Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurogenet ; 30(3-4): 185-194, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27846759

RESUMO

The ability to image and manipulate specific cell populations in Drosophila enables the investigation of how neural circuits develop and coordinate appropriate motor behaviors. Gal4 lines give genetic access to many types of neurons, but the expression patterns of these reagents are often complex. Here, we present the generation and expression patterns of LexA lines based on the vesicular neurotransmitter transporters and Hox transcription factors. Intersections between these LexA lines and existing Gal4 collections provide a strategy for rationally subdividing complex expression patterns based on neurotransmitter or segmental identity.


Assuntos
Animais Geneticamente Modificados , Drosophila/genética , Neurônios , Animais , Proteínas de Drosophila/genética , Fatores de Transcrição/genética , Proteínas Vesiculares de Transporte de Neurotransmissores/genética
2.
Biol Pharm Bull ; 39(4): 564-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27040629

RESUMO

Vesicular nucleotide transporter (VNUT) is a membrane protein that is responsible for vesicular storage and subsequent vesicular release of nucleotides, such as ATP, and plays an essential role in purinergic chemical transmission. In the present study, we investigated whether VNUT is present in the rodent retina to define the site(s) of vesicular ATP release. In the mouse retina, reverse transcription polymerase chain reaction (RT-PCR) and immunological analyses using specific anti-VNUT antibodies indicated that VNUT is expressed as a polypeptide with an apparent molecular mass of 59 kDa. VNUT is widely distributed throughout the inner and outer retinal layers, particularly in the outer segment of photoreceptors, outer plexiform layer, inner plexiform layer, and ganglion cell layer. VNUT is colocalized with vesicular glutamate transporter 1 and synaptophysin in photoreceptor cells, while it is colocalized with vesicular γ-aminobutyric acid (GABA) transporter in amacrine cells and bipolar cells. VNUT is also present in astrocytes and Müller cells. The retina from VNUT knockout (VNUT(-/-)) mice showed the loss of VNUT immunoreactivity. The retinal membrane fraction took up radiolabeled ATP in diisothiocyanate stilbene disulfonic acid (DIDS)-, an inhibitor of VNUT, and bafilomycin A1-, a vacuolar adenosine triphosphatase (ATPase) inhibitor, in a sensitive manner, while membranes from VNUT(-/-) mice showed the loss of DIDS-sensitive ATP uptake. Taken together, these results indicate that functional VNUT is expressed in the rodent retina and suggest that ATP is released from photoreceptor cells, bipolar cells, amacrine cells, and astrocytes as well as Müller cells to initiate purinergic chemical transmission.


Assuntos
Retina/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/genética
3.
J Inherit Metab Dis ; 37(4): 619-26, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24696406

RESUMO

The monoamine neurotransmitter disorders are increasingly recognized as an expanding group of inherited neurometabolic syndromes caused by disturbances in the synthesis, transport and metabolism of the biogenic amines, including the catecholamines (dopamine, norepinephrine, and epinephrine) and serotonin. Disturbances in monoamine metabolism lead to neurological syndromes that frequently mimic other conditions, such as hypoxic ischemic encephalopathy, cerebral palsy, parkinsonism-dystonia syndromes, primary genetic dystonia and paroxysmal disorders. As a consequence, neurotransmitter disorders are frequently misdiagnosed. Early and accurate diagnosis of these neurotransmitter disorders is important, as many are highly amenable to, and some even cured by, therapeutic intervention. In this review, we highlight recent advances in the field, particularly the recent extensive characterization of known neurotransmitter disorders and identification of novel neurotransmitter disorders. We also provide an overview of current and future research in the field focused on developing novel treatment strategies.


Assuntos
Monoaminas Biogênicas , Encefalopatias Metabólicas Congênitas/terapia , Neurotransmissores/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Descarboxilases de Aminoácido-L-Aromático/deficiência , Monoaminas Biogênicas/metabolismo , Encefalopatias Metabólicas Congênitas/diagnóstico , Proteínas da Membrana Plasmática de Transporte de Dopamina/deficiência , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Distonia/diagnóstico , Distonia/terapia , Distúrbios Distônicos/congênito , Distúrbios Distônicos/diagnóstico , Distúrbios Distônicos/terapia , Humanos , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/terapia , Neurotransmissores/metabolismo , Transtornos Psicomotores/diagnóstico , Transtornos Psicomotores/terapia , Síndrome , Proteínas Vesiculares de Transporte de Neurotransmissores/deficiência , Proteínas Vesiculares de Transporte de Neurotransmissores/genética
4.
J Biol Chem ; 286(50): 42881-7, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22052906

RESUMO

The vesicular nucleotide transporter (VNUT) is a secretory vesicle protein that is responsible for the vesicular storage and subsequent exocytosis of ATP (Sawada, K., Echigo, N., Juge, N., Miyaji, T., Otsuka, M., Omote, H., and Moriyama, Y. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 5683-5686). Because VNUT actively transports ATP in a membrane potential (Δψ)-dependent manner irrespective of divalent cations such as Mg(2+) and Ca(2+), VNUT recognizes free ATP as a transport substrate. However, whether or not VNUT transports chelating complexes with divalent cations remains unknown. Here, we show that proteoliposomes containing purified VNUT actively took up Mg(2+) when ATP was present, as detected by atomic absorption spectroscopy. The VNUT-containing proteoliposomes also took up radioactive Ca(2+) upon imposing Δψ (positive-inside) but not ΔpH. The Δψ-driven Ca(2+) uptake required ATP and a millimolar concentration of Cl(-), which was inhibited by Evans blue, a specific inhibitor of SLC17-type transporters. VNUT in which Arg-119 was specifically mutated to alanine, the counterpart of the essential amino acid residue of the SLC17 family, lost the ability to take up both ATP and Ca(2+). Ca(2+) uptake was also inhibited in the presence of various divalent cations such as Mg(2+). Kinetic analysis indicated that Ca(2+) or Mg(2+) did not affect the apparent affinity for ATP. RNAi of the VNUT gene in PC12 cells decreased the vesicular Mg(2+) concentration to 67.7%. These results indicate that VNUT transports both nucleotides and divalent cations probably as chelating complexes and suggest that VNUT functions as a divalent cation importer in secretory vesicles under physiological conditions.


Assuntos
Cátions Bivalentes/metabolismo , Nucleotídeos/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico , Cálcio/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Humanos , Cinética , Magnésio/metabolismo , Camundongos , Células PC12 , Ratos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/genética
5.
Neurochem Int ; 73: 71-88, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24704795

RESUMO

The model genetic organism Drosophila melanogaster, commonly known as the fruit fly, uses many of the same neurotransmitters as mammals and very similar mechanisms of neurotransmitter storage, release and recycling. This system offers a variety of powerful molecular-genetic methods for the study of transporters, many of which would be difficult in mammalian models. We review here progress made using Drosophila to understand the function and regulation of neurotransmitter transporters and discuss future directions for its use.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Proteínas de Transporte de Neurotransmissores/genética , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Humanos , Proteínas de Transporte de Neurotransmissores/efeitos dos fármacos , Proteínas de Transporte de Neurotransmissores/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/genética , Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo
6.
Fly (Austin) ; 4(4): 302-5, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20855951

RESUMO

During exocytosis, classical and amino acid neurotransmitters are released from the lumen of synaptic vesicles to allow signaling at the synapse. The storage of neurotransmitters in synaptic vesicles and other types of secretory vesicles requires the activity of specific vesicular transporters. Glutamate and monoamines such as dopamine are packaged by VGLUTs and VMATs respectively. Changes in the localization of either protein have the potential to up- or down regulate neurotransmitter release, and some of the mechanisms for sorting these proteins to secretory vesicles have been investigated in cultured cells in vitro. We have used Drosophila molecular genetic techniques to study vesicular transporter trafficking in an intact organism and have identified a motif required for localizing Drosophila VMAT (DVMAT) to synaptic vesicles in vivo. In contrast to DVMAT, large deletions of Drosophila VGLUT (DVGLUT) show relatively modest deficits in localizing to synaptic vesicles, suggesting that DVMAT and DVGLUT may undergo different modes of trafficking at the synapse. Further in vivo studies of DVMAT trafficking mutants will allow us to determine how changes in the localization of vesicular transporters affect the nervous system as a whole and complex behaviors mediated by aminergic circuits.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Transmissão Sináptica/fisiologia , Proteínas Vesiculares de Transporte de Neurotransmissores/fisiologia , Animais , Transporte Biológico , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Neurotransmissores/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/genética , Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo
7.
Neuron ; 66(5): 710-23, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20547129

RESUMO

Presynaptic assembly requires the packaging of requisite proteins into vesicular cargoes in the cell soma, their long-distance microtubule-dependent transport down the axon, and, finally, their reconstitution into functional complexes at prespecified sites. Despite the identification of several molecules that contribute to these events, the regulatory mechanisms defining such discrete states remain elusive. We report the characterization of an Arf-like small G protein, ARL-8, required during this process. arl-8 mutants prematurely accumulate presynaptic cargoes within the proximal axon of several neuronal classes, with a corresponding failure to assemble presynapses distally. This proximal accumulation requires the activity of several molecules known to catalyze presynaptic assembly. Dynamic imaging studies reveal that arl-8 mutant vesicles exhibit an increased tendency to form immotile aggregates during transport. Together, these results suggest that arl-8 promotes a trafficking identity for presynaptic cargoes, facilitating their efficient transport by repressing premature self-association.


Assuntos
Fatores de Ribosilação do ADP/fisiologia , Transporte Axonal/fisiologia , Proteínas de Membrana/fisiologia , Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/antagonistas & inibidores , Fatores de Ribosilação do ADP/genética , Animais , Transporte Axonal/genética , Caenorhabditis elegans , Proteínas de Membrana/genética , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Transporte Proteico/genética , Vesículas Sinápticas/genética , Vesículas Sinápticas/ultraestrutura , Proteínas Vesiculares de Transporte de Neurotransmissores/genética , Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA