RESUMO
Gram-negative bacteria are surrounded by an outer membrane composed of phospholipids and lipopolysaccharide, which acts as a barrier and contributes to antibiotic resistance. The systems that mediate phospholipid trafficking across the periplasm, such as MCE (Mammalian Cell Entry) transporters, have not been well characterized. Our ~3.5 Å cryo-EM structure of the E. coli MCE protein LetB reveals an ~0.6 megadalton complex that consists of seven stacked rings, with a central hydrophobic tunnel sufficiently long to span the periplasm. Lipids bind inside the tunnel, suggesting that it functions as a pathway for lipid transport. Cryo-EM structures in the open and closed states reveal a dynamic tunnel lining, with implications for gating or substrate translocation. Our results support a model in which LetB establishes a physical link between the two membranes and creates a hydrophobic pathway for the translocation of lipids across the periplasm.
Assuntos
Proteínas de Bactérias/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/fisiologia , Transporte Biológico , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Fosfolipídeos/metabolismo , Transporte Proteico/fisiologiaRESUMO
For a biological oscillator to function as a circadian pacemaker that confers a fitness advantage, its timing functions must be stable in response to environmental and metabolic fluctuations. One such stability enhancer, temperature compensation, has long been a defining characteristic of these timekeepers. However, an accurate biological timekeeper must also resist changes in metabolism, and this review suggests that temperature compensation is actually a subset of a larger phenomenon, namely metabolic compensation, which maintains the frequency of circadian oscillators in response to a host of factors that impinge on metabolism and would otherwise destabilize these clocks. The circadian system of prokaryotic cyanobacteria is an illustrative model because it is composed of transcriptional and nontranscriptional oscillators that are coupled to promote resilience. Moreover, the cyanobacterial circadian program regulates gene activity and metabolic pathways, and it can be manipulated to improve the expression of bioproducts that have practical value.
Assuntos
Ritmo Circadiano/fisiologia , Cianobactérias/fisiologia , Proteínas de Bactérias/fisiologia , Relógios Circadianos , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/fisiologia , Retroalimentação Fisiológica , Regulação Bacteriana da Expressão Gênica , Homeostase , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Temperatura , Transcrição GênicaRESUMO
ATP- and GTP-dependent molecular switches are extensively used to control functions of proteins in a wide range of biological processes. However, CTP switches are rarely reported. Here, we report that a nucleoid occlusion protein Noc is a CTPase enzyme whose membrane-binding activity is directly regulated by a CTP switch. In Bacillus subtilis, Noc nucleates on 16 bp NBS sites before associating with neighboring non-specific DNA to form large membrane-associated nucleoprotein complexes to physically occlude assembly of the cell division machinery. By in vitro reconstitution, we show that (1) CTP is required for Noc to form the NBS-dependent nucleoprotein complex, and (2) CTP binding, but not hydrolysis, switches Noc to a membrane-active state. Overall, we suggest that CTP couples membrane-binding activity of Noc to nucleoprotein complex formation to ensure productive recruitment of DNA to the bacterial cell membrane for nucleoid occlusion activity.
Assuntos
Bacillus subtilis/citologia , Citidina Trifosfato/metabolismo , Pirofosfatases/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Divisão Celular/genética , Divisão Celular/fisiologia , Membrana Celular/metabolismo , Cromossomos Bacterianos/genética , Citidina Trifosfato/fisiologia , Proteínas do Citoesqueleto/genética , Pirofosfatases/fisiologiaRESUMO
Pathogens use a vast number of strategies to alter host membrane dynamics. Targeting the host membrane machinery is important for the survival and pathogenesis of several extracellular, vacuolar, and cytosolic bacteria. Membrane manipulation promotes bacterial replication while suppressing host responses, allowing the bacterium to thrive in a hostile environment. This review provides a comprehensive summary of various strategies used by both extracellular and intracellular bacteria to hijack host membrane trafficking machinery. We start with mechanisms used by bacteria to alter the plasma membrane, delve into the hijacking of various vesicle trafficking pathways, and conclude by summarizing bacterial adaptation to host immune responses. Understanding bacterial manipulation of host membrane trafficking provides insights into bacterial pathogenesis and uncovers the molecular mechanisms behind various processes within a eukaryotic cell.
Assuntos
Fenômenos Fisiológicos Bacterianos , Membrana Celular/metabolismo , Células/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Animais , Autofagia/fisiologia , Proteínas de Bactérias/fisiologia , Toxinas Bacterianas/farmacologia , Transporte Biológico , Permeabilidade da Membrana Celular , Células/ultraestrutura , Citosol/microbiologia , Endocitose/fisiologia , Humanos , Lisossomos/fisiologia , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Fagossomos/fisiologia , Transporte Proteico , Vacúolos/microbiologia , Vacúolos/fisiologiaRESUMO
Phosphorus is an essential element assimilated largely as orthophosphate (Pi). Cells respond to Pi starvation by importing Pi from their surroundings. We now report that impaired protein synthesis alone triggers a Pi starvation response even when Pi is plentiful in the extracellular milieu. In the bacterium Salmonella enterica serovar Typhimurium, this response entails phosphorylation of the regulatory protein PhoB and transcription of PhoB-dependent Pi transporter genes and is eliminated upon stimulation of adenosine triphosphate (ATP) hydrolysis. When protein synthesis is impaired due to low cytoplasmic magnesium (Mg2+), Salmonella triggers the Pi starvation response because ribosomes are destabilized, which reduces ATP consumption and thus free cytoplasmic Pi. This response is transient because low cytoplasmic Mg2+ promotes an uptake in Mg2+ and a decrease in ATP levels, which stabilizes ribosomes, resulting in ATP consumption and Pi increase, thus ending the response. Notably, pharmacological inhibition of protein synthesis also elicited a Pi starvation response in the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae Our findings identify a regulatory connection between protein synthesis and Pi homeostasis that is widespread in nature.
Assuntos
Proteínas de Bactérias/metabolismo , Fosfatos/metabolismo , Biossíntese de Proteínas , Adenosina Trifosfatases/fisiologia , Proteínas de Bactérias/fisiologia , Proteínas de Transporte de Cátions/fisiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Homeostase , Magnésio/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Inibidores da Síntese de Proteínas/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Transcrição GênicaRESUMO
In Staphylococcus aureus, virulence is under the control of a quorum sensing (QS) circuit encoded in the accessory gene regulator (agr) genomic locus. Key to this pathogenic behavior is the production and signaling activity of a secreted pheromone, the autoinducing peptide (AIP), generated following the ribosomal synthesis and posttranslational modification of a precursor polypeptide, AgrD, through two discrete cleavage steps. The integral membrane protease AgrB is known to catalyze the first processing event, generating the AIP biosynthetic intermediate, AgrD (1-32) thiolactone. However, the identity of the second protease in this biosynthetic pathway, which removes an N-terminal leader sequence, has remained ambiguous. Here, we show that membrane protease regulator of agr QS (MroQ), an integral membrane protease recently implicated in the agr response, is directly involved in AIP production. Genetic complementation and biochemical experiments reveal that MroQ proteolytic activity is required for AIP biosynthesis in agr specificity group I and group II, but not group III. Notably, as part of this effort, the biosynthesis and AIP-sensing arms of the QS circuit were reconstituted together in vitro. Our experiments also reveal the molecular features guiding MroQ cleavage activity, a critical factor in defining agr specificity group identity. Collectively, our study adds to the molecular understanding of the agr response and Staphylococcus aureus virulence.
Assuntos
Proteínas de Bactérias , Proteínas de Membrana , Peptídeo Hidrolases , Feromônios , Percepção de Quorum , Staphylococcus aureus , Transativadores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Proteínas de Membrana/fisiologia , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/fisiologia , Feromônios/biossíntese , Percepção de Quorum/genética , Staphylococcus aureus/patogenicidade , Transativadores/genética , Transativadores/metabolismo , VirulênciaRESUMO
Mycobacterium tuberculosis has a lipid-rich cell envelope that is remodeled throughout infection to enable adaptation within the host. Few transcriptional regulators have been characterized that coordinate synthesis of mycolic acids, the major cell wall lipids of mycobacteria. Here, we show that the mycolic acid desaturase regulator (MadR), a transcriptional repressor of the mycolate desaturase genes desA1 and desA2, controls mycolic acid desaturation and biosynthesis in response to cell envelope stress. A madR-null mutant of M. smegmatis exhibited traits of an impaired cell wall with an altered outer mycomembrane, accumulation of a desaturated α-mycolate, susceptibility to antimycobacterials, and cell surface disruption. Transcriptomic profiling showed that enriched lipid metabolism genes that were significantly down-regulated upon madR deletion included acyl-coenzyme A (aceyl-CoA) dehydrogenases, implicating it in the indirect control of ß-oxidation pathways. Electromobility shift assays and binding affinities suggest a unique acyl-CoA pool-sensing mechanism, whereby MadR is able to bind a range of acyl-CoAs, including those with unsaturated as well as saturated acyl chains. MadR repression of desA1/desA2 is relieved upon binding of saturated acyl-CoAs of chain length C16 to C24, while no impact is observed upon binding of shorter chain and unsaturated acyl-CoAs. We propose this mechanism of regulation as distinct to other mycolic acid and fatty acid synthesis regulators and place MadR as the key regulatory checkpoint that coordinates mycolic acid remodeling during infection in response to host-derived cell surface perturbation.
Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium/metabolismo , Ácidos Micólicos/metabolismo , Racemases e Epimerases/metabolismo , Acil Coenzima A/metabolismo , Proteínas de Bactérias/fisiologia , Parede Celular/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Infecções por Mycobacterium , Mycobacterium tuberculosis/metabolismo , Racemases e Epimerases/fisiologia , Fatores de Transcrição/metabolismoRESUMO
Aggregation behavior provides bacteria protection from harsh environments and threats to survival. Two uncharacterized proteases, LapX and Lap, are important for Vibrio cholerae liquid-based aggregation. Here, we determined that LapX is a serine protease with a preference for cleavage after glutamate and glutamine residues in the P1 position, which processes a physiologically based peptide substrate with a catalytic efficiency of 180 ± 80 M-1s-1. The activity with a LapX substrate identified by a multiplex substrate profiling by mass spectrometry screen was 590 ± 20 M-1s-1. Lap shares high sequence identity with an aminopeptidase (termed VpAP) from Vibrio proteolyticus and contains an inhibitory bacterial prepeptidase C-terminal domain that, when eliminated, increases catalytic efficiency on leucine p-nitroanilide nearly four-fold from 5.4 ± 4.1 × 104 M-1s-1 to 20.3 ± 4.3 × 104 M-1s-1. We demonstrate that LapX processes Lap to its mature form and thus amplifies Lap activity. The increase is approximately eighteen-fold for full-length Lap (95.7 ± 5.6 × 104 M-1s-1) and six-fold for Lap lacking the prepeptidase C-terminal domain (11.3 ± 1.9 × 105 M-1s-1). In addition, substrate profiling reveals preferences for these two proteases that could inform in vivo function. Furthermore, purified LapX and Lap restore the timing of the V. cholerae aggregation program to a mutant lacking the lapX and lap genes. Both proteases must be present to restore WT timing, and thus they appear to act sequentially: LapX acts on Lap, and Lap acts on the substrate involved in aggregation.
Assuntos
Proteínas de Bactérias , Leucil Aminopeptidase , Serina Proteases , Vibrio cholerae , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Leucil Aminopeptidase/química , Leucil Aminopeptidase/genética , Leucil Aminopeptidase/fisiologia , Peptídeos , Serina Proteases/química , Serina Proteases/genética , Serina Proteases/fisiologia , Especificidade por Substrato , Vibrio cholerae/enzimologia , Vibrio cholerae/genética , Vibrio cholerae/fisiologia , CatáliseRESUMO
The past 15 years have seen an explosion in our understanding of how cells replicate damaged DNA and how this can lead to mutagenesis. The Y-family DNA polymerases lie at the heart of this process, which is commonly known as translesion synthesis. This family of polymerases has unique features that enable them to synthesize DNA past damaged bases. However, as they exhibit low fidelity when copying undamaged DNA, it is essential that they are only called into play when they are absolutely required. Several layers of regulation ensure that this is achieved.
Assuntos
Dano ao DNA , Nucleotidiltransferases/fisiologia , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Domínio Catalítico , Reparo do DNA , Replicação do DNA , Humanos , Mutagênese , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Ligação Proteica , Estrutura Terciária de ProteínaRESUMO
One-third of all protein-coding genes from bacterial genomes cannot be annotated with a function. Here, to investigate the functions of these genes, we present genome-wide mutant fitness data from 32 diverse bacteria across dozens of growth conditions. We identified mutant phenotypes for 11,779 protein-coding genes that had not been annotated with a specific function. Many genes could be associated with a specific condition because the gene affected fitness only in that condition, or with another gene in the same bacterium because they had similar mutant phenotypes. Of the poorly annotated genes, 2,316 had associations that have high confidence because they are conserved in other bacteria. By combining these conserved associations with comparative genomics, we identified putative DNA repair proteins; in addition, we propose specific functions for poorly annotated enzymes and transporters and for uncharacterized protein families. Our study demonstrates the scalability of microbial genetics and its utility for improving gene annotations.
Assuntos
Bactérias/genética , Genes Bacterianos/genética , Anotação de Sequência Molecular , Mutação , Fenótipo , Incerteza , Bactérias/citologia , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Sequência Conservada , Reparo do DNA/genética , Aptidão Genética , Genoma Bacteriano/genética , Proteínas Mutantes/classificação , Proteínas Mutantes/genética , Proteínas Mutantes/fisiologiaRESUMO
Type IV pili (T4P) are functionally versatile filamentous nanomachines, nearly ubiquitous in prokaryotes. They are predominantly polymers of one major pilin but also contain minor pilins whose functions are often poorly defined and likely to be diverse. Here, we show that the minor pilin PilB from the T4P of Streptococcus sanguinis displays an unusual bimodular three-dimensional structure with a bulky von Willebrand factor A-like (vWA) module "grafted" onto a small pilin module via a short loop. Structural modeling suggests that PilB is only compatible with a localization at the tip of T4P. By performing a detailed functional analysis, we found that 1) the vWA module contains a canonical metal ion-dependent adhesion site, preferentially binding Mg2+ and Mn2+, 2) abolishing metal binding has no impact on the structure of PilB or piliation, 3) metal binding is important for S. sanguinis T4P-mediated twitching motility and adhesion to eukaryotic cells, and 4) the vWA module shows an intrinsic binding ability to several host proteins. These findings reveal an elegant yet simple evolutionary tinkering strategy to increase T4P functional versatility by grafting a functional module onto a pilin for presentation by the filaments. This strategy appears to have been extensively used by bacteria, in which modular pilins are widespread and exhibit an astonishing variety of architectures.
Assuntos
Proteínas de Bactérias/fisiologia , Adesão Celular , Proteínas de Fímbrias/fisiologia , Oxirredutases/fisiologia , Streptococcus sanguis/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Células CHO , Cricetulus , Escherichia coli , Proteínas de Fímbrias/química , Humanos , Oxirredutases/química , Conformação Proteica , Streptococcus sanguis/químicaRESUMO
Neisseria meningitidis utilizes type IV pili (T4P) to adhere to and colonize host endothelial cells, a process at the heart of meningococcal invasive diseases leading to meningitis and sepsis. T4P are polymers of an antigenically variable major pilin building block, PilE, plus several core minor pilins that initiate pilus assembly and are thought to be located at the pilus tip. Adhesion of N. meningitidis to human endothelial cells requires both PilE and a conserved noncore minor pilin PilV, but the localization of PilV and its precise role in this process remains to be clarified. Here, we show that both PilE and PilV promote adhesion to endothelial vessels in vivo. The substantial adhesion defect observed for pilV mutants suggests it is the main adhesin. Consistent with this observation, superresolution microscopy showed the abundant distribution of PilV throughout the pilus. We determined the crystal structure of PilV and modeled it within the pilus filament. The small size of PilV causes it to be recessed relative to adjacent PilE subunits, which are dominated by a prominent hypervariable loop. Nonetheless, we identified a conserved surface-exposed adhesive loop on PilV by alanine scanning mutagenesis. Critically, antibodies directed against PilV inhibit N. meningitidis colonization of human skin grafts. These findings explain how N. meningitidis T4P undergo antigenic variation to evade the humoral immune response while maintaining their adhesive function and establish the potential of this highly conserved minor pilin as a vaccine and therapeutic target for the prevention and treatment of N. meningitidis infections.
Assuntos
Aderência Bacteriana , Proteínas de Bactérias/fisiologia , Fímbrias Bacterianas/fisiologia , Neisseria meningitidis/fisiologia , Animais , Anticorpos/uso terapêutico , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Feminino , Fímbrias Bacterianas/química , Fímbrias Bacterianas/ultraestrutura , Humanos , Infecções Meningocócicas/tratamento farmacológico , Camundongos SCIDRESUMO
Virulence of the neonatal pathogen Group B Streptococcus is under the control of the master regulator CovR. Inactivation of CovR is associated with large-scale transcriptome remodeling and impairs almost every step of the interaction between the pathogen and the host. However, transcriptome analyses suggested a plasticity of the CovR signaling pathway in clinical isolates leading to phenotypic heterogeneity in the bacterial population. In this study, we characterized the CovR regulatory network in a strain representative of the CC-17 hypervirulent lineage responsible of the majority of neonatal meningitis. Transcriptome and genome-wide binding analysis reveal the architecture of the CovR network characterized by the direct repression of a large array of virulence-associated genes and the extent of co-regulation at specific loci. Comparative functional analysis of the signaling network links strain-specificities to the regulation of the pan-genome, including the two specific hypervirulent adhesins and horizontally acquired genes, to mutations in CovR-regulated promoters, and to variability in CovR activation by phosphorylation. This regulatory adaptation occurs at the level of genes, promoters, and of CovR itself, and allows to globally reshape the expression of virulence genes. Overall, our results reveal the direct, coordinated, and strain-specific regulation of virulence genes by the master regulator CovR and suggest that the intra-species evolution of the signaling network is as important as the expression of specific virulence factors in the emergence of clone associated with specific diseases.
Assuntos
Proteínas de Bactérias/fisiologia , Redes Reguladoras de Genes , Streptococcus agalactiae/patogenicidade , Fatores de Virulência/fisiologia , Virulência/genética , Proteínas de Bactérias/genética , Cromossomos Bacterianos , Genes Bacterianos , Interações Hospedeiro-Patógeno , Humanos , Regiões Promotoras Genéticas , Prófagos/genética , Streptococcus agalactiae/genética , Transcrição Gênica/fisiologia , Fatores de Virulência/genéticaRESUMO
The Peptidoglycan (PG) cell wall of the Lyme disease (LD) spirochete, Borrelia burgdorferi (Bb), contributes to structural and morphological integrity of Bb; is a persistent antigen in LD patients; and has a unique pentapeptide with L-Ornithine as the third amino acid that cross-links its glycan polymers. A borrelial homolog (BB_0167) interacted specifically with borrelilal PG via its peptidoglycan interacting motif (MHELSEKRARAIGNYL); was localized to the protoplasmic cylinder of Bb; and was designated as Borrelia peptidoglycan interacting Protein (BpiP). A bpiP mutant displayed no defect under in vitro growth conditions with similar levels of several virulence-related proteins. However, the burden of bpiP mutant in C3H/HeN mice at day 14, 28 and 62 post-infection was significantly lower compared to control strains. No viable bpiP mutant was re-isolated from any tissues at day 62 post-infection although bpiP mutant was able to colonize immunodeficient SCID at day 28 post-infection. Acquisition or transmission of bpiP mutant by Ixodes scapularis larvae or nymphs respectively, from and to mice, was significantly lower compared to control strains. Further analysis of bpiP mutant revealed increased sensitivity to vancomycin, osmotic stress, lysosomal extracts, human antimicrobial peptide cathelicidin-LL37, complement-dependent killing in the presence of day 14 post-infection mouse serum and increased internalization of CFSC-labeled bpiP mutant by macrophages and dendritic cells compared to control strains. These studies demonstrate the importance of accessory protein/s involved in sustaining integrity of PG and cell envelope during different phases of Bb infection.
Assuntos
Proteínas de Bactérias/fisiologia , Borrelia burgdorferi/patogenicidade , Interações Hospedeiro-Patógeno , Doença de Lyme , Animais , Borrelia burgdorferi/imunologia , Borrelia burgdorferi/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Aptidão Genética/fisiologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Fatores Imunológicos/fisiologia , Doença de Lyme/genética , Doença de Lyme/imunologia , Doença de Lyme/microbiologia , Doença de Lyme/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos SCID , Peptidoglicano/metabolismo , Virulência/genéticaRESUMO
Many different protein domains are conserved among numerous species, but their function remains obscure. Proteins with DUF1127 domains number >17 000 in current databases, but a biological function has not yet been assigned to any of them. They are mostly found in alpha- and gammaproteobacteria, some of them plant and animal pathogens, symbionts or species used in industrial applications. Bioinformatic analyses revealed similarity of the DUF1127 domain of bacterial proteins to the RNA binding domain of eukaryotic Smaug proteins that are involved in RNA turnover and have a role in development from Drosophila to mammals. This study demonstrates that the 71 amino acid DUF1127 protein CcaF1 from the alphaproteobacterium Rhodobacter sphaeroides participates in maturation of the CcsR sRNAs that are processed from the 3' UTR of the ccaF mRNA and have a role in the oxidative stress defense. CcaF1 binds to many cellular RNAs of different type, several mRNAs with a function in cysteine / methionine / sulfur metabolism. It affects the stability of the CcsR RNAs and other non-coding RNAs and mRNAs. Thus, the widely distributed DUF1127 domain can mediate RNA-binding, affect stability of its binding partners and consequently modulate the bacterial transcriptome, thereby influencing different physiological processes.
Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Processamento Pós-Transcricional do RNA , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/metabolismo , Rhodobacter sphaeroides/genética , Alphaproteobacteria/genética , Proteínas de Bactérias/fisiologia , Simulação por Computador , Endorribonucleases/fisiologia , Estabilidade de RNA , Proteínas de Ligação a RNA/fisiologia , Rhodobacter sphaeroides/metabolismo , Estresse Fisiológico , TranscriptomaRESUMO
Helicobacter pylori is a gram-negative, microaerophilic, pathogenic bacterium and a widespread colonizer of humans. H. pylori has developed mechanisms that enable it to overcome the harsh environment of the human stomach, including reactive oxygen species (ROS). Interestingly, up to now no typical regulator dedicated to the oxidative-stress response has been discovered. In this work, we reveal that the inhibitor of replication initiation HP1021 functions as a redox switch protein in H. pylori and plays an important role in response to oxidative stress of the gastric pathogen. Each of the two predicted HP1021 domains contains three cysteine residues. We show that the cysteine residues of HP1021 are sensitive to oxidation both in vitro and in vivo, and we demonstrate that HP1021 DNA-binding activity to oriC depends on the redox state of the protein. Moreover, Zn2+ modulates HP1021 affinity towards oriC template DNA. Transcription analysis of selected H. pylori genes by RT-qPCR indicated that HP1021 is directly involved in the oxygen-dependent control of H. pylori fecA3 and gluP genes, which are implicated in response to oxidative stress. In conclusion, HP1021 is a redox switch protein and could be a target for H. pylori control strategies.
Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Helicobacter pylori/genética , Estresse Oxidativo , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Cátions Bivalentes/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/metabolismo , Modelos Moleculares , Oxirredução , Ligação Proteica , Domínios Proteicos , Transcrição GênicaRESUMO
A species-specific region, denoted SpG8-1b allowing hydroxycinnamic acids (HCAs) degradation is important for the transition between the two lifestyles (rhizospheric versus pathogenic) of the plant pathogen Agrobacterium fabrum. Indeed, HCAs can be either used as trophic resources and/or as induced-virulence molecules. The SpG8-1b region is regulated by two transcriptional regulators, namely, HcaR (Atu1422) and Atu1419. In contrast to HcaR, Atu1419 remains so far uncharacterized. The high-resolution crystal structures of two fortuitous citrate complexes, two DNA complexes and the apoform revealed that the tetrameric Atu1419 transcriptional regulator belongs to the VanR group of Pfam PF07729 subfamily of the large GntR superfamily. Until now, GntR regulators were described as dimers. Here, we showed that Atu1419 represses three genes of the HCAs catabolic pathway. We characterized both the effector and DNA binding sites and identified key nucleotides in the target palindrome. From promoter activity measurement using defective gene mutants, structural analysis and gel-shift assays, we propose N5,N10-methylenetetrahydrofolate as the effector molecule, which is not a direct product/substrate of the HCA degradation pathway. The Zn2+ ion present in the effector domain has both a structural and regulatory role. Overall, our work shed light on the allosteric mechanism of transcription employed by this GntR repressor.
Assuntos
Agrobacterium/metabolismo , Proteínas de Bactérias/fisiologia , Ácidos Cumáricos/metabolismo , Família Multigênica , Proteínas Repressoras/fisiologia , Agrobacterium/genética , Regulação Alostérica , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Cristalografia por Raios X , Regulação Bacteriana da Expressão Gênica , Genes Sintéticos , Modelos Moleculares , Regiões Promotoras Genéticas/genética , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/isolamento & purificação , Citrato de Sódio , Tetra-Hidrofolatos/fisiologia , Zinco/fisiologiaRESUMO
Bacterial pathogenic growth requires a swift coordination of pathogenicity function with various kinds of environmental stress encountered in the course of host infection. Among the factors critical for bacterial adaptation are changes of DNA topology and binding effects of nucleoid-associated proteins transducing the environmental signals to the chromosome and coordinating the global transcriptional response to stress. In this study, we use the model phytopathogen Dickeya dadantii to analyse the organisation of transcription by the nucleoid-associated heterodimeric protein IHF. We inactivated the IHFα subunit of IHF thus precluding the IHFαß heterodimer formation and determined both phenotypic effects of ihfA mutation on D. dadantii virulence and the transcriptional response under various conditions of growth. We show that ihfA mutation reorganises the genomic expression by modulating the distribution of chromosomal DNA supercoils at different length scales, thus affecting many virulence genes involved in both symptomatic and asymptomatic phases of infection, including those required for pectin catabolism. Altogether, we propose that IHF heterodimer is a 'transcriptional domainin' protein, the lack of which impairs the spatiotemporal organisation of transcriptional stress-response domains harbouring various virulence traits, thus abrogating the pathogenicity of D. dadantii.
Assuntos
Proteínas de Bactérias/fisiologia , Dickeya/patogenicidade , Regulação Bacteriana da Expressão Gênica , Fatores Hospedeiros de Integração/fisiologia , Proteínas de Bactérias/genética , Sítios de Ligação , Celulase/biossíntese , Celulase/genética , Cichorium intybus/microbiologia , DNA Bacteriano/metabolismo , DNA Super-Helicoidal/metabolismo , Dickeya/genética , Dickeya/fisiologia , Dimerização , Estudos de Associação Genética , Fatores Hospedeiros de Integração/química , Fatores Hospedeiros de Integração/genética , Movimento (Física) , Peptídeo Hidrolases/biossíntese , Peptídeo Hidrolases/genética , Plasmídeos , Poligalacturonase/biossíntese , Poligalacturonase/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Sideróforos/biossíntese , Sideróforos/genética , Transcrição Gênica/genética , Transcriptoma , Virulência/genéticaRESUMO
To survive an environmental stress, organisms must detect the stress and mount an appropriate response. One way that bacteria do so is by phosphorelay systems that respond to a stress by activating a regulator that modifies gene expression. To ensure an appropriate response, a given regulator is typically activated solely by its cognate phosphorelay protein(s). However, we now report that the regulator RcsB is activated by both cognate and non-cognate phosphorelay proteins, depending on the condition experienced by the bacterium Salmonella enterica serovar Typhimurium. The RcsC and RcsD proteins form a phosphorelay that activates their cognate regulator RcsB in response to outer membrane stress and cell wall perturbations, conditions Salmonella experiences during infection. Surprisingly, the non-cognate phosphorelay protein BarA activates RcsB during logarithmic growth in Luria-Bertani medium in three ways. That is, BarA's cognate regulator SirA promotes transcription of the rcsDB operon; the SirA-dependent regulatory RNAs CsrB and CsrC further increase RcsB-activated gene transcription; and BarA activates RcsB independently of the RcsC, RcsD, and SirA proteins. Activation of a regulator by multiple sensors broadens the spectrum of environments in which a set of genes is expressed without evolving binding sites for different regulators at each of these genes.
Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Salmonella enterica/genética , Salmonella enterica/metabolismo , Transativadores/fisiologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Fosforilação/fisiologia , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Percepção de Quorum/fisiologia , Transdução de Sinais/fisiologia , Transativadores/genética , Transativadores/metabolismoRESUMO
Cyanobacteria synthesize type IV pili, which are known to be essential for motility, adhesion and natural competence. They consist of long flexible fibers that are primarily composed of the major pilin PilA1 in Synechocystis sp. PCC 6803. In addition, Synechocystis encodes less abundant pilin-like proteins, which are known as minor pilins. In this study, we show that the minor pilin PilA5 is essential for natural transformation but is dispensable for motility and flocculation. In contrast, a set of minor pilins encoded by the pilA9-slr2019 transcriptional unit are necessary for motility but are dispensable for natural transformation. Neither pilA5-pilA6 nor pilA9-slr2019 are essential for pilus assembly as mutant strains showed type IV pili on the cell surface. Three further gene products with similarity to PilX-like minor pilins have a function in flocculation of Synechocystis. The results of our study indicate that different minor pilins facilitate distinct pilus functions. Further, our microarray analysis demonstrated that the transcription levels of the minor pilin genes change in response to surface contact. A total of 122 genes were determined to have altered transcription between planktonic and surface growth, including several plasmid genes which are involved exopolysaccharide synthesis and the formation of bloom-like aggregates.