Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42.018
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(1): 169-183.e19, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34963055

RESUMO

Non-small cell lung cancers (NSCLCs) harboring KEAP1 mutations are often resistant to immunotherapy. Here, we show that KEAP1 targets EMSY for ubiquitin-mediated degradation to regulate homologous recombination repair (HRR) and anti-tumor immunity. Loss of KEAP1 in NSCLC induces stabilization of EMSY, producing a BRCAness phenotype, i.e., HRR defects and sensitivity to PARP inhibitors. Defective HRR contributes to a high tumor mutational burden that, in turn, is expected to prompt an innate immune response. Notably, EMSY accumulation suppresses the type I interferon response and impairs innate immune signaling, fostering cancer immune evasion. Activation of the type I interferon response in the tumor microenvironment using a STING agonist results in the engagement of innate and adaptive immune signaling and impairs the growth of KEAP1-mutant tumors. Our results suggest that targeting PARP and STING pathways, individually or in combination, represents a therapeutic strategy in NSCLC patients harboring alterations in KEAP1.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Interferon Tipo I/metabolismo , Neoplasias Pulmonares/imunologia , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Reparo de DNA por Recombinação/genética , Proteínas Repressoras/metabolismo , Evasão Tumoral/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Imunidade Inata/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Mutação , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Transdução de Sinais/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Annu Rev Biochem ; 89: 235-253, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31928411

RESUMO

Predicting regulatory potential from primary DNA sequences or transcription factor binding patterns is not possible. However, the annotation of the genome by chromatin proteins, histone modifications, and differential compaction is largely sufficient to reveal the locations of genes and their differential activity states. The Polycomb Group (PcG) and Trithorax Group (TrxG) proteins are the central players in this cell type-specific chromatin organization. PcG function was originally viewed as being solely repressive and irreversible, as observed at the homeotic loci in flies and mammals. However, it is now clear that modular and reversible PcG function is essential at most developmental genes. Focusing mainly on recent advances, we review evidence for how PcG and TrxG patterns change dynamically during cell type transitions. The ability to implement cell type-specific transcriptional programming with exquisite fidelity is essential for normal development.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Proteínas do Grupo Polycomb/genética , Transcrição Gênica , Animais , Cromatina/química , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Metilação de DNA , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Embrião de Mamíferos , Embrião não Mamífero , Loci Gênicos , Histonas/genética , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas do Grupo Polycomb/classificação , Proteínas do Grupo Polycomb/metabolismo , Elementos de Resposta , Especificidade da Espécie , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Cell ; 180(5): 928-940.e14, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32109413

RESUMO

Covalent modifications to histones are essential for development, establishing distinct and functional chromatin domains from a common genetic sequence. Whereas repressed chromatin is robustly inherited, no mechanism that facilitates inheritance of an activated domain has been described. Here, we report that the Set3C histone deacetylase scaffold Snt1 can act as a prion that drives the emergence and transgenerational inheritance of an activated chromatin state. This prion, which we term [ESI+] for expressed sub-telomeric information, is triggered by transient Snt1 phosphorylation upon cell cycle arrest. Once engaged, the prion reshapes the activity of Snt1 and the Set3C complex, recruiting RNA pol II and interfering with Rap1 binding to activate genes in otherwise repressed sub-telomeric domains. This transcriptional state confers broad resistance to environmental stress, including antifungal drugs. Altogether, our results establish a robust means by which a prion can facilitate inheritance of an activated chromatin state to provide adaptive benefit.


Assuntos
Cromatina/genética , Histona Desacetilases/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ligação a Telômeros/genética , Fatores de Transcrição/genética , Pontos de Checagem do Ciclo Celular/genética , Código das Histonas/genética , Histonas/genética , Fosforilação/genética , Príons/genética , RNA Polimerase II/genética , Saccharomyces cerevisiae , Complexo Shelterina , Telômero/genética , Transcrição Gênica
4.
Cell ; 183(3): 802-817.e24, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33053319

RESUMO

Mammalian SWI/SNF complexes are ATP-dependent chromatin remodeling complexes that regulate genomic architecture. Here, we present a structural model of the endogenously purified human canonical BAF complex bound to the nucleosome, generated using cryoelectron microscopy (cryo-EM), cross-linking mass spectrometry, and homology modeling. BAF complexes bilaterally engage the nucleosome H2A/H2B acidic patch regions through the SMARCB1 C-terminal α-helix and the SMARCA4/2 C-terminal SnAc/post-SnAc regions, with disease-associated mutations in either causing attenuated chromatin remodeling activities. Further, we define changes in BAF complex architecture upon nucleosome engagement and compare the structural model of endogenous BAF to those of related SWI/SNF-family complexes. Finally, we assign and experimentally interrogate cancer-associated hot-spot mutations localizing within the endogenous human BAF complex, identifying those that disrupt BAF subunit-subunit and subunit-nucleosome interfaces in the nucleosome-bound conformation. Taken together, this integrative structural approach provides important biophysical foundations for understanding the mechanisms of BAF complex function in normal and disease states.


Assuntos
Doença , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Montagem e Desmontagem da Cromatina , Microscopia Crioeletrônica , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/metabolismo , Doença/genética , Humanos , Mutação de Sentido Incorreto/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Ligação Proteica , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Homologia Estrutural de Proteína , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Cell ; 182(1): 127-144.e23, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32502394

RESUMO

Before zygotic genome activation (ZGA), the quiescent genome undergoes reprogramming to transition into the transcriptionally active state. However, the mechanisms underlying euchromatin establishment during early embryogenesis remain poorly understood. Here, we show that histone H4 lysine 16 acetylation (H4K16ac) is maintained from oocytes to fertilized embryos in Drosophila and mammals. H4K16ac forms large domains that control nucleosome accessibility of promoters prior to ZGA in flies. Maternal depletion of MOF acetyltransferase leading to H4K16ac loss causes aberrant RNA Pol II recruitment, compromises the 3D organization of the active genomic compartments during ZGA, and causes downregulation of post-zygotically expressed genes. Germline depletion of histone deacetylases revealed that other acetyl marks cannot compensate for H4K16ac loss in the oocyte. Moreover, zygotic re-expression of MOF was neither able to restore embryonic viability nor onset of X chromosome dosage compensation. Thus, maternal H4K16ac provides an instructive function to the offspring, priming future gene activation.


Assuntos
Histonas/metabolismo , Lisina/metabolismo , Ativação Transcricional/genética , Acetilação , Animais , Sequência de Bases , Segregação de Cromossomos/genética , Sequência Conservada , Mecanismo Genético de Compensação de Dose , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/metabolismo , Evolução Molecular , Feminino , Genoma , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Masculino , Mamíferos/genética , Camundongos , Mutação/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Oócitos/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Cromossomo X/metabolismo , Zigoto/metabolismo
6.
Cell ; 182(2): 297-316.e27, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32619424

RESUMO

The most aggressive B cell lymphomas frequently manifest extranodal distribution and carry somatic mutations in the poorly characterized gene TBL1XR1. Here, we show that TBL1XR1 mutations skew the humoral immune response toward generating abnormal immature memory B cells (MB), while impairing plasma cell differentiation. At the molecular level, TBL1XR1 mutants co-opt SMRT/HDAC3 repressor complexes toward binding the MB cell transcription factor (TF) BACH2 at the expense of the germinal center (GC) TF BCL6, leading to pre-memory transcriptional reprogramming and cell-fate bias. Upon antigen recall, TBL1XR1 mutant MB cells fail to differentiate into plasma cells and instead preferentially reenter new GC reactions, providing evidence for a cyclic reentry lymphomagenesis mechanism. Ultimately, TBL1XR1 alterations lead to a striking extranodal immunoblastic lymphoma phenotype that mimics the human disease. Both human and murine lymphomas feature expanded MB-like cell populations, consistent with a MB-cell origin and delineating an unforeseen pathway for malignant transformation of the immune system.


Assuntos
Memória Imunológica/fisiologia , Linfoma Difuso de Grandes Células B/patologia , Proteínas Nucleares/genética , Células Precursoras de Linfócitos B/imunologia , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Repressoras/genética , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cromatina/química , Cromatina/metabolismo , Centro Germinativo/citologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Histona Desacetilases/metabolismo , Humanos , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Correpressor 2 de Receptor Nuclear/química , Correpressor 2 de Receptor Nuclear/metabolismo , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-6/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Transcrição Gênica
7.
Cell ; 176(3): 505-519.e22, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30612738

RESUMO

Genomic instability can be a hallmark of both human genetic disease and cancer. We identify a deleterious UBQLN4 mutation in families with an autosomal recessive syndrome reminiscent of genome instability disorders. UBQLN4 deficiency leads to increased sensitivity to genotoxic stress and delayed DNA double-strand break (DSB) repair. The proteasomal shuttle factor UBQLN4 is phosphorylated by ATM and interacts with ubiquitylated MRE11 to mediate early steps of homologous recombination-mediated DSB repair (HRR). Loss of UBQLN4 leads to chromatin retention of MRE11, promoting non-physiological HRR activity in vitro and in vivo. Conversely, UBQLN4 overexpression represses HRR and favors non-homologous end joining. Moreover, we find UBQLN4 overexpressed in aggressive tumors. In line with an HRR defect in these tumors, UBQLN4 overexpression is associated with PARP1 inhibitor sensitivity. UBQLN4 therefore curtails HRR activity through removal of MRE11 from damaged chromatin and thus offers a therapeutic window for PARP1 inhibitor treatment in UBQLN4-overexpressing tumors.


Assuntos
Proteínas de Transporte/genética , Proteínas Nucleares/genética , Proteínas de Transporte/metabolismo , Cromatina/metabolismo , DNA , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , Feminino , Instabilidade Genômica , Mutação em Linhagem Germinativa , Recombinação Homóloga , Humanos , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo , Masculino , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Cultura Primária de Células , Reparo de DNA por Recombinação
8.
Cell ; 177(3): 608-621.e12, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30955891

RESUMO

Normal tissues accumulate genetic changes with age, but it is unknown if somatic mutations promote clonal expansion of non-malignant cells in the setting of chronic degenerative diseases. Exome sequencing of diseased liver samples from 82 patients revealed a complex mutational landscape in cirrhosis. Additional ultra-deep sequencing identified recurrent mutations in PKD1, PPARGC1B, KMT2D, and ARID1A. The number and size of mutant clones increased as a function of fibrosis stage and tissue damage. To interrogate the functional impact of mutated genes, a pooled in vivo CRISPR screening approach was established. In agreement with sequencing results, examination of 147 genes again revealed that loss of Pkd1, Kmt2d, and Arid1a promoted clonal expansion. Conditional heterozygous deletion of these genes in mice was also hepatoprotective in injury assays. Pre-malignant somatic alterations are often viewed through the lens of cancer, but we show that mutations can promote regeneration, likely independent of carcinogenesis.


Assuntos
Hepatopatias/patologia , Fígado/metabolismo , Regeneração , Animais , Doença Crônica , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Hidrolases/deficiência , Hidrolases/genética , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/patologia , Hepatopatias/genética , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Regeneração/fisiologia , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequenciamento do Exoma
9.
Annu Rev Biochem ; 87: 323-350, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29668306

RESUMO

X chromosome regulation represents a prime example of an epigenetic phenomenon where coordinated regulation of a whole chromosome is required. In flies, this is achieved by transcriptional upregulation of X chromosomal genes in males to equalize the gene dosage differences in females. Chromatin-bound proteins and long noncoding RNAs (lncRNAs) constituting a ribonucleoprotein complex known as the male-specific lethal (MSL) complex or the dosage compensation complex mediate this process. MSL complex members decorate the male X chromosome, and their absence leads to male lethality. The male X chromosome is also enriched with histone H4 lysine 16 acetylation (H4K16ac), indicating that the chromatin compaction status of the X chromosome also plays an important role in transcriptional activation. How the X chromosome is specifically targeted and how dosage compensation is mechanistically achieved are central questions for the field. Here, we review recent advances, which reveal a complex interplay among lncRNAs, the chromatin landscape, transcription, and chromosome conformation that fine-tune X chromosome gene expression.


Assuntos
Mecanismo Genético de Compensação de Dose , Cromossomo X/genética , Animais , Cromatina/genética , Cromatina/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Epigênese Genética , Feminino , Genes Ligados ao Cromossomo X , Código das Histonas/genética , Humanos , Masculino , Modelos Genéticos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromossomo X/metabolismo
10.
Cell ; 173(6): 1508-1519.e18, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29754816

RESUMO

As predicted by the notion that sister chromatid cohesion is mediated by entrapment of sister DNAs inside cohesin rings, there is perfect correlation between co-entrapment of circular minichromosomes and sister chromatid cohesion. In most cells where cohesin loads without conferring cohesion, it does so by entrapment of individual DNAs. However, cohesin with a hinge domain whose positively charged lumen is neutralized loads and moves along chromatin despite failing to entrap DNAs. Thus, cohesin engages chromatin in non-topological, as well as topological, manners. Since hinge mutations, but not Smc-kleisin fusions, abolish entrapment, DNAs may enter cohesin rings through hinge opening. Mutation of three highly conserved lysine residues inside the Smc1 moiety of Smc1/3 hinges abolishes all loading without affecting cohesin's recruitment to CEN loading sites or its ability to hydrolyze ATP. We suggest that loading and translocation are mediated by conformational changes in cohesin's hinge driven by cycles of ATP hydrolysis.


Assuntos
Proteínas de Ciclo Celular/química , Cromátides/química , Proteínas Cromossômicas não Histona/química , DNA/química , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Cromatina/química , Humanos , Hidrólise , Lisina/química , Camundongos , Mutação , Proteínas Nucleares/genética , Conformação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Coesinas
11.
Cell ; 175(3): 780-795.e15, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30318142

RESUMO

During mitosis, chromatin condensation shapes chromosomes as separate, rigid, and compact sister chromatids to facilitate their segregation. Here, we show that, unlike wild-type yeast chromosomes, non-chromosomal DNA circles and chromosomes lacking a centromere fail to condense during mitosis. The centromere promotes chromosome condensation strictly in cis through recruiting the kinases Aurora B and Bub1, which trigger the autonomous condensation of the entire chromosome. Shugoshin and the deacetylase Hst2 facilitated spreading the condensation signal to the chromosome arms. Targeting Aurora B to DNA circles or centromere-ablated chromosomes or releasing Shugoshin from PP2A-dependent inhibition bypassed the centromere requirement for condensation and enhanced the mitotic stability of DNA circles. Our data indicate that yeast cells license the chromosome-autonomous condensation of their chromatin in a centromere-dependent manner, excluding from this process non-centromeric DNA and thereby inhibiting their propagation.


Assuntos
Centrômero/genética , Cromossomos Fúngicos/genética , Mitose , Saccharomyces cerevisiae/genética , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismo
12.
Cell ; 175(2): 558-570.e11, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30245011

RESUMO

Given that genomic DNA exerts its function by being transcribed, it is critical for the maintenance of homeostasis that DNA damage, such as double-strand breaks (DSBs), within transcriptionally active regions undergoes accurate repair. However, it remains unclear how this is achieved. Here, we describe a mechanism for transcription-associated homologous recombination repair (TA-HRR) in human cells. The process is initiated by R-loops formed upon DSB induction. We identify Rad52, which is recruited to the DSB site in a DNA-RNA-hybrid-dependent manner, as playing pivotal roles in promoting XPG-mediated R-loop processing and initiating subsequent repair by HRR. Importantly, dysfunction of TA-HRR promotes DSB repair via non-homologous end joining, leading to a striking increase in genomic aberrations. Thus, our data suggest that the presence of R-loops around DSBs within transcriptionally active regions promotes accurate repair of DSBs via processing by Rad52 and XPG to protect genomic information in these critical regions from gene alterations.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Proteínas Nucleares/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Reparo de DNA por Recombinação/fisiologia , Fatores de Transcrição/metabolismo , Linhagem Celular , DNA/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Endonucleases/fisiologia , Recombinação Homóloga , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , RNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Fatores de Transcrição/fisiologia
13.
Cell ; 174(1): 218-230.e13, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29804836

RESUMO

Ribonucleoprotein enzymes require dynamic conformations of their RNA constituents for regulated catalysis. Human telomerase employs a non-coding RNA (hTR) with a bipartite arrangement of domains-a template-containing core and a distal three-way junction (CR4/5) that stimulates catalysis through unknown means. Here, we show that telomerase activity unexpectedly depends upon the holoenzyme protein TCAB1, which in turn controls conformation of CR4/5. Cells lacking TCAB1 exhibit a marked reduction in telomerase catalysis without affecting enzyme assembly. Instead, TCAB1 inactivation causes unfolding of CR4/5 helices that are required for catalysis and for association with the telomerase reverse-transcriptase (TERT). CR4/5 mutations derived from patients with telomere biology disorders provoke defects in catalysis and TERT binding similar to TCAB1 inactivation. These findings reveal a conformational "activity switch" in human telomerase RNA controlling catalysis and TERT engagement. The identification of two discrete catalytic states for telomerase suggests an intramolecular means for controlling telomerase in cancers and progenitor cells.


Assuntos
RNA não Traduzido/química , Telomerase/metabolismo , Biocatálise , Linhagem Celular , Células HeLa , Humanos , Chaperonas Moleculares , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , RNA não Traduzido/metabolismo , Telomerase/antagonistas & inibidores , Telomerase/química , Telomerase/genética , Telômero/metabolismo
14.
Cell ; 175(6): 1492-1506.e19, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30449617

RESUMO

Approximately half of human genes generate mRNAs with alternative 3' untranslated regions (3'UTRs). Through 3'UTR-mediated protein-protein interactions, alternative 3'UTRs enable multi-functionality of proteins with identical amino acid sequence. While studying how information on protein features is transferred from 3'UTRs to proteins, we discovered that the broadly expressed RNA-binding protein TIS11B forms a membraneless organelle, called TIS granule, that enriches membrane protein-encoding mRNAs with multiple AU-rich elements. TIS granules form a reticular meshwork intertwined with the endoplasmic reticulum (ER). The association between TIS granules and the ER creates a subcellular compartment-the TIGER domain-with a biophysically and biochemically distinct environment from the cytoplasm. This compartment promotes 3'UTR-mediated interaction of SET with membrane proteins, thus allowing increased surface expression and functional diversity of proteins, including CD47 and PD-L1. The TIGER domain is a subcellular compartment that enables formation of specific and functionally relevant protein-protein interactions that cannot be established outside.


Assuntos
Regiões 3' não Traduzidas , Grânulos Citoplasmáticos/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Fator 1 de Resposta a Butirato , Antígeno CD47/genética , Antígeno CD47/metabolismo , Grânulos Citoplasmáticos/genética , Drosophila melanogaster , Retículo Endoplasmático/genética , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Células NIH 3T3 , Proteínas Nucleares/genética , Domínios Proteicos , Proteínas de Ligação a RNA/genética
15.
Cell ; 174(6): 1436-1449.e20, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30146163

RESUMO

Synaptic vesicle and active zone proteins are required for synaptogenesis. The molecular mechanisms for coordinated synthesis of these proteins are not understood. Using forward genetic screens, we identified the conserved THO nuclear export complex (THOC) as an important regulator of presynapse development in C. elegans dopaminergic neurons. In THOC mutants, synaptic messenger RNAs are retained in the nucleus, resulting in dramatic decrease of synaptic protein expression, near complete loss of synapses, and compromised dopamine function. CRE binding protein (CREB) interacts with THOC to mark synaptic transcripts for efficient nuclear export. Deletion of Thoc5, a THOC subunit, in mouse dopaminergic neurons causes severe defects in synapse maintenance and subsequent neuronal death in the substantia nigra compacta. These cellular defects lead to abrogated dopamine release, ataxia, and animal death. Together, our results argue that nuclear export mechanisms can select specific mRNAs and be a rate-limiting step for neuronal differentiation and survival.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Neurônios Dopaminérgicos/metabolismo , Proteínas Nucleares/genética , Sinapses/metabolismo , Transporte Ativo do Núcleo Celular , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Sinalização do Cálcio , Núcleo Celular/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese , Mutação de Sentido Incorreto , Proteínas Nucleares/deficiência , Proteínas Nucleares/metabolismo , Subunidades Proteicas/deficiência , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
16.
Cell ; 174(6): 1537-1548.e29, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30122351

RESUMO

LINE-1 retrotransposition is tightly restricted by layers of regulatory control, with epigenetic pathways being the best characterized. Looking at post-transcriptional regulation, we now show that LINE-1 mRNA 3' ends are pervasively uridylated in various human cellular models and in mouse testes. TUT4 and TUT7 uridyltransferases catalyze the modification and function in cooperation with the helicase/RNPase MOV10 to counteract the RNA chaperone activity of the L1-ORF1p retrotransposon protein. Uridylation potently restricts LINE-1 retrotransposition by a multilayer mechanism depending on differential subcellular localization of the uridyltransferases. We propose that uridine residues added by TUT7 in the cytoplasm inhibit initiation of reverse transcription of LINE-1 mRNAs once they are reimported to the nucleus, whereas uridylation by TUT4, which is enriched in cytoplasmic foci, destabilizes mRNAs. These results provide a model for the post-transcriptional restriction of LINE-1, revealing a key physiological role for TUT4/7-mediated uridylation in maintaining genome stability.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , RNA Nucleotidiltransferases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Uridina/metabolismo , Animais , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Camundongos , Proteínas Nucleares/genética , Ligação Proteica , RNA Helicases/antagonistas & inibidores , RNA Helicases/genética , RNA Helicases/metabolismo , Interferência de RNA , RNA Nucleotidiltransferases/antagonistas & inibidores , RNA Nucleotidiltransferases/genética , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Retroelementos/genética
17.
Cell ; 173(5): 1165-1178.e20, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29706548

RESUMO

Cohesin extrusion is thought to play a central role in establishing the architecture of mammalian genomes. However, extrusion has not been visualized in vivo, and thus, its functional impact and energetics are unknown. Using ultra-deep Hi-C, we show that loop domains form by a process that requires cohesin ATPases. Once formed, however, loops and compartments are maintained for hours without energy input. Strikingly, without ATP, we observe the emergence of hundreds of CTCF-independent loops that link regulatory DNA. We also identify architectural "stripes," where a loop anchor interacts with entire domains at high frequency. Stripes often tether super-enhancers to cognate promoters, and in B cells, they facilitate Igh transcription and recombination. Stripe anchors represent major hotspots for topoisomerase-mediated lesions, which promote chromosomal translocations and cancer. In plasmacytomas, stripes can deregulate Igh-translocated oncogenes. We propose that higher organisms have coopted cohesin extrusion to enhance transcription and recombination, with implications for tumor development.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Genoma , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Cromossomos/metabolismo , Proteínas de Ligação a DNA , Humanos , Camundongos , Mutagênese , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Coesinas
18.
Cell ; 173(7): 1770-1782.e14, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29906450

RESUMO

Using integrative genomic analysis of 360 metastatic castration-resistant prostate cancer (mCRPC) samples, we identified a novel subtype of prostate cancer typified by biallelic loss of CDK12 that is mutually exclusive with tumors driven by DNA repair deficiency, ETS fusions, and SPOP mutations. CDK12 loss is enriched in mCRPC relative to clinically localized disease and characterized by focal tandem duplications (FTDs) that lead to increased gene fusions and marked differential gene expression. FTDs associated with CDK12 loss result in highly recurrent gains at loci of genes involved in the cell cycle and DNA replication. CDK12 mutant cases are baseline diploid and do not exhibit DNA mutational signatures linked to defects in homologous recombination. CDK12 mutant cases are associated with elevated neoantigen burden ensuing from fusion-induced chimeric open reading frames and increased tumor T cell infiltration/clonal expansion. CDK12 inactivation thereby defines a distinct class of mCRPC that may benefit from immune checkpoint immunotherapy.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Neoplasias da Próstata/patologia , Anticorpos Monoclonais/uso terapêutico , Linhagem Celular Tumoral , Quimiocina CCL21/genética , Quimiocina CCL21/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Reparo do DNA , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Humanos , Masculino , Mutação de Sentido Incorreto , Estadiamento de Neoplasias , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Receptor de Morte Celular Programada 1/imunologia , Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/imunologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Linfócitos T/metabolismo , Linfócitos T/patologia , Tomografia Computadorizada por Raios X
19.
Cell ; 175(7): 1931-1945.e18, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30550790

RESUMO

Mosquito-borne flaviviruses, including dengue virus (DENV) and Zika virus (ZIKV), are a growing public health concern. Systems-level analysis of how flaviviruses hijack cellular processes through virus-host protein-protein interactions (PPIs) provides information about their replication and pathogenic mechanisms. We used affinity purification-mass spectrometry (AP-MS) to compare flavivirus-host interactions for two viruses (DENV and ZIKV) in two hosts (human and mosquito). Conserved virus-host PPIs revealed that the flavivirus NS5 protein suppresses interferon stimulated genes by inhibiting recruitment of the transcription complex PAF1C and that chemical modulation of SEC61 inhibits DENV and ZIKV replication in human and mosquito cells. Finally, we identified a ZIKV-specific interaction between NS4A and ANKLE2, a gene linked to hereditary microcephaly, and showed that ZIKV NS4A causes microcephaly in Drosophila in an ANKLE2-dependent manner. Thus, comparative flavivirus-host PPI mapping provides biological insights and, when coupled with in vivo models, can be used to unravel pathogenic mechanisms.


Assuntos
Vírus da Dengue , Dengue , Proteínas de Membrana , Proteínas Nucleares , Proteínas não Estruturais Virais , Infecção por Zika virus , Zika virus , Animais , Linhagem Celular Tumoral , Culicidae , Dengue/genética , Dengue/metabolismo , Dengue/patologia , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Vírus da Dengue/patogenicidade , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mapeamento de Interação de Proteínas , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Zika virus/genética , Zika virus/metabolismo , Zika virus/patogenicidade , Infecção por Zika virus/genética , Infecção por Zika virus/metabolismo , Infecção por Zika virus/patologia
20.
Cell ; 173(1): 221-233.e12, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29551271

RESUMO

Tandem zinc finger (ZF) proteins are the largest and most rapidly diverging family of DNA-binding transcription regulators in mammals. ZFP568 represses a transcript of placental-specific insulin like growth factor 2 (Igf2-P0) in mice. ZFP568 binds a 24-base pair sequence-specific element upstream of Igf2-P0 via the eleven-ZF array. Both DNA and protein conformations deviate from the conventional one finger-three bases recognition, with individual ZFs contacting 2, 3, or 4 bases and recognizing thymine on the opposite strand. These interactions arise from a shortened minor groove caused by an AT-rich stretch, suggesting adaptability of ZF arrays to sequence variations. Despite conservation in mammals, mutations at Igf2 and ZFP568 reduce their binding affinity in chimpanzee and humans. Our studies provide important insights into the evolutionary and structural dynamics of ZF-DNA interactions that play a key role in mammalian development and evolution.


Assuntos
DNA/metabolismo , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/classificação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , DNA/química , Humanos , Fator de Crescimento Insulin-Like II/química , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos , Simulação de Dinâmica Molecular , Proteínas Nucleares/química , Proteínas Nucleares/classificação , Proteínas Nucleares/genética , Conformação de Ácido Nucleico , Pan troglodytes , Filogenia , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA