RESUMO
To control viral infection, vertebrates rely on both inducible interferon responses and less well-characterized cell-intrinsic responses composed of "at the ready" antiviral effector proteins. Here, we show that E3 ubiquitin ligase TRIM7 is a cell-intrinsic antiviral effector that restricts multiple human enteroviruses by targeting viral 2BC, a membrane remodeling protein, for ubiquitination and proteasome-dependent degradation. Selective pressure exerted by TRIM7 results in emergence of a TRIM7-resistant coxsackievirus with a single point mutation in the viral 2C ATPase/helicase. In cultured cells, the mutation helps the virus evade TRIM7 but impairs optimal viral replication, and this correlates with a hyperactive and structurally plastic 2C ATPase. Unexpectedly, the TRIM7-resistant virus has a replication advantage in mice and causes lethal pancreatitis. These findings reveal a unique mechanism for targeting enterovirus replication and provide molecular insight into the benefits and trade-offs of viral evolution imposed by a host restriction factor.
Assuntos
Enterovirus/fisiologia , Enterovirus/patogenicidade , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral/fisiologia , Adenosina Trifosfatases/metabolismo , Animais , Linhagem Celular , Feminino , Humanos , Inflamação/patologia , Camundongos Endogâmicos C57BL , Mutação/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , RNA Viral/metabolismo , Ubiquitina/metabolismo , Proteínas Virais/genéticaRESUMO
Human tripartite motif protein 5α (TRIM5α) is a well-characterized restriction factor for some RNA viruses, including HIV1-5; however, reports are limited for DNA viruses6,7. Here we demonstrate that TRIM5α also restricts orthopoxviruses and, via its SPRY domain, binds to the orthopoxvirus capsid protein L3 to diminish virus replication and activate innate immunity. In response, several orthopoxviruses, including vaccinia, rabbitpox, cowpox, monkeypox, camelpox and variola viruses, deploy countermeasures. First, the protein C6 binds to TRIM5 via the RING domain to induce its proteasome-dependent degradation. Second, cyclophilin A (CypA) is recruited via interaction with the capsid protein L3 to virus factories and virions to antagonize TRIM5α; this interaction is prevented by cyclosporine A (CsA) and the non-immunosuppressive derivatives alisporivir and NIM811. Both the proviral effect of CypA and the antiviral effect of CsA are dependent on TRIM5α. CsA, alisporivir and NIM811 have antiviral activity against orthopoxviruses, and because these drugs target a cellular protein, CypA, the emergence of viral drug resistance is difficult. These results warrant testing of CsA derivatives against orthopoxviruses, including monkeypox and variola.
Assuntos
Fatores de Restrição Antivirais , Ciclofilina A , Poxviridae , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Proteínas Virais , Humanos , Antivirais/metabolismo , Fatores de Restrição Antivirais/metabolismo , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Ciclofilina A/metabolismo , Poxviridae/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismoRESUMO
RNA helicases and E3 ubiquitin ligases mediate many critical functions in cells, but their actions have largely been studied in distinct biological contexts. Here, we uncover evolutionarily conserved rules of engagement between RNA helicases and tripartite motif (TRIM) E3 ligases that lead to their functional coordination in vertebrate innate immunity. Using cryoelectron microscopy and biochemistry, we show that RIG-I-like receptors (RLRs), viral RNA receptors with helicase domains, interact with their cognate TRIM/TRIM-like E3 ligases through similar epitopes in the helicase domains. Their interactions are avidity driven, restricting the actions of TRIM/TRIM-like proteins and consequent immune activation to RLR multimers. Mass spectrometry and phylogeny-guided biochemical analyses further reveal that similar rules of engagement may apply to diverse RNA helicases and TRIM/TRIM-like proteins. Our analyses suggest not only conserved substrates for TRIM proteins but also, unexpectedly, deep evolutionary connections between TRIM proteins and RNA helicases, linking ubiquitin and RNA biology throughout animal evolution.
Assuntos
Proteína DEAD-box 58/metabolismo , Imunidade Inata , Helicase IFIH1 Induzida por Interferon/metabolismo , Receptores Imunológicos/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Microscopia Crioeletrônica , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/ultraestrutura , Epitopos , Evolução Molecular , Células HEK293 , Humanos , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/ultraestrutura , Modelos Moleculares , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Receptores Imunológicos/genética , Receptores Imunológicos/ultraestrutura , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/ultraestrutura , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/ultraestruturaRESUMO
Accurate control of innate immune responses is required to eliminate invading pathogens and simultaneously avoid autoinflammation and autoimmune diseases. Here, we demonstrate that arginine monomethylation precisely regulates the mitochondrial antiviral-signaling protein (MAVS)-mediated antiviral response. Protein arginine methyltransferase 7 (PRMT7) forms aggregates to catalyze MAVS monomethylation at arginine residue 52 (R52), attenuating its binding to TRIM31 and RIG-I, which leads to the suppression of MAVS aggregation and subsequent activation. Upon virus infection, aggregated PRMT7 is disabled in a timely manner due to automethylation at arginine residue 32 (R32), and SMURF1 is recruited to PRMT7 by MAVS to induce proteasomal degradation of PRMT7, resulting in the relief of PRMT7 suppression of MAVS activation. Therefore, we not only reveal that arginine monomethylation by PRMT7 negatively regulates MAVS-mediated antiviral signaling in vitro and in vivo but also uncover a mechanism by which PRMT7 is tightly controlled to ensure the timely activation of antiviral defense.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Arginina/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Imunidade Inata/fisiologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Proteína DEAD-box 58/metabolismo , Fibroblastos/virologia , Células HEK293 , Herpes Simples/imunologia , Herpes Simples/metabolismo , Herpes Simples/virologia , Humanos , Metilação , Camundongos , Camundongos Knockout , Alcamidas Poli-Insaturadas , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/imunologia , Receptores Imunológicos/metabolismo , Infecções por Respirovirus/imunologia , Infecções por Respirovirus/metabolismo , Infecções por Respirovirus/virologia , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
TRIM71/LIN-41, a phylogenetically conserved regulator of development, controls stem cell fates. Mammalian TRIM71 exhibits both RNA-binding and protein ubiquitylation activities, but the functional contribution of either activity and relevant primary targets remain poorly understood. Here, we demonstrate that TRIM71 shapes the transcriptome of mouse embryonic stem cells (mESCs) predominantly through its RNA-binding activity. We reveal that TRIM71 binds targets through 3' untranslated region (UTR) hairpin motifs and that it acts predominantly by target degradation. TRIM71 mutations implicated in etiogenesis of human congenital hydrocephalus impair target silencing. We identify a set of primary targets consistently regulated in various human and mouse cell lines, including MBNL1 (Muscleblind-like protein 1). MBNL1 promotes cell differentiation through regulation of alternative splicing, and we demonstrate that TRIM71 promotes embryonic splicing patterns through MBNL1 repression. Hence, repression of MBNL1-dependent alternative splicing may contribute to TRIM71's function in regulating stem cell fates.
Assuntos
Processamento Alternativo/genética , Regulação da Expressão Gênica/genética , Proteínas de Ligação a RNA/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular Tumoral , Células-Tronco Embrionárias , Humanos , Camundongos , Camundongos Knockout , Mutação , Motivos de Nucleotídeos , Ligação Proteica , Domínios Proteicos/genética , Interferência de RNA , Proteínas de Ligação a RNA/metabolismoRESUMO
Coxsackievirus B (CVB) is the major causative pathogen for severe diseases such as viral myocarditis, meningitis, and pancreatitis. There is no effective antiviral therapy currently available for CVB infection primarily due to that the pathogenesis of CVB has not been completely understood. Viruses are obligate intracellular pathogens which subvert cellular processes to ensure viral replication. Dysregulation of ubiquitination has been implicated in CVB infection. However, how ubiquitination is involved in CVB infection remains unclear. Here we found that the 3D protein of CVB3, the RNA-dependent RNA polymerase, was modified at K220 by K48-linked polyubiquitination which promoted its degradation through proteasome. Proteomic analysis showed that the E3 ligase TRIM56 was upregulated in CVB3-infected cells, while the majority of TRIMs remained unchanged. Pull-down and immunoprecipitation analyses showed that TRIM56 interacted with CVB3 3D. Immunofluorescence observation showed that viral 3D protein was colocalized with TRIM56. TRIM56 overexpression resulted in enhanced ubiquitination of CVB3 3D and decreased virus yield. Moreover, TRIM56 was cleaved by viral 3C protease in CVB3-infected cells. Taken together, this study demonstrated that TRIM56 mediates the ubiquitination and proteasomal degradation of the CVB3 3D protein. These findings demonstrate that TRIM56 is an intrinsic cellular restriction factor against CVB infection, and enhancing viral protein degradation could be a potential strategy to control CVB infection.
Assuntos
Infecções por Coxsackievirus , Enterovirus Humano B , RNA Polimerase Dependente de RNA , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Ubiquitinação , Humanos , Enterovirus Humano B/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral/fisiologia , Células HeLa , Proteínas Virais/metabolismo , Proteínas Virais/genéticaRESUMO
The tripartite motif (TRIM) protein family is the largest subfamily of E3 ubiquitin ligases, playing a crucial role in the antiviral process. In this study, we found that TRIM72, a member of the TRIM protein family, was increased in neuronal cells and mouse brains following rabies lyssavirus (RABV) infection. Over-expression of TRIM72 significantly reduced the viral titer of RABV in neuronal cells and mitigated the pathogenicity of RABV in mice. Furthermore, we found that TRIM72 over-expression effectively prevents the assembly and/or release of RABV. In terms of the mechanism, TRIM72 promotes the K48-linked ubiquitination of RABV Matrix protein (M), leading to the degradation of M through the proteasome pathway. TRIM72 directly interacts with M and the interaction sites were identified and confirmed through TRIM72-M interaction model construction and mutation analysis. Further investigation revealed that the degradation of M induced by TRIM72 was attributed to TRIM72's promotion of ubiquitination at site K195 in M. Importantly, the K195 site was found to be partially conserved among lyssavirus's M proteins, and TRIM72 over-expression induced the degradation of these lyssavirus M proteins. In summary, our study has uncovered a TRIM family protein, TRIM72, that can restrict lyssavirus replication by degrading M, and we have identified a novel ubiquitination site (K195) in lyssavirus M.
Assuntos
Raiva , Proteínas com Motivo Tripartido , Animais , Camundongos , Lyssavirus/metabolismo , Lyssavirus/patogenicidade , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Vírus da Raiva/metabolismo , Vírus da Raiva/patogenicidade , Raiva/genéticaRESUMO
Genomic instability is a hallmark of cancer, and has a central role in the initiation and development of breast cancer1,2. The success of poly-ADP ribose polymerase inhibitors in the treatment of breast cancers that are deficient in homologous recombination exemplifies the utility of synthetically lethal genetic interactions in the treatment of breast cancers that are driven by genomic instability3. Given that defects in homologous recombination are present in only a subset of breast cancers, there is a need to identify additional driver mechanisms for genomic instability and targeted strategies to exploit these defects in the treatment of cancer. Here we show that centrosome depletion induces synthetic lethality in cancer cells that contain the 17q23 amplicon, a recurrent copy number aberration that defines about 9% of all primary breast cancer tumours and is associated with high levels of genomic instability4-6. Specifically, inhibition of polo-like kinase 4 (PLK4) using small molecules leads to centrosome depletion, which triggers mitotic catastrophe in cells that exhibit amplicon-directed overexpression of TRIM37. To explain this effect, we identify TRIM37 as a negative regulator of centrosomal pericentriolar material. In 17q23-amplified cells that lack centrosomes, increased levels of TRIM37 block the formation of foci that comprise pericentriolar material-these foci are structures with a microtubule-nucleating capacity that are required for successful cell division in the absence of centrosomes. Finally, we find that the overexpression of TRIM37 causes genomic instability by delaying centrosome maturation and separation at mitotic entry, and thereby increases the frequency of mitotic errors. Collectively, these findings highlight TRIM37-dependent genomic instability as a putative driver event in 17q23-amplified breast cancer and provide a rationale for the use of centrosome-targeting therapeutic agents in treating these cancers.
Assuntos
Neoplasias da Mama/genética , Centrossomo/metabolismo , Centrossomo/patologia , Cromossomos Humanos Par 17/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Centrossomo/efeitos dos fármacos , Feminino , Fase G2 , Instabilidade Genômica , Humanos , Mitose/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genéticaRESUMO
Zika virus (ZIKV) belongs to the family Flaviviridae, and is related to other viruses that cause human diseases. Unlike other flaviviruses, ZIKV infection can cause congenital neurological disorders and replicates efficiently in reproductive tissues1-3. Here we show that the envelope protein (E) of ZIKV is polyubiquitinated by the E3 ubiquitin ligase TRIM7 through Lys63 (K63)-linked polyubiquitination. Accordingly, ZIKV replicates less efficiently in the brain and reproductive tissues of Trim7-/- mice. Ubiquitinated E is present on infectious virions of ZIKV when they are released from specific cell types, and enhances virus attachment and entry into cells. Specifically, K63-linked polyubiquitin chains directly interact with the TIM1 (also known as HAVCR1) receptor of host cells, which enhances virus entry in cells as well as in brain tissue in vivo. Recombinant ZIKV mutants that lack ubiquitination are attenuated in human cells and in wild-type mice, but not in live mosquitoes. Monoclonal antibodies against K63-linked polyubiquitin specifically neutralize ZIKV and reduce viraemia in mice. Our results demonstrate that the ubiquitination of ZIKV E is an important determinant of virus entry, tropism and pathogenesis.
Assuntos
Ubiquitinação , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Zika virus/metabolismo , Zika virus/patogenicidade , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Encéfalo/metabolismo , Linhagem Celular , Culicidae/citologia , Culicidae/virologia , Endossomos/metabolismo , Feminino , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Humanos , Masculino , Fusão de Membrana , Camundongos , Especificidade de Órgãos , Poliubiquitina/imunologia , Poliubiquitina/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Tropismo Viral , Viremia/imunologia , Viremia/prevenção & controle , Viremia/virologia , Replicação Viral , Zika virus/química , Zika virus/genética , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologiaRESUMO
Centrosomes catalyse the formation of microtubules needed to assemble the mitotic spindle apparatus1. Centrosomes themselves duplicate once per cell cycle, in a process that is controlled by the serine/threonine protein kinase PLK4 (refs. 2,3). When PLK4 is chemically inhibited, cell division proceeds without centrosome duplication, generating centrosome-less cells that exhibit delayed, acentrosomal spindle assembly4. Whether PLK4 inhibitors can be leveraged as a treatment for cancer is not yet clear. Here we show that acentrosomal spindle assembly following PLK4 inhibition depends on levels of the centrosomal ubiquitin ligase TRIM37. Low TRIM37 levels accelerate acentrosomal spindle assembly and improve proliferation following PLK4 inhibition, whereas high TRIM37 levels inhibit acentrosomal spindle assembly, leading to mitotic failure and cessation of proliferation. The Chr17q region containing the TRIM37 gene is frequently amplified in neuroblastoma and in breast cancer5-8, rendering these cancer types highly sensitive to PLK4 inhibition. We find that inactivating TRIM37 improves acentrosomal mitosis because TRIM37 prevents PLK4 from self-assembling into centrosome-independent condensates that serve as ectopic microtubule-organizing centres. By contrast, elevated TRIM37 expression inhibits acentrosomal spindle assembly through a distinct mechanism that involves degradation of the centrosomal component CEP192. Thus, TRIM37 is an essential determinant of mitotic vulnerability to PLK4 inhibition. Linkage of TRIM37 to prevalent cancer-associated genomic changes-including 17q gain in neuroblastoma and 17q23 amplification in breast cancer-may offer an opportunity to use PLK4 inhibition to trigger selective mitotic failure and provide new avenues to treatments for these cancers.
Assuntos
Mitose/efeitos dos fármacos , Mitose/genética , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Humanos Par 17/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Centro Organizador dos Microtúbulos/efeitos dos fármacos , Centro Organizador dos Microtúbulos/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Sulfonas/farmacologia , Sulfonas/uso terapêutico , Ubiquitina/metabolismo , Ubiquitinação , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The rather few cases of humans infected by HIV-1 N, O, or P raise the question of their incomplete adaptation to humans. We hypothesized that early postentry restrictions may be relevant for the impaired spread of these HIVs. One of the best-characterized species-specific restriction factors is TRIM5α. HIV-1 M can escape human (hu) TRIM5α restriction by binding cyclophilin A (CYPA, also known as PPIA, peptidylprolyl isomerase A) to the so-called CYPA-binding loop of its capsid protein. How non-M HIV-1s interact with huTRIM5α is ill-defined. By testing full-length reporter viruses (Δ env) of HIV-1 N, O, P, and SIVgor (simian IV of gorillas), we found that in contrast to HIV-1 M, the nonpandemic HIVs and SIVgor showed restriction by huTRIM5α. Work to identify capsid residues that mediate susceptibility to huTRIM5α revealed that residue 88 in the capsid CYPA-binding loop was important for such differences. There, HIV-1 M uses alanine to resist, while non-M HIV-1s have either valine or methionine, which avail them for huTRIM5α. Capsid residue 88 determines the sensitivity to TRIM5α in an unknown way. Molecular simulations indicated that capsid residue 88 can affect trans-to-cis isomerization patterns on the capsids of the viruses we tested. These differential CYPA usages by pandemic and nonpandemic HIV-1 suggest that the enzymatic activity of CYPA on the viral core might be important for its protective function against huTRIM5α.
Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Ciclofilina A/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , HIV-1/fisiologia , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Infecções por HIV/metabolismoRESUMO
Tripartite-motif protein-56 (TRIM56) positively regulates the induction of type I interferon response via the TLR3 pathway by enhancing IRF3 activation and depends on its C-terminal residues 621-750 for interacting with the adaptor TRIF. However, the precise underlying mechanism and detailed TRIM56 determinants remain unclear. Herein, we show ectopic expression of murine TRIM56 also enhances TLR3-dependent interferon-ß promoter activation, suggesting functional conservation. We found that endogenous TRIM56 and TRIF formed a complex early (0.5-2 h) after poly-I:C stimulation and that TRIM56 overexpression also promoted activation of NF-κB by poly-I:C but not that by TNF-α or IL-1ß, consistent with a specific effect on TRIF prior to the bifurcation of NF-κB and IRF3. Using transient transfection and Tet-regulated cell lines expressing various TRIM56 mutants, we demonstrated the Coiled-coil domain and a segment spanning residues â¼434-610, but not the B-box or residues 355-433, were required for TRIM56 augmentation of TLR3 signaling. Moreover, alanine substitution at each putative phosphorylation site, Ser471, Ser475, and Ser710, abrogated TRIM56 function. Concordantly, mutants bearing Ser471Ala, Ser475Ala, or Ser710Ala, or lacking the Coiled-coil domain, all lost the capacity to enhance poly-I:C-induced establishment of an antiviral state. Furthermore, the Ser710Ala mutation disrupted the TRIM56-TRIF association. Using phospho-specific antibodies, we detected biphasic phosphorylation of TRIM56 at Ser471 and Ser475 following TLR3 stimulation, with the early phase occurring at â¼0.5 to 1 h, prior to IRF3 phosphorylation. Together, these data reveal novel molecular details critical for the TRIM56 augmentation of TLR3-dependent antiviral response and highlight important roles for TRIM56 scaffolding and phosphorylation.
Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Imunidade Inata , Receptor 3 Toll-Like , Proteínas com Motivo Tripartido , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Células HEK293 , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , NF-kappa B/metabolismo , Fosforilação , Poli I-C/farmacologia , Domínios Proteicos , Transdução de Sinais , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genéticaRESUMO
Impaired cholesterol efflux and/or uptake can influence arterial lipid accumulation leading to atherosclerosis. Here, we report that tripartite motif-containing protein 13 (TRIM13), a RING-type E3 ubiquitin ligase, plays a role in arterial lipid accumulation leading to atherosclerosis. Using molecular approaches and KO mouse model, we found that TRIM13 expression was induced both in the aorta and peritoneal macrophages (pMφ) of ApoE-/- mice in response to Western diet (WD) in vivo. Furthermore, proatherogenic cytokine interleukin-1ß also induced TRIM13 expression both in pMφ and vascular smooth muscle cells. Furthermore, we found that TRIM13 via ubiquitination and degradation of liver X receptor (LXR)α/ß downregulates the expression of their target genes ABCA1/G1 and thereby inhibits cholesterol efflux. In addition, TRIM13 by ubiquitinating and degrading suppressor of cytokine signaling 1/3 (SOCS1/3) mediates signal transducer and activator of transcription 1 (STAT1) activation, CD36 expression, and foam cell formation. In line with these observations, genetic deletion of TRIM13 by rescuing cholesterol efflux and inhibiting foam cell formation protects against diet-induced atherosclerosis. We also found that while TRIM13 and CD36 levels were increased, LXRα/ß, ABCA1/G1, and SOCS3 levels were decreased both in Mφ and smooth muscle cells of stenotic human coronary arteries as compared to nonstenotic arteries. More intriguingly, the expression levels of TRIM13 and its downstream signaling molecules were correlated with the severity of stenotic lesions. Together, these observations reveal for the first time that TRIM13 plays a crucial role in diet-induced atherosclerosis, and that it could be a potential drug target against this vascular lesion.
Assuntos
Aterosclerose , Colesterol , Células Espumosas , Lipoproteínas LDL , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Animais , Humanos , Masculino , Camundongos , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Colesterol/metabolismo , Dieta Ocidental/efeitos adversos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Espumosas/metabolismo , Células Espumosas/patologia , Lipoproteínas LDL/metabolismo , Receptores X do Fígado/metabolismo , Receptores X do Fígado/genética , Camundongos Knockout para ApoE , Células RAW 264.7 , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , UbiquitinaçãoRESUMO
TRIM32 is often aberrantly expressed in many types of cancers. Kaposi's sarcoma-associated herpesvirus (KSHV) is linked with several human malignancies, including Kaposi's sarcoma and primary effusion lymphomas (PELs). Increasing evidence has demonstrated the crucial role of KSHV lytic replication in viral tumorigenesis. However, the role of TRIM32 in herpesvirus lytic replication remains unclear. Here, we reveal that the expression of TRIM32 is upregulated by KSHV in latency, and reactivation of KSHV lytic replication leads to the inhibition of TRIM32 in PEL cells. Strikingly, RTA, the master regulator of lytic replication, interacts with TRIM32 and dramatically promotes TRIM32 for degradation via the proteasome systems. Inhibition of TRIM32 induces cell apoptosis and in turn inhibits the proliferation and colony formation of KSHV-infected PEL cells and facilitates the reactivation of KSHV lytic replication and virion production. Thus, our data imply that the degradation of TRIM32 is vital for the lytic activation of KSHV and is a potential therapeutic target for KSHV-associated cancers. IMPORTANCE: TRIM32 is associated with many cancers and viral infections; however, the role of TRIM32 in viral oncogenesis remains largely unknown. In this study, we found that the expression of TRIM32 is elevated by Kaposi's sarcoma-associated herpesvirus (KSHV) in latency, and RTA (the master regulator of lytic replication) induces TRIM32 for proteasome degradation upon viral lytic reactivation. This finding provides a potential therapeutic target for KSHV-associated cancers.
Assuntos
Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Proteólise , Transativadores , Fatores de Transcrição , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Ativação Viral , Replicação Viral , Humanos , Apoptose , Linhagem Celular , Herpesvirus Humano 8/crescimento & desenvolvimento , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/patogenicidade , Herpesvirus Humano 8/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/genética , Linfoma de Efusão Primária/virologia , Linfoma de Efusão Primária/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Sarcoma de Kaposi/virologia , Sarcoma de Kaposi/metabolismo , Transativadores/metabolismo , Transativadores/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Latência ViralRESUMO
Tripartite motif (TRIM) proteins are involved in different cellular functions, including regulating virus infection. In teleosts, two orthologous genes of mammalian TRIM2 are identified. However, the functions and molecular mechanisms of piscine TRIM2 remain unclear. Here, we show that trim2b-knockout zebrafish are more susceptible to spring viremia of carp virus (SVCV) infection than wild-type zebrafish. Transcriptomic analysis demonstrates that NOD-like receptor (NLR), but not RIG-I-like receptor (RLR), signaling pathway is significantly enriched in the trim2b-knockout zebrafish. In vitro, overexpression of Trim2b fails to degrade RLRs and those key proteins involved in the RLR signaling pathway but does for negative regulators NLRP12-like proteins. Zebrafish Trim2b degrades NLRP12-like proteins through its NHL_TRIM2_like and IG_FLMN domains in a ubiquitin-proteasome degradation pathway. SVCV-N and SVCV-G proteins are also degraded by NHL_TRIM2_like domains, and the degradation pathway is an autophagy lysosomal pathway. Moreover, zebrafish Trim2b can interfere with the binding between NLRP12-like protein and SVCV viral RNA and can completely block the negative regulation of NLRP12-like protein on SVCV infection. Taken together, our data demonstrate that the mechanism of action of zebrafish trim2b against SVCV infection is through targeting the degradation of host-negative regulators NLRP12-like receptors and viral SVCV-N/SVCV-G genes.IMPORTANCESpring viremia of carp virus (SVCV) is a lethal freshwater pathogen that causes high mortality in cyprinid fish. In the present study, we identified zebrafish trim2b, NLRP12-L1, and NLRP12-L2 as potential pattern recognition receptors (PRRs) for sensing and binding viral RNA. Zebrafish trim2b functions as a positive regulator; however, NLRP12-L1 and NLRP12-L2 function as negative regulators during SVCV infection. Furthermore, we find that zebrafish trim2b decreases host lethality in two manners. First, zebrafish Trim2b promotes protein degradations of negative regulators NLRP12-L1 and NLRP12-L2 by enhancing K48-linked ubiquitination and decreasing K63-linked ubiquitination. Second, zebrafish trim2b targets viral RNAs for degradation. Therefore, this study reveals a special antiviral mechanism in lower vertebrates.
Assuntos
Carpas , Proteólise , Receptores de Reconhecimento de Padrão , Rhabdoviridae , Proteínas com Motivo Tripartido , Proteínas Virais , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Carpas/virologia , Proteína DEAD-box 58/metabolismo , Doenças dos Peixes/virologia , Doenças dos Peixes/metabolismo , Imunidade Inata , Receptores de Reconhecimento de Padrão/metabolismo , Rhabdoviridae/metabolismo , Infecções por Rhabdoviridae/metabolismo , Infecções por Rhabdoviridae/veterinária , Infecções por Rhabdoviridae/virologia , Transdução de Sinais , Proteínas com Motivo Tripartido/deficiência , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitinação , Proteínas Virais/metabolismo , Viremia/veterinária , Viremia/virologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Peixe-Zebra/virologia , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
BACKGROUND AND AIMS: Hyperlipidemia has been extensively recognized as a high-risk factor for NASH; however, clinical susceptibility to NASH is highly heterogeneous. The key controller(s) of NASH susceptibility in patients with hyperlipidemia has not yet been elucidated. Here, we aimed to reveal the key regulators of NASH in patients with hyperlipidemia and to explore its role and underlying mechanisms. APPROACH AND RESULTS: To identify the predominant suppressors of NASH in the setting of hyperlipidemia, we collected liver biopsy samples from patients with hyperlipidemia, with or without NASH, and performed RNA-sequencing analysis. Notably, decreased Lineage specific Interacting Motif domain only 7 (LMO7) expression robustly correlated with the occurrence and severity of NASH. Although overexpression of LMO7 effectively blocked hepatic lipid accumulation and inflammation, LMO7 deficiency in hepatocytes greatly exacerbated diet-induced NASH progression. Mechanistically, lysine 48 (K48)-linked ubiquitin-mediated proteasomal degradation of tripartite motif-containing 47 (TRIM47) and subsequent inactivation of the c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK) cascade are required for the protective function of LMO7 in NASH. CONCLUSIONS: These findings provide proof-of-concept evidence supporting LMO7 as a robust suppressor of NASH in the context of hyperlipidemia, indicating that targeting the LMO7-TRIM47 axis is a promising therapeutic strategy for NASH.
Assuntos
Hiperlipidemias , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Hiperlipidemias/complicações , Fígado/patologia , Inflamação/metabolismo , Hepatócitos/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Proteínas com Motivo Tripartido/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismoRESUMO
Cell therapy based on mesenchymal stem cells (MSCs) alleviate muscle atrophy caused by diabetes and aging; however, the impact of human umbilical cord mesenchymal stem cells on muscle atrophy following nerve injury and the underlying mechanisms remain unclear. In this study, we evaluated the therapeutic efficacy of human umbilical cord MSCs (hucMSCs) and hucMSC-derived exosomes (hucMSC-EXOs) for muscle atrophy following nerve injury and identified the underlying molecular mechanisms. Sciatic nerve crush injury in rats and the induction of myotubes in L6 cells were used to determine the ameliorating effect of hucMSCs and hucMSC-EXOs on muscle atrophy. Q-PCR and Western blot analyses were used to measure the expression of muscle-specific ubiquitin ligases Fbxo32 (Atrogin1, MAFbx) and Trim63 (MuRF-1). Dual-luciferase reporter gene experiments were conducted to validate the direct binding of miRNAs to their target genes. Local injection of hucMSCs and hucMSC-EXOs mitigated atrophy in the rat gastrocnemius muscle following sciatic nerve crush injury. In vitro, hucMSC-EXOs alleviated atrophy in L6 myotubes. Mechanistic analysis indicated the upregulation of miR-23b-3p levels in L6 myotubes following hucMSC-EXOs treatment. MiR-23b-3p significantly inhibited the expression of its target genes, Fbxo32 and Trim63, and suppressed myotube atrophy. Notably, an miR-23b-3p inhibitor reversed the inhibitory effect of miR-23b-3p on myotube atrophy in vitro. These results suggest that hucMSCs and their exosomes alleviate muscle atrophy following nerve injury. MiR-23b-3p in exosomes secreted by hucMSCs contributes to this mechanism by inhibiting the muscle-specific ubiquitination ligases Fbxo32 and Trim63.
Assuntos
Exossomos , Células-Tronco Mesenquimais , Atrofia Muscular , Traumatismos dos Nervos Periféricos , Ubiquitina-Proteína Ligases , Exossomos/metabolismo , Animais , Atrofia Muscular/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/terapia , Atrofia Muscular/genética , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células-Tronco Mesenquimais/metabolismo , Ratos , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/terapia , Ratos Sprague-Dawley , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Cordão Umbilical/citologia , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Masculino , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologiaRESUMO
Most TRIM family members characterized by the E3-ubiquitin ligases, participate in ubiquitination and tumorigenesis. While there is a dearth of a comprehensive investigation for the entire family in gastric cancer (GC). By combining the TCGA and GEO databases, common TRIM family members (TRIMs) were obtained to investigate gene expression, gene mutations, and clinical prognosis. On the basis of TRIMs, a consensus clustering analysis was conducted, and a risk assessment system and prognostic model were developed. Particularly, TRIM31 with clinical prognostic and diagnostic value was chosen for single-gene bioinformatics analysis, in vitro experimental validation, and immunohistochemical analysis of clinical tissue microarrays. The combined dataset consisted of 66 TRIMs, of which 52 were differentially expressed and 43 were differentially prognostic. Significant survival differences existed between the gene clusters obtained by consensus clustering analysis. Using 4 differentially expressed genes identified by multivariate Cox regression and LASSO regression, a risk scoring system was developed. Higher risk scores were associated with a poorer prognosis, suppressive immune cell infiltration, and drug resistance. Transcriptomic data and clinical sample tissue microarrays confirmed that TRIM31 was highly expressed in GC and associated with a poor prognosis. Pathway enrichment analysis, cell migration and colony formation assay, EdU assay, reactive oxygen species (ROS) assay, and mitochondrial membrane potential assay revealed that TRIM31 may be implicated in cell cycle regulation and oxidative stress-related pathways, contribute to gastric carcinogenesis. This study investigated the whole functional and expression profile and a risk score system based on the TRIM family in GC. Further investigation centered around TRIM31 offers insight into the underlying mechanisms of action exhibited by other members of its family in the context of GC.
Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Gástricas , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Humanos , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Prognóstico , Regulação Neoplásica da Expressão Gênica/genética , Linhagem Celular Tumoral , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Feminino , Masculino , Biologia Computacional/métodos , Movimento Celular/genética , Perfilação da Expressão GênicaRESUMO
Breast cancer (BC) stands as a prominent contributor to global cancer-related mortality, with an increasing incidence annually. This study aims to investigate AGRN gene expression in BC, as well as explore its influence on the tumor immune microenvironment. AGRN displayed a pronounced upregulation in BC tissues relative to paracancerous tissues. Single-cell RNA analysis highlighted AGRN-specific elevation within cancer cell clusters and also showed expression expressed in stromal as well as immune cell clusters. AGRN upregulation was positively correlated with clinicopathological stage and negatively correlated with BC prognosis. As revealed by the in vitro experiment, AGRN knockdown effectively hinders BC cells in terms of proliferation, invasion as well as migration. AGRN protein, which may interact with EXT1, LRP4, RAPSN, etc., was primarily distributed in the cell cytoplasm. Notably, immune factors might interact with AGRN in BC, evidenced by its discernible associations with immunofactors like IL10, CD274, and PVRL2. Mass spectrometry and immunohistochemistry revealed that the reduction of AGRN led to an increase in CD8+ T cells with triple-negative breast cancer (TNBC). Mechanistically, the connection between TRIM7 and PD-L1 is improved by AGRN, acting as a scaffold, thereby facilitating the accelerated degradation of PD-L1 by TRIM7. Downregulation of AGRN inhibits BC progression and increases CD8+ T cell recruitment. Targeting AGRN may contribute to BC treatment. The biomarker AGRN, serving as a therapeutic target for BC, emerges as a prospective avenue for enhancing both diagnosis and prognosis in BC cases.
Assuntos
Antígeno B7-H1 , Neoplasias de Mama Triplo Negativas , Humanos , Linfócitos T CD8-Positivos , Estudos Prospectivos , Neoplasias de Mama Triplo Negativas/metabolismo , Biomarcadores Tumorais/genética , Microambiente Tumoral , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
The tripartite interaction motif (TRIM) family of proteins is known for their antiviral activity through different mechanisms, such as interfering with viral components, regulating immune responses, and participating in autophagy-mediated defense pathways. In this study, we investigated the role of tripartite interaction motif 26 (TRIM26), which is encoded by a major histocompatibility complex (MHC) gene, in regulating Epstein-Barr virus (EBV) infection of nasopharyngeal epithelial cells. We found that TRIM26 expression was induced upon EBV infection and that it indirectly targeted EphA2, a crucial epithelial receptor for EBV entry. Our results showed that TRIM26 interacted with heat shock protein 90-beta (HSP-90ß) and promoted its polyubiquitination, which led to its degradation via the proteasome pathway. This, in turn, affected EphA2 integrity and suppressed EBV infection. These findings suggest that TRIM26 could be a valuable target for developing therapeutic interventions against EBV infection and its associated pathogenesis.