipídeos/genética , Proteínas Associadas aos Microtúbulos/genética , Animais , Autofagia , Modelos Animais de Doenças , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/biossíntese , Células Hep G2 , Hepatócitos/patologia , Humanos , Lipase/biossíntese , Lipase/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/biossíntese , Fenótipo , RNA/genética
5.
Am J Pathol ; 189(6): 1284-1297, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30953603

RESUMO

A vital constituent of the centrosome involved in regulating the activity of the organelle during the cell cycle is centrosomal protein (CEP)-72, whose function in the case of human cancer yet lacks clarity. The expression dynamics of CEP72 and its clinical impact were examined in a large cohort of bladder tissues. Several experiments at both the in vitro and in vivo levels on urothelial carcinoma of the bladder (UCB) cells were conducted to understand the role of this molecule along with the mechanisms. Overexpression of CEP72 in UCB was linked with the acquisition of an aggressive phenotype, which was associated with poor prognosis. In UCB cell lines, knockdown of CEP72 using shRNA was sufficient to inhibit cell invasiveness/metastasis, whereas ectopic overexpression of CEP72 promoted cell invasiveness and/or metastasis both in vitro and in vivo. CEP72 was demonstrated to induce UCB cell aggressiveness via up-regulation of an important target downstream, the serpin family member 1 gene (SERPINE1) (alias plasminogen activator inhibitor, PAI1), ultimately leading to increased cancer cell invasiveness. Particularly, overexpression of CEP72 was associated with a sizable increase in cAMP response element-binding protein binding at the SERPINE1 promoter, leading to increased SERPINE1 transcription. Such observations are suggestive of the potential use of CEP72 as a therapeutic tool for UCB.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas de Neoplasias/metabolismo , Inibidor 1 de Ativador de Plasminogênio/biossíntese , Neoplasias da Bexiga Urinária/metabolismo , Bexiga Urinária/metabolismo , Idoso , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/patologia
6.
Exp Eye Res ; 198: 108153, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32710889

RESUMO

Photoreceptor cells undergo changes with aging. It is unknown if their microtubules are stable or not with aging. This study examined photoreceptor cell ultrastructure from 18 human donor retinas (32 eyes; age: 45-94 years) and quantified the photoreceptors with altered microtubules over six to ninth decades in four defined retinal regions. In addition, immunoreactivity (IR) to microtubule-associated protein-2 (MAP-2), tau and hyperphophorylated tau was performed in retinal sections from companion eyes. In young donor retinas below 75 years of age, microtubules appeared straight in photoreceptor inner segments and axons. With age, they appeared bent or misaligned in macular and mid-peripheral photoreceptors. In addition, dense granular materials were present in photoreceptor axons and synaptic terminals in advanced ages. In all decades, rod microtubules were affected more than their cone counterparts (28% vs 15%, p < 0.005). Both rods and cones were significantly affected in mid-peripheral retina (5-8 mm outside the macular border) in eighth decade, compared to other decades or retinal regions (parafoveal, perifoveal and nasal) examined (p < 0.005). IR showed a steady expression of MAP-2 in inner segments, and tau in inner segments to axons below 75 years of age, but was absent for both markers in scattered macular and mid-peripheral photoreceptors in advanced ages (>75 years). IR to hyperphosphorylated tau was present mainly in inner retina and increased with aging. Markers of oxidative stress, e.g., lipid peroxidation (4-hydroxy 2-nonenal) and nitrosative stress (nitrotyrosine) were immunopositive in aged photoreceptors. The sporadic loss of MAP-2 and tau-IR in photoreceptors may be due to microtubule changes; all these changes may affect intracellular transport and be partly responsible for photoreceptor death in aged human retina.


Assuntos
Regulação da Expressão Gênica , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/ultraestrutura , Células Fotorreceptoras Retinianas Cones/metabolismo , Proteínas tau/genética , Idoso , Idoso de 80 Anos ou mais , Senescência Celular , Feminino , Humanos , Imuno-Histoquímica , Masculino , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/biossíntese , Pessoa de Meia-Idade , RNA/genética , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Proteínas tau/biossíntese
7.
FASEB J ; 33(7): 8008-8021, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30913399

RESUMO

Schwann cells are the main supportive cells of the peripheral nerves. Schwann cells suffer inhibition of autophagy under hyperglycemia treatment in diabetic peripheral neuropathy (DPN). However, the exact mechanism is still not fully elucidated. We first observed the decrease of autophagy markers (LC3-II/LC3-I, P62) in the sciatic nerves of diabetic mice vs. normal mice, accompanied with the loss of myelinated nerve fibers and abnormal myelin sheath. In line with this, LC3-II/LC3-I and P62 were also significantly reduced in high glucose-treated rat Schwann cell 96 (RSC96) cells compared with normal glucose-treated cells. Furthermore, we found that trichostatin A [an inhibitor of histone deacetylase (HDAC)] evidently improved LC3-II/LC3-I in high glucose-treated RSC96 cells, without an effect on P62 expression. Again, HDAC1 and HDAC5 were revealed to be increased in RSC96 cells stimulated with high glucose. Inhibition of HDAC1 but not HDAC5 by small hairpin RNA vector enhanced LC3-II/LC3-I in high glucose-cultured RSC96 cells. In addition, LC3-II conversion regulators [autophagy-related protein (Atg)3, Atg5, and Atg7] were detected in high glucose-treated and HDAC1-knockdown RSC96 cells, and Atg3 was proven to be the key target of HDAC1. The presuppression of Atg3 offset the improvement of LC3-II/LC3-I resulting from HDAC1 inhibition in high glucose-treated RSC96 cells. The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway was activated in RSC96 cells treated with high glucose, which was indicated by increased STAT3 phosphorylation. Blocking STAT3 phosphorylation by chemical inhibitor AG490 induced HDAC1 down-regulation followed by increases in Atg3 and LC3-II/LC3-I. Interestingly, we also found that AG490 treatment enhanced P62 expression in high glucose-stimulated RSC96 cells. Taken together, our findings demonstrate that hyperglycemia inhibits LC3-II/LC3-I in an HDAC1-Atg3-dependent manner and decreases P62 expression in an HDAC-independent manner via the JAK-STAT3 signaling pathway in the Schwann cells of DPN.-Du, W., Wang, N., Li, F. Jia, K., An, J., Liu, Y., Wang, Y., Zhu, L., Zhao, S. Hao, J. STAT3 phosphorylation mediates high glucose-impaired cell autophagy in an HDAC1-dependent and -independent manner in Schwann cells of diabetic peripheral neuropathy.


Assuntos
Autofagia/efeitos dos fármacos , Neuropatias Diabéticas/metabolismo , Glucose/farmacologia , Histona Desacetilase 1/fisiologia , Processamento de Proteína Pós-Traducional , Fator de Transcrição STAT3/metabolismo , Células de Schwann/efeitos dos fármacos , Animais , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Proteínas Relacionadas à Autofagia/biossíntese , Proteínas Relacionadas à Autofagia/genética , Biomarcadores , Linhagem Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Neuropatias Diabéticas/patologia , Técnicas de Silenciamento de Genes , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/genética , Histona Desacetilases/genética , Histona Desacetilases/fisiologia , Ácidos Hidroxâmicos/farmacologia , Camundongos , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Bainha de Mielina/patologia , Fibras Nervosas Mielinizadas/patologia , Peptídeo Sintases/antagonistas & inibidores , Peptídeo Sintases/biossíntese , Peptídeo Sintases/genética , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Ratos , Células de Schwann/metabolismo , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Tirfostinas/farmacologia , Regulação para Cima
8.
Exp Cell Res ; 382(1): 111456, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31194978

RESUMO

Autophagy is a cellular bulk degradation process used as an alternative source of energy and metabolites and implicated in various diseases. Inefficient autophagy in nutrient-deprived cancer cells would be beneficial for cancer therapy making its modulation valuable as a therapeutic strategy for cancer treatment, especially in combination with chemotherapy. Dipyridamole (DIP) is a vasodilator and antithrombotic drug. Its major effects involve the block of nucleoside uptake and phosphodiestesase inhibition, leading to increased levels of intracellular cAMP. Here we report that DIP increases autophagic markers due to autophagic flux blockage, resembling autophagosome maturation and/or closure impairment. Treatment with DIP results in an increased number of autophagosomes and autolysosomes and impairs degradation of SQSTM1/p62. As blockage of autophagic flux decreases the recycling of cellular components, DIP reduced the intracellular ATP levels in cancer cells. Autophagic flux blockage was neither through inhibition of lysosome function nor blockage of nucleoside uptake, but could be prevented by treatment with a PKA inhibitor, suggesting that autophagic flux failure mediated by DIP results from increased intracellular levels of cAMP. Treatment with DIP presented antiproliferative effects in vitro alone and in combination with chemotherapy drugs. Collectively, these data demonstrate that DIP can impair autophagic degradation, by preventing the normal autophagosome maturation, and might be useful in combination anticancer therapy.


Assuntos
Adenocarcinoma/patologia , Autofagia/efeitos dos fármacos , Dipiridamol/farmacologia , Neoplasias da Próstata/patologia , Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Autofagossomos/efeitos dos fármacos , Autofagossomos/ultraestrutura , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/efeitos dos fármacos , Lisossomos/enzimologia , Masculino , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteína Sequestossoma-1/biossíntese , Proteína Sequestossoma-1/genética , Ensaio Tumoral de Célula-Tronco
9.
Exp Cell Res ; 382(1): 111433, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31100306

RESUMO

Autophagy is an evolutionary conserved, self-eating process that targets cellular constituents for lysosomal degradation. Transcription factor EB (TFEB) is a master regulator of autophagy by inducing the expression of genes involved in autophagic and lysosomal degradation. In breast cancer, ligand-activated progesterone receptor has been reported to influence cancer development by manipulating the autophagy pathway. However, understanding of the mechanism that underlies this autophagic response remains limited. Herein, we report that prolonged treatment with progestin R5020 upregulates autophagy in MCF-7 human breast cancer cells via a novel interplay between progesterone receptor B (PRB) and TFEB. R5020 upregulates TFEB gene expression and protein levels in a PRB-dependent manner. Additionally, R5020 enhances the co-recruitment of PRB and TFEB to each other to facilitate TFEB nuclear localization. Once in the nucleus, TFEB induces the expression of autophagy and lysosomal genes to potentiate autophagy. Together, our findings highlight a novel functional connection between ligand-activated PRB and TFEB to modulate autophagy in MCF-7 breast cancer cells. As breast cancer development is controlled by autophagy, the progestin-PRB-TFEB transduction pathway warrants future attention as a potential therapeutic target in cancer therapy.


Assuntos
Adenocarcinoma/genética , Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Neoplasias da Mama/genética , Proteínas de Neoplasias/fisiologia , Receptores de Progesterona/fisiologia , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Autofagossomos/metabolismo , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/biossíntese , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lisossomos/metabolismo , Células MCF-7 , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Promegestona/farmacologia , Mapeamento de Interação de Proteínas , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional
10.
Cell Biochem Funct ; 38(1): 28-37, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31710389

RESUMO

Gastric cancer (GC) is one of the most common causes of cancer-related death worldwide, and outstanding biomarkers for therapeutic targets or predicting GC survival are still lacking. Increasing evidence indicated that nucleolar and spindle associated protein 1 (NUSAP1) involved in regulating the progression of various cancers; however, its specific role in GC remained unclear. In this study, we found that NUSAP1 was upregulated in the GC tissues and cell lines via analysing data from The Cancer Genome Atlas (TCGA), gene expression omnibus (GEO), qRT-PCR, and western blot assays. Patients with high NUSAP1 expression levels showed shorter free-progression survival (FPS), larger tumour size, and higher lymphatic metastasis rate compared with those with low NUSAP1 expression. Further functional experiments revealed knockdown of NUSAP1 could inhibit the growth, migration, and invasion of GC cells in vitro and vivo. Additionally, silencing NUSAP1 induced G0/G1 phase arrest, apoptosis, and suppressed the epithelial-mesenchymal transition (EMT) process. Finally, we performed gene set enrichment analysis (GSEA) and observed NUSAP1 was positive with mTORC1 signalling pathway, which was verified by the subsequent immunoblotting. In conclusion, our findings suggested that NUSAP1 contributed to GC progression and may act as a potential therapeutic target for GC. SIGNIFICANCE OF THE STUDY: Our results firstly illuminated that NUSAP1 expression was significantly upregulated in GC tissues and predicted poor FPS. Silencing it could attenuate GC progression via inhibiting mTORC1 signalling pathway. Hence, NUSAP1 may act as a promising therapy target for GC.


Assuntos
Movimento Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/biossíntese , Neoplasias Experimentais/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Biologia Computacional , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Relação Estrutura-Atividade
11.
J Cell Physiol ; 234(12): 23750-23762, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31180584

RESUMO

Despite the recent breakthrough in cataract drug development, further improvements have been limited by the lack of human in vitro cataract disease models. This study, therefore, aims to generate a qualified cataract disease model. Mature lentoid bodies (LBs) on Day 25 (D25), which were differentiated from human induced pluripotent stem cells (iPSCs) using the "fried egg" method, were continually culturing (control) or extra treated with either ultraviolet (UV) radiation or hydrogen peroxide (H2 O2 ). The LBs' shape alteration and opacity were examined using light microscopy and mean gray value evaluation. Their structure and crystallin expression were examined using immunofluorescence and transmission electron microscopy (TEM). Real-time polymerase chain reaction and western blot were used to investigate the potential role of autophagy in cloudy LBs. Mature LBs became cloudy with time which was accelerated by H2 O2 . Immunofluorescence examinations and TEM showed that the H2 O2 -treated and control LBs had similar shapes, lens capsule, and monolayer lens epithelial cell (LEC) structures. However, we were unable to do further assessment of the UV-treated LBs as the structures of LBs were easily damaged when treated with UV radiation. Cells containing aggregated protein (αA-crystallin and αB-crystallin) puncta were more abundant in the H2 O2 -treated LBs as compared with control LBs. Moreover, LC3B expression decreased with age in anterior lens capsules obtained from age-related cataracts (ARCs) patients as compared with LC3B levels in primary LECs, which is consistent with that LC3B expression in LBs was lower on D45 than on D25. Our study found that human iPSCs-derived LBs became cloudy with time which was accompanied by protein aggregation, and this phenomenon was accelerated by H2 O2 , suggesting that LBs with extending culture may serve as a human model for in vitro ARCs.


Assuntos
Catarata/patologia , Células Epiteliais/patologia , Peróxido de Hidrogênio/farmacologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Cápsula do Cristalino/citologia , Agregados Proteicos/fisiologia , Idoso , Envelhecimento , Autofagia/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Cristalinas/metabolismo , Imunofluorescência , Humanos , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/biossíntese , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real
12.
Prostate ; 79(2): 206-214, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30345525

RESUMO

INTRODUCTION AND OBJECTIVES: Multiple androgen receptor (AR)-dependent and -independent resistance mechanisms limit the efficacy of current castration-resistant prostate cancer (CRPC) treatment. Novel N-terminal domain (NTD) binding AR-targeting compounds, including EPI-001 (EPI), have the promising ability to block constitutively active splice variants, which represent a major resistance mechanism in CRPC. Autophagy is a conserved lysosomal degradation pathway that acts as survival mechanism in cells exposed to anticancer treatments. We hypothesized, that promising NTD-AR treatment may upregulate autophagy and that a combination of NTD-AR and autophagy inhibition might therefore increase antitumor effects. METHODS: AR-expressing prostate cancer cell lines (LNCaP, LNCaP-EnzR) were treated with different concentrations of EPI (10, 25, 50 µM) and in combination with the autophagy inhibitors chloroquine (CHQ, 20 µM) or 3-methyladenine (3-MA, 5 mM). Cell proliferation was assessed by WST-1-assays after 1 and 7 days. Ethidium bromide and Annexin V were used to measure viability and apoptosis on day 7 after treatment. Autophagosome formation was detected by AUTOdot staining. In addition, autophagic activity was monitored by immunocytochemistry and Western blot (WES) for the expression of ATG5, Beclin1, LC3-I/II and p62. RESULTS: Treatment with EPI resulted in a dose-dependent reduction of cell growth and increased apoptosis in both cancer cell lines on day 7. In addition, EPI treatment demonstrated an upregulated autophagosome formation in LNCaP and LNCaP-EnzR cells. Assessment of autophagic activity by immunocytochemistry and WES revealed an increase of ATG5 and LC3-II expression and a decreased p62 expression in all EPI-treated cells. A combined treatment of EPI with autophagy inhibitors led to a further significant reduction of cell viability in both cell lines. CONCLUSIONS: Our results demonstrate that NTD targeting AR inhibition using EPI leads to an increased autophagic activity in LNCaP and LNCaP-EnzR prostate cancer cells. A combination of NTD AR blockage with simultaneous autophagy inhibition increases the antitumor effect of EPI in prostate cancer cells. Double treatment may offer a promising strategy to overcome resistance mechanisms in advanced prostate cancer.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Compostos Benzidrílicos/farmacologia , Cloridrinas/farmacologia , Feniltioidantoína/análogos & derivados , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/biossíntese , Proteína 5 Relacionada à Autofagia/genética , Benzamidas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Técnicas de Silenciamento de Genes , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Nitrilas , Células PC-3 , Feniltioidantoína/farmacologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia
13.
J Virol ; 92(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30158296

RESUMO

HIV enters the central nervous system (CNS) during the early stages of infection and can cause neurological dysfunction, including neurodegeneration and neurocognitive impairment. The specific autophagy responsible for removal of damaged mitochondria (mitophagy) and mitochondrial dynamics constitute neuronal mitochondrial quality control mechanisms and are impaired in neurodegenerative disorders and numerous other diseases. The release of HIV proteins gp120 and Tat from infected cells is thought to play an important role in HIV-associated neurocognitive disorders (HAND), but the mechanism(s) leading to impairment are poorly understood. Here, we report that exposure of human primary neurons (HPNs) to HIV gp120 and Tat accelerates the balance of mitochondrial dynamics toward fission (fragmented mitochondria) and induces perinuclear aggregation of mitochondria and mitochondrial translocation of dynamin-related protein 1 (DRP1), leading to neuronal mitochondrial fragmentation. HIV gp120 and Tat increased the expression of microtubule-associated protein 1 light chain 3 beta (LC3B) protein and induced selective recruitment of Parkin/SQSTM1 to the damaged mitochondria. Using either a dual fluorescence reporter system expressing monomeric red fluorescent protein and enhanced green fluorescent protein targeted to mitochondria (mito-mRFP-EGFP) or a tandem light chain 3 (LC3) vector (mCherry-EGFP-LC3), both HIV proteins were found to inhibit mitophagic flux in human primary neurons. HIV gp120 and Tat induced mitochondrial damage and altered mitochondrial dynamics by decreasing mitochondrial membrane potential (ΔΨm). These findings indicate that HIV gp120 and Tat initiate the activation and recruitment of mitophagy markers to damaged mitochondria in neurons but impair the delivery of mitochondria to the lysosomal compartment. Altered mitochondrial dynamics associated with HIV infection and incomplete neuronal mitophagy may play a significant role in the development of HAND and accelerated aging associated with HIV infection.IMPORTANCE Despite viral suppression by antiretrovirals, HIV proteins continue to be detected in infected cells and neurologic complications remain common in infected people. Although HIV is unable to infect neurons, viral proteins, including gp120 and Tat, can enter neurons and can cause neuronal degeneration and neurocognitive impairment. Neuronal health is dependent on the functional integrity of mitochondria, and damaged mitochondria are subjected to mitochondrial control mechanisms. Multiple lines of evidence suggest that specific elimination of damaged mitochondria through mitophagy and mitochondrial dynamics play an important role in CNS diseases. Here, we show that in human primary neurons, gp120 and Tat favor the balance of mitochondrial dynamics toward enhanced fragmentation through the activation of mitochondrial translocation of DRP1 to the damaged mitochondria. However, mitophagy fails to go to completion, leading to neuronal damage. These findings support a role for altered mitophagy in HIV-associated neurological disorders and provide novel targets for potential intervention.


Assuntos
Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/patogenicidade , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/patologia , Dinâmica Mitocondrial/fisiologia , Mitofagia/fisiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Encéfalo/citologia , Células Cultivadas , Humanos , Proteínas Associadas aos Microtúbulos/biossíntese , Neurônios/patologia , Neurônios/virologia , Proteína Sequestossoma-1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
14.
Int J Neuropsychopharmacol ; 22(6): 402-414, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31125414

RESUMO

BACKGROUND: Leukemia inhibitory factor, a novel myokine, is known to be associated with neural function, but the underlying molecular mechanism remains unclear. METHODS: HT-22 mouse hippocampal cells, primary hippocampal cells, and Drosophila Alzheimer's disease model were used to determine the effect of leukemia inhibitory factor on neurons. Immunoblot analysis and immunofluorescence method were used to analyze biological mechanism. RESULTS: Leukemia inhibitory factor increased Akt phosphorylation in a phosphoinositide-3-kinase-dependent manner in hippocampal cells. Leukemia inhibitory factor also increased the phosphorylation of the mammalian target of rapamycin and the downstream S6K. Leukemia inhibitory factor stimulated the phosphorylation of signal transducer and activator of transcription via extracellular signal-regulated kinases. Leukemia inhibitory factor increased c-fos expression through both Akt and extracellular signal-regulated kinases. Leukemia inhibitory factor blocked amyloid ß-induced neural viability suppression and inhibited amyloid ß-induced glucose uptake impairment through the block of amyloid ß-mediated insulin receptor downregulation. Leukemia inhibitory factor blocked amyloid ß-mediated induction of the autophagy marker, microtubule-associated protein 1A/1B-light chain 3. Additionally, in primary prepared hippocampal cells, leukemia inhibitory factor stimulated Akt and extracellular signal-regulated kinase, demonstrating that leukemia inhibitory factor has physiological relevance in vivo. Suppression of the autophagy marker, light chain 3II, by leukemia inhibitory factor was observed in a Drosophila model of Alzheimer's disease. CONCLUSIONS: These results demonstrate that leukemia inhibitory factor protects against amyloid ß-induced neurotoxicity via Akt/extracellular signal-regulated kinase-mediated c-fos induction, and thus suggest that leukemia inhibitory factor is a potential drug for Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Autofagia/efeitos dos fármacos , Hipocampo/citologia , Fator Inibidor de Leucemia/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/toxicidade , Animais , Animais Geneticamente Modificados , Células Cultivadas , Drosophila , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 3/biossíntese , Hipocampo/metabolismo , Fator Inibidor de Leucemia/biossíntese , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/biossíntese , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-fos/biossíntese , Receptor de Insulina/biossíntese , Receptor de Insulina/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
15.
Neurochem Res ; 44(4): 849-858, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30635843

RESUMO

Lack of blood or glucose supply is the most common pathological factor in the brain. To cope with such an energy stress, initiating programmed autophagic processes in neurons is required. However, the mechanisms controlling neuronal autophagy during starvation remain far from clear. Here, we report an essential role of 14-3-3γ in starvation-activated neuronal autophagic influx signaling and elucidate the underlying mechanism. Double-fluorescent immunostaining demonstrates that 14-3-3γ protein elevation is well co-localized with Beclin-1 and LC3 elevation in cortical neurons in ischemic brains. Starvation treatment activates autophagic influx and upregulates Beclin-1 and only the γ isoform of 14-3-3 in N2a cells and cultured cortical neurons. Suppressing overall 14-3-3 function by difopein overexpression or knocking-out the γ isoform of 14-3-3 is sufficient to abolish starvation-induced Beclin-1 induction and LC3 activation while overexpressing 14-3-3γ but no other 14-3-3 isoform significantly upregulate Beclin-1-LC3 signaling. Upon starvation, 14-3-3γ binds more p-ß-catenin but less Beclin-1. Finally, overexpressing 14-3-3γ reactivates ß-catenin-suppressed Beclin-1-LC3 signaling in neuronal cells. Taken together, our data reveal that starvation-induced 14-3-3γ is required for ß-catenin-Beclin-1-LC3-autophagy in starved neurons in vitro and in vivo, which may provide insights in the treatment of neurologic diseases such as stoke.


Assuntos
Proteínas 14-3-3/biossíntese , Autofagia/fisiologia , Proteína Beclina-1/biossíntese , Proteínas Associadas aos Microtúbulos/biossíntese , Neurônios/metabolismo , beta Catenina/biossíntese , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia , Regulação para Cima/fisiologia
16.
Circ Res ; 121(3): 220-233, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28607103

RESUMO

RATIONALE: Mitochondrial changes occur during cell differentiation and cardiovascular disease. DRP1 (dynamin-related protein 1) is a key regulator of mitochondrial fission. We hypothesized that DRP1 plays a role in cardiovascular calcification, a process involving cell differentiation and a major clinical problem with high unmet needs. OBJECTIVE: To examine the effects of osteogenic promoting conditions on DRP1 and whether DRP1 inhibition alters the development of cardiovascular calcification. METHODS AND RESULTS: DRP1 was enriched in calcified regions of human carotid arteries, examined by immunohistochemistry. Osteogenic differentiation of primary human vascular smooth muscle cells increased DRP1 expression. DRP1 inhibition in human smooth muscle cells undergoing osteogenic differentiation attenuated matrix mineralization, cytoskeletal rearrangement, mitochondrial dysfunction, and reduced type 1 collagen secretion and alkaline phosphatase activity. DRP1 protein was observed in calcified human aortic valves, and DRP1 RNA interference reduced primary human valve interstitial cell calcification. Mice heterozygous for Drp1 deletion did not exhibit altered vascular pathology in a proprotein convertase subtilisin/kexin type 9 gain-of-function atherosclerosis model. However, when mineralization was induced via oxidative stress, DRP1 inhibition attenuated mouse and human smooth muscle cell calcification. Femur bone density was unchanged in mice heterozygous for Drp1 deletion, and DRP1 inhibition attenuated oxidative stress-mediated dysfunction in human bone osteoblasts. CONCLUSIONS: We demonstrate a new function of DRP1 in regulating collagen secretion and cardiovascular calcification, a novel area of exploration for the potential development of new therapies to modify cellular fibrocalcific response in cardiovascular diseases. Our data also support a role of mitochondrial dynamics in regulating oxidative stress-mediated arterial calcium accrual and bone loss.


Assuntos
GTP Fosfo-Hidrolases/antagonistas & inibidores , GTP Fosfo-Hidrolases/biossíntese , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/biossíntese , Miócitos de Músculo Liso/metabolismo , Estresse Oxidativo/fisiologia , Calcificação Vascular/metabolismo , Calcificação Vascular/prevenção & controle , Animais , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/patologia , Doenças das Artérias Carótidas/prevenção & controle , Células Cultivadas , Colágeno/metabolismo , Dinaminas , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Estresse Oxidativo/efeitos dos fármacos , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Calcificação Vascular/patologia
17.
J Neurosci ; 37(6): 1648-1661, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28069923

RESUMO

Collateral branches from axons are key components of functional neural circuits that allow neurons to connect with multiple synaptic targets. Like axon growth and guidance, formation of collateral branches depends on the regulation of microtubules, but how such regulation is coordinated to ensure proper circuit development is not known. Based on microarray analysis, we have identified a role for microtubule-associated protein 7 (MAP7) during collateral branch development of dorsal root ganglion (DRG) sensory neurons. We show that MAP7 is expressed at the onset of collateral branch formation. Perturbation of its expression by overexpression or shRNA knockdown alters axon branching in cultured DRG neurons. Localization and time-lapse imaging analysis reveals that MAP7 is enriched at branch points and colocalizes with stable microtubules, but enters the new branch with a delay, suggesting a role in branch maturation. We have also investigated a spontaneous mutant mouse that expresses a truncated MAP7 and found a gain-of-function phenotype both in vitro and in vivo Further domain analysis suggests that the amino half of MAP7 is responsible for branch formation, suggesting a mechanism that is independent of its known interaction with kinesin. Moreover, this mouse exhibits increased pain sensitivity, a phenotype that is consistent with increased collateral branch formation. Therefore, our study not only uncovers the first neuronal function of MAP7, but also demonstrates the importance of proper microtubule regulation in neural circuit development. Furthermore, our data provide new insights into microtubule regulation during axonal morphogenesis and may shed light on MAP7 function in neurological disorders.SIGNIFICANCE STATEMENT Neurons communicate with multiple targets by forming axonal branches. In search of intrinsic factors that control collateral branch development, we identified a role for microtubule-associated protein 7 (MAP7) in dorsal root ganglion sensory neurons. We show that MAP7 expression is developmentally regulated and perturbation of this expression alters branch formation. Cell biological analysis indicates that MAP7 promotes branch maturation. Analysis of a spontaneous mouse mutant suggests a molecular mechanism for branch regulation and the potential influence of collateral branches on pain sensitivity. Our studies thus establish the first neuronal function of MAP7 and demonstrate its role in branch morphogenesis and neural circuit function. These findings may help in our understanding of the contribution of MAP7 to neurological disorders and nerve regeneration.


Assuntos
Axônios/fisiologia , Gânglios Espinais/metabolismo , Proteínas Associadas aos Microtúbulos/biossíntese , Neurônios/metabolismo , Animais , Células Cultivadas , Feminino , Camundongos , Gravidez , Ratos , Ratos Sprague-Dawley
18.
J Neurosci ; 37(41): 9945-9963, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28904092

RESUMO

The regulated transport of AMPA-type glutamate receptors (AMPARs) to the synaptic membrane is a key mechanism to determine the strength of excitatory synaptic transmission in the brain. In this work, we uncovered a new role for the microtubule-associated protein MAP1B in modulating access of AMPARs to the postsynaptic membrane. Using mice and rats of either sex, we show that MAP1B light chain (LC) accumulates in the somatodendritic compartment of hippocampal neurons, where it forms immobile complexes on microtubules that limit vesicular transport. These complexes restrict AMPAR dendritic mobility, leading to the intracellular trapping of receptors and impairing their access to the dendritic surface and spines. Accordingly, increasing MAP1B-LC expression depresses AMPAR-mediated synaptic transmission. This effect is specific for the GluA2 subunit of the AMPAR and requires glutamate receptor interacting protein 1 (GRIP1) interaction with MAP1B-LC. Therefore, MAP1B-LC represents an alternative link between GRIP1-AMPARs and microtubules that does not result in productive transport, but rather limits AMPAR availability for synaptic insertion, with a direct impact on synaptic transmission.SIGNIFICANCE STATEMENT The ability of neurons to modify their synaptic connections, known as synaptic plasticity, is accepted as the cellular basis for learning and memory. One mechanism for synaptic plasticity is the regulated addition and removal of AMPA-type glutamate receptors (AMPARs) at excitatory synapses. In this study, we found that a microtubule-associated protein, MAP1B light chain (MAP1B-LC), participates in this process. MAP1B-LC forms immobile complexes along dendrites. These complexes limit intracellular vesicular trafficking and trap AMPARs inside the dendritic shaft. In this manner, MAP1B restricts the access of AMPARs to dendritic spines and the postsynaptic membrane, contributing to downregulating synaptic transmission.


Assuntos
Proteínas Associadas aos Microtúbulos/fisiologia , Receptores de AMPA/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Dendritos/efeitos dos fármacos , Espinhas Dendríticas/fisiologia , Feminino , Hipocampo/citologia , Hipocampo/metabolismo , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Ratos , Ratos Wistar , Receptores de AMPA/metabolismo
19.
Biol Reprod ; 99(5): 968-981, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29860279

RESUMO

Endometriosis is a benign gynecologic disorder, and presents with malignant characteristics, such as migration and invasion. Hypoxia has been implicated in triggering epithelial-mesenchymal transition (EMT). Hypoxia is also known to induce autophagy. However, the relationship between autophagy and EMT under hypoxia conditions in endometriosis remains unknown. In the present study, we found that the expression of hypoxia-inducible factor-1α (HIF-1α), microtubule associated protein light chain 3 (LC3), and mesenchymal cell marker vimentin was significantly higher in ectopic endometrium from patients with endometriosis, along with decreased expression of epithelial cell marker E-cadherin. After hypoxia treatment, endometrial epithelial cells exhibited enhanced migration and invasion abilities, as well as promoted autophagy and the EMT phenotype. Our analyses also show that HIF-1α was responsible for induction of autophagy. Moreover, inhibition of autophagy by chemical or genetic approaches suppressed hypoxia triggered EMT and reduced cell migration and invasion. Collectively, our findings identify that autophagy is critical for the migration and invasion of endometrial cells through the induction of EMT and indicate that inhibition of autophagy may be a novel useful strategy in the treatment of endometriosis.


Assuntos
Autofagia , Endometriose/patologia , Endométrio/patologia , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Hipóxia/patologia , Adulto , Caderinas/biossíntese , Linhagem Celular , Movimento Celular , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Proteínas Associadas aos Microtúbulos/biossíntese , Pessoa de Meia-Idade , Proteína A4 de Ligação a Cálcio da Família S100/biossíntese , Vimentina/biossíntese
20.
BMC Cancer ; 18(1): 624, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859041

RESUMO

BACKGROUND: This study examined the prognostic significance of microtubule-associated protein light chain 3B (LC3B) expression in oropharyngeal and oral cavity squamous cell carcinoma (SCC). The prognostic significance of LC3B expression in relation to human papillomavirus (HPV) status in oropharyngeal SCC was also examined. METHODS: Tissue microarrays (TMAs) were constructed from formalin-fixed, paraffin-embedded oropharyngeal (n = 47) and oral cavity (n = 95) SCC tissue blocks from patients with long-term recurrence and overall survival data (median = 47 months). LC3B expression on tumour was assessed by immunohistochemistry and evaluated for associations with clinicopathological variables. LC3B expression was stratified into high and low expression cohorts using ROC curves with Manhattan distance minimisation, followed by Kaplan-Meier and multivariable survival analyses. Interaction terms between HPV status and LC3B expression in oropharyngeal SCC patients were also examined by joint-effects and stratified analyses. RESULTS: Kaplan-Meier survival and univariate analyses revealed that high LC3B expression was correlated with poor overall survival in oropharyngeal SCC patients (p = 0.007 and HR = 3.18, 95% CI 1.31-7.71, p = 0.01 respectively). High LC3B expression was also an independent prognostic factor for poor overall survival in oropharyngeal SCC patients (HR = 4.02, 95% CI 1.38-11.47, p = 0.011). In contrast, in oral cavity SCC, only disease-free survival remained statistically significant after univariate analysis (HR = 2.36, 95% CI 1.19-4.67, p = 0.014), although Kaplan-Meier survival analysis showed that high LC3B expression correlated with poor overall and disease-free survival (p = 0.046 and 0.011 respectively). Furthermore, oropharyngeal SCC patients with HPV-negative/high LC3B expression were correlated with poor overall survival in both joint-effects and stratified presentations (p = 0.024 and 0.032 respectively). CONCLUSIONS: High LC3B expression correlates with poor prognosis in oropharyngeal and oral cavity SCC, which highlights the importance of autophagy in these malignancies. High LC3B expression appears to be an independent prognostic marker for oropharyngeal SCC but not for oral cavity SCC patients. The difference in the prognostic significance of LC3B between oropharyngeal and oral cavity SCCs further supports the biological differences between these malignancies. The possibility that oropharyngeal SCC patients with negative HPV status and high LC3B expression were at particular risk of a poor outcome warrants further investigation in prospective studies with larger numbers.


Assuntos
Biomarcadores Tumorais/análise , Proteínas Associadas aos Microtúbulos/biossíntese , Neoplasias Bucais/patologia , Neoplasias Orofaríngeas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Intervalo Livre de Doença , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/mortalidade , Neoplasias Bucais/virologia , Neoplasias Orofaríngeas/mortalidade , Neoplasias Orofaríngeas/virologia , Infecções por Papillomavirus/complicações , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA