Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Mol Cell ; 65(1): 117-130, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27989438

RESUMO

The integrity of eukaryotic genomes requires rapid and regulated chromatin replication. How this is accomplished is still poorly understood. Using purified yeast replication proteins and fully chromatinized templates, we have reconstituted this process in vitro. We show that chromatin enforces DNA replication origin specificity by preventing non-specific MCM helicase loading. Helicase activation occurs efficiently in the context of chromatin, but subsequent replisome progression requires the histone chaperone FACT (facilitates chromatin transcription). The FACT-associated Nhp6 protein, the nucleosome remodelers INO80 or ISW1A, and the lysine acetyltransferases Gcn5 and Esa1 each contribute separately to maximum DNA synthesis rates. Chromatin promotes the regular priming of lagging-strand DNA synthesis by facilitating DNA polymerase α function at replication forks. Finally, nucleosomes disrupted during replication are efficiently re-assembled into regular arrays on nascent DNA. Our work defines the minimum requirements for chromatin replication in vitro and shows how multiple chromatin factors might modulate replication fork rates in vivo.


Assuntos
Cromatina/genética , Replicação do DNA , DNA Fúngico/genética , Nucleossomos/genética , Origem de Replicação , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Cromatina/metabolismo , DNA Polimerase I/genética , DNA Polimerase I/metabolismo , DNA Fúngico/biossíntese , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas HMGN/genética , Proteínas HMGN/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Nucleossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
2.
Genes Dev ; 30(17): 1991-2004, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664238

RESUMO

Multiple transcriptional and epigenetic changes drive differentiation of embryonic stem cells (ESCs). This study unveils an additional level of gene expression regulation involving noncanonical, cap-independent translation of a select group of mRNAs. This is driven by death-associated protein 5 (DAP5/eIF4G2/NAT1), a translation initiation factor mediating IRES-dependent translation. We found that the DAP5 knockdown from human ESCs (hESCs) resulted in persistence of pluripotent gene expression, delayed induction of differentiation-associated genes in different cell lineages, and defective embryoid body formation. The latter involved improper cellular organization, lack of cavitation, and enhanced mislocalized apoptosis. RNA sequencing of polysome-associated mRNAs identified candidates with reduced translation efficiency in DAP5-depleted hESCs. These were enriched in mitochondrial proteins involved in oxidative respiration, a pathway essential for differentiation, the significance of which was confirmed by the aberrant mitochondrial morphology and decreased oxidative respiratory activity in DAP5 knockdown cells. Further analysis identified the chromatin modifier HMGN3 as a cap-independent DAP5 translation target whose knockdown resulted in defective differentiation. Thus, DAP5-mediated translation of a specific set of proteins is critical for the transition from pluripotency to differentiation, highlighting the importance of cap-independent translation in stem cell fate decisions.


Assuntos
Diferenciação Celular/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Embrionárias Humanas/citologia , Apoptose/genética , Corpos Embrioides/patologia , Fator de Iniciação Eucariótico 4G/genética , Técnicas de Silenciamento de Genes , Proteínas HMGN/genética , Proteínas HMGN/metabolismo , Humanos , Células-Tronco Pluripotentes/fisiologia
3.
FASEB J ; 36(7): e22345, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35635715

RESUMO

High mobility group nucleosome-binding protein 3 (HMGN3), a member of the HMGN family, modulates the structure of chromatin and regulates transcription through transcription factors. HMGN3 has been implicated in the development of various cancers; however, the underlying mechanisms remain unclear. We herein demonstrated that the high expression of HMGN3 correlated with the metastasis of liver fluke infection-induced cholangiocarcinoma (CCA) in patients in northeastern Thailand. The knockdown of HMGN3 in CCA cells significantly impaired the oncogenic properties of colony formation, migration, and invasion. HMGN3 inhibited the expression of and blocked the intracellular polarities of epithelial regulator genes, such as the CDH1/E-cadherin and TJAP1 genes in CCA cells. A chromatin immunoprecipitation sequencing analysis revealed that HMGN3 required the transcription factor SNAI2 to bind to and repress the expression of epithelial regulator genes, at least in part, due to histone deacetylases (HDACs), the pharmacological inhibition of which reactivated these epithelial regulators in CCA, leading to impairing the cell migration capacity. Therefore, the overexpression of HMGN3 represses the transcription of and blocks the polarities of epithelial regulators in CCA cells in a manner that is dependent on the SNAI2 gene and HDACs.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Regulação da Expressão Gênica , Proteínas HMGN/genética , Proteínas HMGN/metabolismo , Humanos , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Nucleic Acids Res ; 48(19): 10820-10831, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32997109

RESUMO

DNA binding proteins rapidly locate their specific DNA targets through a combination of 3D and 1D diffusion mechanisms, with the 1D search involving bidirectional sliding along DNA. However, even in nucleosome-free regions, chromosomes are highly decorated with associated proteins that may block sliding. Here we investigate the ability of the abundant chromatin-associated HMGB protein Nhp6A from Saccharomyces cerevisiae to travel along DNA in the presence of other architectural DNA binding proteins using single-molecule fluorescence microscopy. We observed that 1D diffusion by Nhp6A molecules is retarded by increasing densities of the bacterial proteins Fis and HU and by Nhp6A, indicating these structurally diverse proteins impede Nhp6A mobility on DNA. However, the average travel distances were larger than the average distances between neighboring proteins, implying Nhp6A is able to bypass each of these obstacles. Together with molecular dynamics simulations, our analyses suggest two binding modes: mobile molecules that can bypass barriers as they seek out DNA targets, and near stationary molecules that are associated with neighboring proteins or preferred DNA structures. The ability of mobile Nhp6A molecules to bypass different obstacles on DNA suggests they do not block 1D searches by other DNA binding proteins.


Assuntos
DNA/química , Proteínas HMGN/química , Proteínas de Saccharomyces cerevisiae/química , DNA/metabolismo , Proteínas HMGN/metabolismo , Simulação de Dinâmica Molecular , Movimento (Física) , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagem Individual de Molécula
5.
Nucleic Acids Res ; 47(2): 666-678, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30445475

RESUMO

Nucleosome disruption plays a key role in many nuclear processes including transcription, DNA repair and recombination. Here we combine atomic force microscopy (AFM) and optical tweezers (OT) experiments to show that high mobility group B (HMGB) proteins strongly disrupt nucleosomes, revealing a new mechanism for regulation of chromatin accessibility. We find that both the double box yeast Hmo1 and the single box yeast Nhp6A display strong binding preferences for nucleosomes over linker DNA, and both HMGB proteins destabilize and unwind DNA from the H2A-H2B dimers. However, unlike Nhp6A, Hmo1 also releases half of the DNA held by the (H3-H4)2 tetramer. This difference in nucleosome destabilization may explain why Nhp6A and Hmo1 function at different genomic sites. Hmo1 is enriched at highly transcribed ribosomal genes, known to be depleted of histones. In contrast, Nhp6A is found across euchromatin, pointing to a significant difference in cellular function.


Assuntos
Proteínas HMGN/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Microscopia de Força Atômica , Nucleossomos/química , Nucleossomos/ultraestrutura , Pinças Ópticas
6.
Nucleic Acids Res ; 47(6): 2871-2883, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30698746

RESUMO

The yeast Nhp6A protein (yNhp6A) is a member of the eukaryotic HMGB family of chromatin factors that enhance apparent DNA flexibility. yNhp6A binds DNA nonspecifically with nM affinity, sharply bending DNA by >60°. It is not known whether the protein binds to unbent DNA and then deforms it, or if bent DNA conformations are 'captured' by protein binding. The former mechanism would be supported by discovery of conditions where unbent DNA is bound by yNhp6A. Here, we employed an array of conformational probes (FRET, fluorescence anisotropy, and circular dichroism) to reveal solution conditions in which an 18-base-pair DNA oligomer indeed remains bound to yNhp6A while unbent. In 100 mM NaCl, yNhp6A-bound DNA unbends as the temperature is raised, with no significant dissociation of the complex detected up to ∼45°C. In 200 mM NaCl, DNA unbending in the intact yNhp6A complex is again detected up to ∼35°C. Microseconds-resolved laser temperature-jump perturbation of the yNhp6a-DNA complex revealed relaxation kinetics that yielded unimolecular DNA bending/unbending rates on timescales of 500 µs-1 ms. These data provide the first direct observation of bending/unbending dynamics of DNA in complex with yNhp6A, suggesting a bind-then-bend mechanism for this protein.


Assuntos
DNA Fúngico/química , DNA Fúngico/metabolismo , Proteínas HMGN/química , Proteínas HMGN/metabolismo , Conformação de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Montagem e Desmontagem da Cromatina/genética , Transferência Ressonante de Energia de Fluorescência , Proteínas HMGN/fisiologia , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia
7.
Proc Natl Acad Sci U S A ; 114(16): E3251-E3257, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28364020

RESUMO

The binding of transcription factors (TFs) to DNA controls most aspects of cellular function, making the understanding of their binding kinetics imperative. The standard description of bimolecular interactions posits that TF off rates are independent of TF concentration in solution. However, recent observations have revealed that proteins in solution can accelerate the dissociation of DNA-bound proteins. To study the molecular basis of facilitated dissociation (FD), we have used single-molecule imaging to measure dissociation kinetics of Fis, a key Escherichia coli TF and major bacterial nucleoid protein, from single dsDNA binding sites. We observe a strong FD effect characterized by an exchange rate [Formula: see text], establishing that FD of Fis occurs at the single-binding site level, and we find that the off rate saturates at large Fis concentrations in solution. Although spontaneous (i.e., competitor-free) dissociation shows a strong salt dependence, we find that FD depends only weakly on salt. These results are quantitatively explained by a model in which partially dissociated bound proteins are susceptible to invasion by competitor proteins in solution. We also report FD of NHP6A, a yeast TF with structure that differs significantly from Fis. We further perform molecular dynamics simulations, which indicate that FD can occur for molecules that interact far more weakly than those that we have studied. Taken together, our results indicate that FD is a general mechanism assisting in the local removal of TFs from their binding sites and does not necessarily require cooperativity, clustering, or binding site overlap.


Assuntos
DNA Fúngico/metabolismo , Proteínas HMGN/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , DNA Fúngico/química , Proteínas HMGN/química , Cinética , Proteínas Mitocondriais/química , Ligação Proteica , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição/química
8.
J Cell Physiol ; 234(4): 4851-4863, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30272824

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of death from cancer in the world. To comprehensively investigate the utility of microRNAs (miRNAs) and protein-encoding transcripts (messenger RNAs [mRNAs]) in HCC as potential biomarkers for early detection and diagnosis, we exhaustively mined genomic data from three available omics datasets (GEO, Oncomine, and TCGA), analyzed the overlaps among gene expression studies from 920 hepatocellular carcinoma samples and 508 healthy (or adjacent normal) liver tissue samples available from six laboratories, and identified 178 differentially expressed genes (DEGs) associated with HCC. Paired with miRNA and lncRNA data, we identified 23 core genes that were targeted by nine differentially expressed miRNAs and 21 HCC-specific lncRNAs. We further demonstrated that alterations in these 23 genes were quite frequent, with five genes altered in over 5% of the population. Patients with high levels of YWHAZ, ENAH, and HMGN4 tended to have high-grade tumors and shorter overall survival, suggesting that these genes could be promising candidate biomarkers for disease and poor prognosis in patients with HCC. Our comprehensive mRNA, miRNA, and lncRNA omics analyses from multiple independent datasets identified robust molecules that may be used as biomarkers for early HCC detection and diagnosis.


Assuntos
Proteínas 14-3-3/genética , Carcinoma Hepatocelular/genética , Proteínas HMGN/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , Proteínas dos Microfilamentos/genética , RNA Longo não Codificante/genética , Proteínas 14-3-3/metabolismo , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Proteínas HMGN/metabolismo , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patologia , Proteínas dos Microfilamentos/metabolismo , Prognóstico , RNA Mensageiro/genética
9.
PLoS Comput Biol ; 14(7): e1006362, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30052627

RESUMO

The non-homologous end joining of a DNA double strand break is initiated by the MRE11-NBS1-RAD50 complex whose subunits are the first three proteins to arrive to the breakage site thereby making the recruitment time of MRE11, NBS1 and RAD50 essential for cell survival. In the present investigation, the nature of MRE11 and NBS1 transportation from the cytoplasm to the nucleus, hosting the damaged DNA strand, is hypothesized to be a passive diffusive process. The feasibility of such a mechanism is addressed through theoretical and computational approaches which permit establishing the characteristic recruitment time of MRE11 and NBS1 by the nucleus. A computational model of a cell is constructed from a set of biological parameters and the kinetic Monte Carlo algorithm is used to simulate the diffusing MRE11 and NBS1 particles as a random walk process. To accurately describe the experimented data, it is discovered that MRE11 and NBS1 should start diffusion from significantly different starting positions which suggests that diffusion might not be the only transport mechanism of repair protein recruitment to the DNA break.


Assuntos
Simulação por Computador , Reparo do DNA , Proteínas HMGN/metabolismo , Proteína Homóloga a MRE11/metabolismo , Transativadores/metabolismo , Algoritmos , Quebras de DNA , Reparo do DNA por Junção de Extremidades , Difusão , Humanos , Modelos Teóricos , Método de Monte Carlo
10.
Mol Biol (Mosk) ; 53(6): 1038-1048, 2019.
Artigo em Russo | MEDLINE | ID: mdl-31876282

RESUMO

Transcriptional enhancers in the cell nuclei typically interact with the target promoters in cis over long stretches of chromatin, but the mechanism of this communication remains unknown. Previously we have developed a defined in vitro system for quantitative analysis of the rate of distant enhancer-promoter communication (EPC) and have shown that the chromatin fibers maintain efficient distant EPC in cis. Here we investigate the roles of linker histone H1 and HMGN5 protein in EPC. A considerable negative effect of histone H1 on EPC depending on its C- and N-tails was shown. Protein HMGN5 that affects chromatin compaction and is associated with active chromatin counteracts EPC inhibition by H1. The data suggest that the efficiency of the interaction between the enhancer and the promoter depends on the structure and dynamics of the chromatin fiber localized between them and can be regulated by proteins associated with chromatin.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Proteínas HMGN/metabolismo , Histonas/metabolismo , Cromatina/química , Elementos Facilitadores Genéticos/genética , Regiões Promotoras Genéticas/genética
11.
Genome Res ; 25(9): 1295-308, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26156321

RESUMO

DNase I hypersensitive sites (DHSs) are a hallmark of chromatin regions containing regulatory DNA such as enhancers and promoters; however, the factors affecting the establishment and maintenance of these sites are not fully understood. We now show that HMGN1 and HMGN2, nucleosome-binding proteins that are ubiquitously expressed in vertebrate cells, maintain the DHS landscape of mouse embryonic fibroblasts (MEFs) synergistically. Loss of one of these HMGN variants led to a compensatory increase of binding of the remaining variant. Genome-wide mapping of the DHSs in Hmgn1(-/-), Hmgn2(-/-), and Hmgn1(-/-)n2(-/-) MEFs reveals that loss of both, but not a single HMGN variant, leads to significant remodeling of the DHS landscape, especially at enhancer regions marked by H3K4me1 and H3K27ac. Loss of HMGN variants affects the induced expression of stress-responsive genes in MEFs, the transcription profiles of several mouse tissues, and leads to altered phenotypes that are not seen in mice lacking only one variant. We conclude that the compensatory binding of HMGN variants to chromatin maintains the DHS landscape, and the transcription fidelity and is necessary to retain wild-type phenotypes. Our study provides insight into mechanisms that maintain regulatory sites in chromatin and into functional compensation among nucleosome binding architectural proteins.


Assuntos
Sítios de Ligação , Desoxirribonuclease I/metabolismo , Elementos Facilitadores Genéticos , Proteínas HMGN/metabolismo , Animais , Linhagem Celular , Cromatina/metabolismo , Análise por Conglomerados , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Proteínas HMGN/genética , Proteína HMGN1/genética , Proteína HMGN1/metabolismo , Proteína HMGN2/genética , Proteína HMGN2/metabolismo , Humanos , Camundongos , Camundongos Knockout , Nucleossomos/metabolismo , Fenótipo , Regiões Promotoras Genéticas , Ligação Proteica , Isoformas de Proteínas , Estresse Fisiológico/genética
12.
Nucleic Acids Res ; 44(15): 7144-58, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27112571

RESUMO

The activation of naïve B lymphocyte involves rapid and major changes in chromatin organization and gene expression; however, the complete repertoire of nuclear factors affecting these genomic changes is not known. We report that HMGN proteins, which bind to nucleosomes and affect chromatin structure and function, co-localize with, and maintain the intensity of DNase I hypersensitive sites genome wide, in resting but not in activated B cells. Transcription analyses of resting and activated B cells from wild-type and Hmgn(-/-) mice, show that loss of HMGNs dampens the magnitude of the transcriptional response and alters the pattern of gene expression during the course of B-cell activation; defense response genes are most affected at the onset of activation. Our study provides insights into the biological function of the ubiquitous HMGN chromatin binding proteins and into epigenetic processes that affect the fidelity of the transcriptional response during the activation of B cell lymphocytes.


Assuntos
Linfócitos B/metabolismo , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica , Proteínas HMGN/metabolismo , Ativação Linfocitária/genética , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Desoxirribonuclease I/metabolismo , Epigênese Genética , Proteínas HMGN/deficiência , Proteínas HMGN/genética , Proteína HMGN1/metabolismo , Proteína HMGN2/metabolismo , Masculino , Camundongos , Nucleossomos/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Baço/citologia , Baço/imunologia
13.
Proc Natl Acad Sci U S A ; 112(23): 7177-82, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26039992

RESUMO

Double-stranded DNA is a locally inflexible polymer that resists bending and twisting over hundreds of base pairs. Despite this, tight DNA bending is biologically important for DNA packaging in eukaryotic chromatin and tight DNA looping is important for gene repression in prokaryotes. We and others have previously shown that sequence nonspecific DNA kinking proteins, such as Escherichia coli heat unstable and Saccharomyces cerevisiae non-histone chromosomal protein 6A (Nhp6A), facilitate lac repressor (LacI) repression loops in E. coli. It has been unknown if this facilitation involves direct protein binding to the tightly bent DNA loop or an indirect effect promoting global negative supercoiling of DNA. Here we adapt two high-resolution in vivo protein-mapping techniques to demonstrate direct binding of the heterologous Nhp6A protein at a LacI repression loop in living E. coli cells.


Assuntos
DNA Bacteriano/metabolismo , Escherichia coli/genética , Proteínas HMGN/metabolismo , Repressores Lac/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Imunoprecipitação da Cromatina , DNA Bacteriano/química , Proteínas HMGN/química , Repressores Lac/genética , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/química
14.
Genes Dev ; 24(18): 2031-42, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20844014

RESUMO

The Saccharomyces cerevisiae protein Nhp6A is a model for the abundant and multifunctional high-mobility group B (HMGB) family of chromatin-associated proteins. Nhp6A binds DNA in vitro without sequence specificity and bends DNA sharply, but its role in chromosome biology is poorly understood. We show by whole-genome chromatin immunoprecipitation (ChIP) and high-resolution whole-genome tiling arrays (ChIP-chip) that Nhp6A is localized to specific regions of chromosomes that include ∼23% of RNA polymerase II promoters. Nhp6A binding functions to stabilize nucleosomes, particularly at the transcription start site of these genes. Both genomic binding and transcript expression studies point to functionally related groups of genes that are bound specifically by Nhp6A and whose transcription is altered by the absence of Nhp6. Genomic analyses of Nhp6A mutants specifically defective in DNA bending reveal a critical role of DNA bending for stabilizing chromatin and coregulation of transcription but not for targeted binding by Nhp6A. We conclude that the chromatin environment, not DNA sequence recognition, localizes Nhp6A binding, and that Nhp6A stabilizes chromatin structure and coregulates transcription.


Assuntos
Cromatina/metabolismo , Proteínas HMGN/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transcrição Gênica , Sítios de Ligação , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas HMGN/genética , Proteínas de Grupo de Alta Mobilidade/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
15.
J Biochem Mol Toxicol ; 31(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28914995

RESUMO

Previous study has demonstrated that high mobility group nucleosome-binding domain 5 (HMGN5) is involved in tumorigenesis and the development of multidrug resistance in several human cancers. However, the role of HMGN5 in esophageal squamous cell carcinoma (ESCC) remains unclear. Here, we showed that HMGN5 was significantly upregulated in ESCC cells. Knockdown of HMGN5 significantly inhibited cell growth and induced cell apoptosis of ESCC cells. Moreover, knockdown of HMGN5 increased the sensitivity of ESCC cells towards cisplatin. By contrast, overexpression of HMGN5 showed the opposite effects. Further experiments demonstrated that HMGN5 regulated the expression of multidrug resistance 1, cyclin B1, and Bcl-2. Overall, our results reveal that HMGN5 promotes tumor progression of ESCC and is also an important regulator of chemoresistance. Our study suggests that inhibition of HMGN5 may be a potential strategy for improving effectiveness of ESCC treatment.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/metabolismo , Cisplatino/farmacologia , Neoplasias Esofágicas/metabolismo , Proteínas HMGN/genética , Transativadores/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Apoptose , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas HMGN/metabolismo , Humanos , Interferência de RNA , RNA Interferente Pequeno/genética , Transativadores/metabolismo
16.
Mol Cell ; 35(5): 642-56, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19748358

RESUMO

Structural changes in specific chromatin domains are essential to the orderly progression of numerous nuclear processes, including transcription. We report that the nuclear protein NSBP1 (HMGN5), a recently discovered member of the HMGN nucleosome-binding protein family, is specifically targeted by its C-terminal domain to nucleosomes in euchromatin. We find that the interaction of NSBP1 with nucleosomes alters the compaction of cellular chromatin and that in living cells, NSBP1 interacts with linker histones. We demonstrate that the negatively charged C-terminal domain of NSBP1 interacts with the positively charged C-terminal domain of H5 and that NSBP1 counteracts the linker histone-mediated compaction of a nucleosomal array. Dysregulation of the cellular levels of NSBP1 alters the transcription level of numerous genes. We suggest that mouse NSBP1 is an architectural protein that binds preferentially to euchromatin and modulates the fidelity of the cellular transcription profile by counteracting the chromatin-condensing activity of linker histones.


Assuntos
Montagem e Desmontagem da Cromatina , Eucromatina/metabolismo , Proteínas HMGN/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Transativadores/metabolismo , Transcrição Gênica , Animais , Sítios de Ligação , Linhagem Celular Transformada , Eucromatina/química , Perfilação da Expressão Gênica , Proteínas HMGN/química , Proteínas HMGN/genética , Histonas/química , Lisina , Metilação , Camundongos , Microscopia Confocal , Modelos Moleculares , Células NIH 3T3 , Conformação de Ácido Nucleico , Conformação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Interferência de RNA , Proteínas Recombinantes de Fusão/metabolismo , Transativadores/química , Transativadores/genética , Transfecção
17.
Mol Biol Evol ; 32(1): 121-31, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25281808

RESUMO

High mobility group (HMG)-N proteins are a family of small nonhistone proteins that bind to nucleosomes (N). Despite the amount of information available on their structure and function, there is an almost complete lack of information on the molecular evolutionary mechanisms leading to their exclusive differentiation. In the present work, we provide evidence suggesting that HMGN lineages constitute independent monophyletic groups derived from a common ancestor prior to the diversification of vertebrates. Based on observations of the functional diversification across vertebrate HMGN proteins and on the extensive silent nucleotide divergence, our results suggest that the long-term evolution of HMGNs occurs under strong purifying selection, resulting from the lineage-specific functional constraints of their different protein domains. Selection analyses on independent lineages suggest that their functional specialization was mediated by bursts of adaptive selection at specific evolutionary times, in a small subset of codons with functional relevance-most notably in HMGN1, and in the rapidly evolving HMGN5. This work provides useful information to our understanding of the specialization imparted on chromatin metabolism by HMGNs, especially on the evolutionary mechanisms underlying their functional differentiation in vertebrates.


Assuntos
Cromatina/metabolismo , Proteínas HMGN/química , Proteínas HMGN/genética , Vertebrados/metabolismo , Animais , Evolução Molecular , Proteínas HMGN/metabolismo , Humanos , Modelos Moleculares , Filogenia , Seleção Genética , Vertebrados/genética
18.
Tumour Biol ; 37(2): 1531-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26700674

RESUMO

High-mobility group nucleosome-binding domain 5 (HMGN5) is a new member of the high-mobility group N (HMGN) protein family that is involved in nucleosomal binding and transcriptional activation. It was first discovered in mouse, and recent studies found that the expressions of HMGN5 in many human cancers were also highly regulated, such as prostate, bladder, breast, and lung and clear cell renal cell carcinoma. Numerous reports have demonstrated that HMGN5 plays significant roles in many biological and pathological conditions, such as in developmental defects, hypersensitivity to stress, embryonic stem cell differentiation, and tumor progression. Importantly, deficiency of HMGN5 has been shown to be linked to cancer cell growth, cell cycle regulation, migration, invasion, and clinical outcomes, and it represents a promising therapeutic target for many malignant tumors. In the present review, we provide an overview of the current knowledge concerning the role of HMGN5 in cancer development and progression.


Assuntos
Proteínas HMGN/metabolismo , Neoplasias/metabolismo , Transativadores/metabolismo , Animais , Proliferação de Células/fisiologia , Transformação Celular Neoplásica/metabolismo , Humanos
19.
Stem Cells ; 32(11): 2983-97, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25069414

RESUMO

Astrocytes are the most abundant cell type in the mammalian brain and are important for the functions of the central nervous system. Although previous studies have shown that the STAT signaling pathway or its regulators promote the generation of astrocytes from multipotent neural precursor cells (NPCs) in the developing mammalian brain, the molecular mechanisms that regulate the astrocytic fate decision have still remained largely unclear. Here, we show that the high mobility group nucleosome-binding (HMGN) family proteins, HMGN1, 2, and 3, promote astrocyte differentiation of NPCs during brain development. HMGN proteins were expressed in NPCs, Sox9(+) glial progenitors, and GFAP(+) astrocytes in perinatal and adult brains. Forced expression of either HMGN1, 2, or 3 in NPCs in cultures or in the late embryonic neocortex increased the generation of astrocytes at the expense of neurons. Conversely, knockdown of either HMGN1, 2, or 3 in NPCs suppressed astrocyte differentiation and promoted neuronal differentiation. Importantly, overexpression of HMGN proteins did not induce the phosphorylation of STAT3 or activate STAT reporter genes. In addition, HMGN family proteins did not enhance DNA demethylation and acetylation of histone H3 around the STAT-binding site of the gfap promoter. Moreover, knockdown of HMGN family proteins significantly reduced astrocyte differentiation induced by gliogenic signal ciliary neurotrophic factor, which activates the JAK-STAT pathway. Therefore, we propose that HMGN family proteins are novel chromatin regulatory factors that control astrocyte fate decision/differentiation in parallel with or downstream of the JAK-STAT pathway through modulation of the responsiveness to gliogenic signals.


Assuntos
Astrócitos/citologia , Diferenciação Celular/fisiologia , Proteínas HMGN/metabolismo , Células-Tronco Neurais/citologia , Neurônios/citologia , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos , Neurogênese/fisiologia , Neuroglia/citologia , Gravidez , Fator de Transcrição STAT3/metabolismo
20.
Nucleic Acids Res ; 41(2): 1372-81, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23221634

RESUMO

High-mobility group B (HMGB) proteins bind duplex DNA without sequence specificity, facilitating the formation of compact nucleoprotein structures by increasing the apparent flexibility of DNA through the introduction of DNA kinks. It has remained unclear whether HMGB binding and DNA kinking are simultaneous and whether the induced kink is rigid (static) or flexible. The detailed molecular mechanism of HMGB-induced DNA 'softening' is explored here by single-molecule fluorescence resonance energy transfer studies of single yeast Nhp6A (yNhp6A) proteins binding to short DNA duplexes. We show that the local effect of yNhp6A protein binding to DNA is consistent with formation of a single static kink that is short lived (lifetimes of a few seconds) under physiological buffer conditions. Within the time resolution of our experiments, this static kink occurs at the instant the protein binds to the DNA, and the DNA straightens at the instant the protein dissociates from the DNA. Our observations support a model in which HMGB proteins soften DNA through random dynamic binding and dissociation, accompanied by DNA kinking and straightening, respectively.


Assuntos
DNA/química , Proteínas HMGN/química , Proteínas de Saccharomyces cerevisiae/química , DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas HMGN/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA