RESUMO
RAF family protein kinases are a key node in the RAS/RAF/MAP kinase pathway, the signaling cascade that controls cellular proliferation, differentiation, and survival in response to engagement of growth factor receptors on the cell surface. Over the past few years, structural and biochemical studies have provided new understanding of RAF autoregulation, RAF activation by RAS and the SHOC2 phosphatase complex, and RAF engagement with HSP90-CDC37 chaperone complexes. These studies have important implications for pharmacologic targeting of the pathway. They reveal RAF in distinct regulatory states and show that the functional RAF switch is an integrated complex of RAF with its substrate (MEK) and a 14-3-3 dimer. Here we review these advances, placing them in the context of decades of investigation of RAF regulation. We explore the insights they provide into aberrant activation of the pathway in cancer and RASopathies (developmental syndromes caused by germline mutations in components of the pathway).
Assuntos
Transdução de Sinais , Quinases raf , Proteínas ras , Humanos , Proteínas ras/metabolismo , Proteínas ras/genética , Proteínas ras/química , Quinases raf/metabolismo , Quinases raf/genética , Animais , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genéticaRESUMO
The family of Ras-like GTPases consists of over 150 different members, regulated by an even larger number of guanine exchange factors (GEFs) and GTPase-activating proteins (GAPs) that comprise cellular switch networks that govern cell motility, growth, polarity, protein trafficking, and gene expression. Efforts to develop selective small molecule probes and drugs for these proteins have been hampered by the high affinity of guanosine triphosphate (GTP) and lack of allosteric regulatory sites. This paradigm was recently challenged by the discovery of a cryptic allosteric pocket in the switch II region of K-Ras. Here, we ask whether similar pockets are present in GTPases beyond K-Ras. We systematically surveyed members of the Ras, Rho, and Rab family of GTPases and found that many GTPases exhibit targetable switch II pockets. Notable differences in the composition and conservation of key residues offer potential for the development of optimized inhibitors for many members of this previously undruggable family.
Assuntos
Proteínas rab de Ligação ao GTP , Proteínas ras , Humanos , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Proteínas ras/química , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/química , Animais , Sequência de Aminoácidos , Modelos Moleculares , Guanosina Trifosfato/metabolismoRESUMO
RAS proteins are binary switches, cycling between ON and OFF states during signal transduction. These switches are normally tightly controlled, but in RAS-related diseases, such as cancer, RASopathies, and many psychiatric disorders, mutations in the RAS genes or their regulators render RAS proteins persistently active. The structural basis of the switch and many of the pathways that RAS controls are well known, but the precise mechanisms by which RAS proteins function are less clear. All RAS biology occurs in membranes: a precise understanding of RAS' interaction with membranes is essential to understand RAS action and to intervene in RAS-driven diseases.
Assuntos
Proteínas ras/metabolismo , Animais , Membrana Celular/metabolismo , Anormalidades Congênitas/metabolismo , Humanos , Transtornos Mentais/metabolismo , Mutação , Neoplasias/metabolismo , Filogenia , Transdução de Sinais , Leveduras , Proteínas ras/química , Proteínas ras/genéticaRESUMO
RAS proteins are conserved guanosine triphosphate (GTP) hydrolases (GTPases) that act as molecular binary switches and play vital roles in numerous cellular processes. Upon GTP binding, RAS GTPases adopt an active conformation and interact with specific proteins termed RAS effectors that contain a conserved ubiquitin-like domain, thereby facilitating downstream signaling. Over 50 effector proteins have been identified in the human proteome, and many have been studied as potential mediators of RAS-dependent signaling pathways. Biochemical and structural analyses have provided mechanistic insights into these effectors, and studies using model organisms have complemented our understanding of their role in physiology and disease. Yet, many critical aspects regarding the dynamics and biological function of RAS-effector complexes remain to be elucidated. In this review, we discuss the mechanisms and functions of known RAS effector proteins, provide structural perspectives on RAS-effector interactions, evaluate their significance in RAS-mediated signaling, and explore their potential as therapeutic targets.
Assuntos
Transdução de Sinais , Proteínas ras , Humanos , Proteínas ras/metabolismo , Proteínas ras/química , Animais , Ligação Proteica , Modelos Moleculares , Relação Estrutura-Atividade , Conformação Proteica , Guanosina Trifosfato/metabolismoRESUMO
Cellular membranes are constantly reshaped by vesicular fission and fusion as well as by interactions with the dynamic cytoskeleton. Signaling activity at membranes depends on their geometric parameters, such as surface area and curvature; these affect local concentration and thereby regulate the potency of molecular reactions. A membrane's shape is thus inextricably tied to information processing. Here, we review how a trinity of signaling, cytoskeletal dynamics, and membrane shape interact within a closed-loop causality that gives rise to an energy-consuming, self-organized system that changes shape to sense the extracellular environment.
Assuntos
Membrana Celular/metabolismo , Transdução de Sinais , Animais , Membrana Celular/química , Forma Celular , Citoesqueleto/metabolismo , Proteínas ras/química , Proteínas ras/metabolismoRESUMO
RAS proteins are important direct activators of p110α, p110γ, and p110δ type I phosphoinositide 3-kinases (PI3Ks), interacting via an amino-terminal RAS-binding domain (RBD). Here, we investigate the regulation of the ubiquitous p110ß isoform of PI3K, implicated in G-protein-coupled receptor (GPCR) signaling, PTEN-loss-driven cancers, and thrombocyte function. Unexpectedly, RAS is unable to interact with p110ß, but instead RAC1 and CDC42 from the RHO subfamily of small GTPases bind and activate p110ß via its RBD. In fibroblasts, GPCRs couple to PI3K through Dock180/Elmo1-mediated RAC activation and subsequent interaction with p110ß. Cells from mice carrying mutations in the p110ß RBD show reduced PI3K activity and defective chemotaxis, and these mice are resistant to experimental lung fibrosis. These findings revise our understanding of the regulation of type I PI3K by showing that both RAS and RHO family GTPases directly regulate distinct ubiquitous PI3K isoforms and that RAC activates p110ß downstream of GPCRs.
Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Fibroblastos/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Animais , Quimiotaxia , Classe I de Fosfatidilinositol 3-Quinases/química , Fibrose/induzido quimicamente , Fibrose/prevenção & controle , Reguladores de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Isoenzimas/metabolismo , Pulmão/patologia , Camundongos , Domínios e Motivos de Interação entre Proteínas , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas ras/químicaRESUMO
RAS-MAPK signalling is fundamental for cell proliferation and is altered in most human cancers1-3. However, our mechanistic understanding of how RAS signals through RAF is still incomplete. Although studies revealed snapshots for autoinhibited and active RAF-MEK1-14-3-3 complexes4, the intermediate steps that lead to RAF activation remain unclear. The MRAS-SHOC2-PP1C holophosphatase dephosphorylates RAF at serine 259, resulting in the partial displacement of 14-3-3 and RAF-RAS association3,5,6. MRAS, SHOC2 and PP1C are mutated in rasopathies-developmental syndromes caused by aberrant MAPK pathway activation6-14-and SHOC2 itself has emerged as potential target in receptor tyrosine kinase (RTK)-RAS-driven tumours15-18. Despite its importance, structural understanding of the SHOC2 holophosphatase is lacking. Here we determine, using X-ray crystallography, the structure of the MRAS-SHOC2-PP1C complex. SHOC2 bridges PP1C and MRAS through its concave surface and enables reciprocal interactions between all three subunits. Biophysical characterization indicates a cooperative assembly driven by the MRAS GTP-bound active state, an observation that is extendible to other RAS isoforms. Our findings support the concept of a RAS-driven and multi-molecular model for RAF activation in which individual RAS-GTP molecules recruit RAF-14-3-3 and SHOC2-PP1C to produce downstream pathway activation. Importantly, we find that rasopathy and cancer mutations reside at protein-protein interfaces within the holophosphatase, resulting in enhanced affinities and function. Collectively, our findings shed light on a fundamental mechanism of RAS biology and on mechanisms of clinically observed enhanced RAS-MAPK signalling, therefore providing the structural basis for therapeutic interventions.
Assuntos
Cristalografia por Raios X , Peptídeos e Proteínas de Sinalização Intracelular , Complexos Multiproteicos , Proteína Fosfatase 1 , Proteínas ras , Proteínas 14-3-3 , Guanosina Trifosfato/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Complexos Multiproteicos/química , Mutação , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteína Fosfatase 1/química , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Quinases raf , Proteínas ras/química , Proteínas ras/metabolismoRESUMO
Receptor tyrosine kinase (RTK)-RAS signalling through the downstream mitogen-activated protein kinase (MAPK) cascade regulates cell proliferation and survival. The SHOC2-MRAS-PP1C holophosphatase complex functions as a key regulator of RTK-RAS signalling by removing an inhibitory phosphorylation event on the RAF family of proteins to potentiate MAPK signalling1. SHOC2 forms a ternary complex with MRAS and PP1C, and human germline gain-of-function mutations in this complex result in congenital RASopathy syndromes2-5. However, the structure and assembly of this complex are poorly understood. Here we use cryo-electron microscopy to resolve the structure of the SHOC2-MRAS-PP1C complex. We define the biophysical principles of holoenzyme interactions, elucidate the assembly order of the complex, and systematically interrogate the functional consequence of nearly all of the possible missense variants of SHOC2 through deep mutational scanning. We show that SHOC2 binds PP1C and MRAS through the concave surface of the leucine-rich repeat region and further engages PP1C through the N-terminal disordered region that contains a cryptic RVXF motif. Complex formation is initially mediated by interactions between SHOC2 and PP1C and is stabilized by the binding of GTP-loaded MRAS. These observations explain how mutant versions of SHOC2 in RASopathies and cancer stabilize the interactions of complex members to enhance holophosphatase activity. Together, this integrative structure-function model comprehensively defines key binding interactions within the SHOC2-MRAS-PP1C holophosphatase complex and will inform therapeutic development .
Assuntos
Microscopia Crioeletrônica , Peptídeos e Proteínas de Sinalização Intracelular , Complexos Multiproteicos , Proteína Fosfatase 1 , Proteínas ras , Motivos de Aminoácidos , Sítios de Ligação , Guanosina Trifosfato/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Mutação de Sentido Incorreto , Fosforilação , Ligação Proteica , Proteína Fosfatase 1/química , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 1/ultraestrutura , Estabilidade Proteica , Quinases raf , Proteínas ras/química , Proteínas ras/metabolismo , Proteínas ras/ultraestruturaRESUMO
The RAS-RAF pathway is one of the most commonly dysregulated in human cancers1-3. Despite decades of study, understanding of the molecular mechanisms underlying dimerization and activation4 of the kinase RAF remains limited. Recent structures of inactive RAF monomer5 and active RAF dimer5-8 bound to 14-3-39,10 have revealed the mechanisms by which 14-3-3 stabilizes both RAF conformations via specific phosphoserine residues. Prior to RAF dimerization, the protein phosphatase 1 catalytic subunit (PP1C) must dephosphorylate the N-terminal phosphoserine (NTpS) of RAF11 to relieve inhibition by 14-3-3, although PP1C in isolation lacks intrinsic substrate selectivity. SHOC2 is as an essential scaffolding protein that engages both PP1C and RAS to dephosphorylate RAF NTpS11-13, but the structure of SHOC2 and the architecture of the presumptive SHOC2-PP1C-RAS complex remain unknown. Here we present a cryo-electron microscopy structure of the SHOC2-PP1C-MRAS complex to an overall resolution of 3 Å, revealing a tripartite molecular architecture in which a crescent-shaped SHOC2 acts as a cradle and brings together PP1C and MRAS. Our work demonstrates the GTP dependence of multiple RAS isoforms for complex formation, delineates the RAS-isoform preference for complex assembly, and uncovers how the SHOC2 scaffold and RAS collectively drive specificity of PP1C for RAF NTpS. Our data indicate that disease-relevant mutations affect complex assembly, reveal the simultaneous requirement of two RAS molecules for RAF activation, and establish rational avenues for discovery of new classes of inhibitors to target this pathway.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteína Fosfatase 1 , Transdução de Sinais , Proteínas ras , Microscopia Crioeletrônica , Guanosina Trifosfato/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Mutação , Fosfosserina , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestrutura , Proteína Fosfatase 1/química , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 1/ultraestrutura , Especificidade por Substrato , Quinases raf/metabolismo , Proteínas ras/química , Proteínas ras/genética , Proteínas ras/metabolismo , Proteínas ras/ultraestruturaRESUMO
RAS GTPases associate with the biological membrane where they function as molecular switches to regulate cell growth. Recent studies indicate that RAS proteins oligomerize on membranes, and disrupting these assemblies represents an alternative therapeutic strategy. However, conflicting reports on RAS assemblies, ranging in size from dimers to nanoclusters, have brought to the fore key questions regarding the stoichiometry and parameters that influence oligomerization. Here, we probe three isoforms of RAS [Kirsten Rat Sarcoma viral oncogene (KRAS), Harvey Rat Sarcoma viral oncogene (HRAS), and Neuroblastoma oncogene (NRAS)] directly from membranes using mass spectrometry. We show that KRAS on membranes in the inactive state (GDP-bound) is monomeric but forms dimers in the active state (GTP-bound). We demonstrate that the small molecule BI2852 can induce dimerization of KRAS, whereas the binding of effector proteins disrupts dimerization. We also show that RAS dimerization is dependent on lipid composition and reveal that oligomerization of NRAS is regulated by palmitoylation. By monitoring the intrinsic GTPase activity of RAS, we capture the emergence of a dimer containing either mixed nucleotides or GDP on membranes. We find that the interaction of RAS with the catalytic domain of Son of Sevenless (SOScat) is influenced by membrane composition. We also capture the activation and monomer to dimer conversion of KRAS by SOScat. These results not only reveal the stoichiometry of RAS assemblies on membranes but also uncover the impact of critical factors on oligomerization, encompassing regulation by nucleotides, lipids, and palmitoylation.
Assuntos
Membrana Celular , Multimerização Proteica , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/química , Humanos , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Lipoilação , Proteínas ras/metabolismo , Proteínas ras/química , Guanosina Trifosfato/metabolismo , Guanosina Difosfato/metabolismoRESUMO
Phosphoryl-transfer reactions are central to biology. These reactions also have some of the slowest nonenzymatic rates and thus require enormous rate accelerations from biological catalysts. Despite the central importance of phosphoryl transfer and the fascinating catalytic challenges it presents, substantial confusion persists about the properties of these reactions. This confusion exists despite decades of research on the chemical mechanisms underlying these reactions. Here we review phosphoryl-transfer reactions with the goal of providing the reader with the conceptual and experimental background to understand this body of work, to evaluate new results and proposals, and to apply this understanding to enzymes. We describe likely resolutions to some controversies, while emphasizing the limits of our current approaches and understanding. We apply this understanding to enzyme-catalyzed phosphoryl transfer and provide illustrative examples of how this mechanistic background can guide and deepen our understanding of enzymes and their mechanisms of action. Finally, we present important future challenges for this field.
Assuntos
Fosfatos/química , Fosfatos/metabolismo , Catálise , Hidrólise , Isótopos/química , Cinética , Estrutura Molecular , Fosforilação , Eletricidade Estática , Proteínas ras/química , Proteínas ras/metabolismoRESUMO
Increased cardiac contractility during the fight-or-flight response is caused by ß-adrenergic augmentation of CaV1.2 voltage-gated calcium channels1-4. However, this augmentation persists in transgenic murine hearts expressing mutant CaV1.2 α1C and ß subunits that can no longer be phosphorylated by protein kinase A-an essential downstream mediator of ß-adrenergic signalling-suggesting that non-channel factors are also required. Here we identify the mechanism by which ß-adrenergic agonists stimulate voltage-gated calcium channels. We express α1C or ß2B subunits conjugated to ascorbate peroxidase5 in mouse hearts, and use multiplexed quantitative proteomics6,7 to track hundreds of proteins in the proximity of CaV1.2. We observe that the calcium-channel inhibitor Rad8,9, a monomeric G protein, is enriched in the CaV1.2 microenvironment but is depleted during ß-adrenergic stimulation. Phosphorylation by protein kinase A of specific serine residues on Rad decreases its affinity for ß subunits and relieves constitutive inhibition of CaV1.2, observed as an increase in channel open probability. Expression of Rad or its homologue Rem in HEK293T cells also imparts stimulation of CaV1.3 and CaV2.2 by protein kinase A, revealing an evolutionarily conserved mechanism that confers adrenergic modulation upon voltage-gated calcium channels.
Assuntos
Canais de Cálcio Tipo L/metabolismo , Proteômica , Receptores Adrenérgicos beta/metabolismo , Animais , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo N/metabolismo , Microambiente Celular , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Células HEK293 , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Masculino , Camundongos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Miocárdio/metabolismo , Fosforilação , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Transdução de Sinais , Proteínas ras/química , Proteínas ras/metabolismoRESUMO
Signaling through the Ras-MAPK pathway can exhibit switch-like activation, which has been attributed to the underlying positive feedback and bimodality in the activation of RasGDP to RasGTP by SOS. SOS contains both catalytic and allosteric Ras binding sites, and a common assumption is that allosteric activation selectively by RasGTP provides the mechanism of positive feedback. However, recent single-molecule studies have revealed that SOS catalytic rates are independent of the nucleotide state of Ras in the allosteric binding site, raising doubt about this as a positive feedback mechanism. Here, we perform detailed kinetic analyses of receptor-mediated recruitment of full-length SOS to the membrane while simultaneously monitoring its catalytic activation of Ras. These results, along with kinetic modeling, expose the autoinhibition release step in SOS, rather than either recruitment or allosteric activation, as the underlying mechanism giving rise to positive feedback in Ras activation.
Assuntos
Retroalimentação Fisiológica , Proteínas ras , Proteínas ras/metabolismo , Proteínas ras/química , Cinética , Regulação Alostérica , Proteína SOS1/metabolismo , Proteína SOS1/química , Proteína SOS1/genética , Ativação Enzimática , Membrana Celular/metabolismo , Proteínas Son Of Sevenless/metabolismo , Proteínas Son Of Sevenless/química , HumanosRESUMO
Calcitonin gene-related peptide (CGRP) is a widely expressed neuropeptide that has a major role in sensory neurotransmission. The CGRP receptor is a heterodimer of the calcitonin receptor-like receptor (CLR) class B G-protein-coupled receptor and a type 1 transmembrane domain protein, receptor activity-modifying protein 1 (RAMP1). Here we report the structure of the human CGRP receptor in complex with CGRP and the Gs-protein heterotrimer at 3.3 Å global resolution, determined by Volta phase-plate cryo-electron microscopy. The receptor activity-modifying protein transmembrane domain sits at the interface between transmembrane domains 3, 4 and 5 of CLR, and stabilizes CLR extracellular loop 2. RAMP1 makes only limited direct contact with CGRP, consistent with its function in allosteric modulation of CLR. Molecular dynamics simulations indicate that RAMP1 provides stability to the receptor complex, particularly in the positioning of the extracellular domain of CLR. This work provides insights into the control of G-protein-coupled receptor function.
Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/ultraestrutura , Microscopia Crioeletrônica , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Proteína 1 Modificadora da Atividade de Receptores/ultraestrutura , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/ultraestrutura , Sítios de Ligação , Peptídeo Relacionado com Gene de Calcitonina/química , Proteína Semelhante a Receptor de Calcitonina/química , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Humanos , Simulação de Dinâmica Molecular , Domínios Proteicos , Estabilidade Proteica , Proteína 1 Modificadora da Atividade de Receptores/química , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/química , Proteínas ras/química , Proteínas ras/metabolismoRESUMO
RAS proteins regulate most aspects of cellular physiology. They are mutated in 30% of human cancers and 4% of developmental disorders termed Rasopathies. They cycle between active GTP-bound and inactive GDP-bound states. When active, they can interact with a wide range of effectors that control fundamental biochemical and biological processes. Emerging evidence suggests that RAS proteins are not simple on/off switches but sophisticated information processing devices that compute cell fate decisions by integrating external and internal cues. A critical component of this compute function is the dynamic regulation of RAS activation and downstream signaling that allows RAS to produce a rich and nuanced spectrum of biological outputs. We discuss recent findings how the dynamics of RAS and its downstream signaling is regulated. Starting from the structural and biochemical properties of wild-type and mutant RAS proteins and their activation cycle, we examine higher molecular assemblies, effector interactions and downstream signaling outputs, all under the aspect of dynamic regulation. We also consider how computational and mathematical modeling approaches contribute to analyze and understand the pleiotropic functions of RAS in health and disease.
Assuntos
Neoplasias , Transdução de Sinais , Humanos , Proteínas ras/química , Guanosina Trifosfato/metabolismoRESUMO
KRAS interacts with the inner leaflet of the plasma membrane (PM) using a hybrid anchor that comprises a lysine-rich polybasic domain (PBD) and a C-terminal farnesyl chain. Electrostatic interactions have been envisaged as the primary determinant of interactions between KRAS and membranes. Here, we integrated molecular dynamics (MD) simulations and superresolution spatial analysis in mammalian cells and systematically compared four equally charged KRAS anchors: the wild-type farnesyl hexa-lysine and engineered mutants comprising farnesyl hexa-arginine, geranylgeranyl hexa-lysine, and geranylgeranyl hexa-arginine. MD simulations show that these equally charged KRAS mutant anchors exhibit distinct interactions and packing patterns with different phosphatidylserine (PtdSer) species, indicating that prenylated PBD-bilayer interactions extend beyond electrostatics. Similar observations were apparent in intact cells, where each anchor exhibited binding specificities for PtdSer species with distinct acyl chain compositions. Acyl chain composition determined responsiveness of the spatial organization of different PtdSer species to diverse PM perturbations, including transmembrane potential, cholesterol depletion, and PM curvature. In consequence, the spatial organization and PM binding of each KRAS anchor precisely reflected the behavior of its preferred PtdSer ligand to these same PM perturbations. Taken together these results show that small GTPase PBD-prenyl anchors, such as that of KRAS, have the capacity to encode binding specificity for specific acyl chains as well as lipid headgroups, which allow differential responses to biophysical perturbations that may have biological and signaling consequences for the anchored GTPase.
Assuntos
Fosfatidilserinas/química , Prenilação , Proteínas ras/química , Proteínas ras/metabolismo , Animais , Linhagem Celular , Colesterol/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Proteínas Mutantes/metabolismo , Nanopartículas/química , Eletricidade EstáticaRESUMO
Aberrant Ras signaling is linked to a wide spectrum of hyperproliferative diseases, and components of the signaling pathway, including Ras, have been the subject of intense and ongoing drug discovery efforts. The cellular activity of Ras is modulated by its association with the guanine nucleotide exchange factor Son of sevenless (Sos), and the high-resolution crystal structure of the Ras-Sos complex provides a basis for the rational design of orthosteric Ras ligands. We constructed a synthetic Sos protein mimic that engages the wild-type and oncogenic forms of nucleotide-bound Ras and modulates downstream kinase signaling. The Sos mimic was designed to capture the conformation of the Sos helix-loop-helix motif that makes critical contacts with Ras in its switch region. Chemoproteomic studies illustrate that the proteomimetic engages Ras and other cellular GTPases. The synthetic proteomimetic resists proteolytic degradation and enters cells through macropinocytosis. As such, it is selectively toxic to cancer cells with up-regulated macropinocytosis, including those that feature oncogenic Ras mutations.
Assuntos
Complexos Multiproteicos/ultraestrutura , Conformação Proteica , Proteína Son Of Sevenless de Drosófila/ultraestrutura , Proteínas ras/ultraestrutura , Animais , Biomimética , Cristalografia por Raios X , Descoberta de Drogas , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/ultraestrutura , Células HCT116 , Sequências Hélice-Alça-Hélice/genética , Humanos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Proteoma/genética , Transdução de Sinais/genética , Proteína Son Of Sevenless de Drosófila/química , Proteína Son Of Sevenless de Drosófila/genética , Proteínas ras/química , Proteínas ras/genéticaRESUMO
Self-assemblies (i.e., nanoclusters) of the RAS GTPase on the membrane act as scaffolds that activate downstream RAF kinases and drive MAPK signaling for cell proliferation and tumorigenesis. However, the mechanistic details of nanoclustering remain largely unknown. Here, size-tunable nanodisc platforms and paramagnetic relaxation enhancement (PRE) analyses revealed the structural basis of the cooperative assembly processes of fully processed KRAS, mutated in a quarter of human cancers. The cooperativity is modulated by the mutation and nucleotide states of KRAS and the lipid composition of the membrane. Notably, the oncogenic mutants assemble in nonsequential pathways with two mutually cooperative 'α/α' and 'α/ß' interfaces, while α/α dimerization of wild-type KRAS promotes the secondary α/ß interaction sequentially. Mutation-based interface engineering was used to selectively trap the oligomeric intermediates of KRAS and probe their favorable interface interactions. Transiently exposed interfaces were available for the assembly. Real-time NMR demonstrated that higher-order oligomers retain higher numbers of active GTP-bound protomers in KRAS GTPase cycling. These data provide a deeper understanding of the nanocluster-enhanced signaling in response to the environment. Furthermore, our methodology is applicable to assemblies of many other membrane GTPases and lipid nanoparticle-based formulations of stable protein oligomers with enhanced cooperativity.
Assuntos
Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas ras/química , Quinases raf/metabolismo , DimerizaçãoRESUMO
Ras family GTPases (H/K/N-Ras) modulate numerous effectors, including the lipid kinase PI3K (phosphatidylinositol-3-kinase) that generates growth signal lipid PIP3 (phosphatidylinositol-3,4,5-triphosphate). Active GTP-Ras binds PI3K with high affinity, thereby stimulating PIP3 production. We hypothesize the affinity of this binding interaction could be significantly increased or decreased by Ras mutations at PI3K contact positions, with clinical implications since some Ras mutations at PI3K contact positions are disease-linked. To enable tests of this hypothesis, we have developed an approach combining UV spectral deconvolution, HPLC, and microscale thermophoresis to quantify the KD for binding. The approach measures the total Ras concentration, the fraction of Ras in the active state, and the affinity of active Ras binding to its docking site on PI3K Ras binding domain (RBD) in solution. The approach is illustrated by KD measurements for the binding of active H-Ras and representative mutants, each loaded with GTP or GMPPNP, to PI3Kγ RBD. The findings demonstrate that quantitation of the Ras activation state increases the precision of KD measurements, while also revealing that Ras mutations can increase (Q25L), decrease (D38E, Y40C), or have no effect (G13R) on PI3K binding affinity. Significant Ras affinity changes are predicted to alter PI3K regulation and PIP3 growth signals.
Assuntos
Fosfatidilinositol 3-Quinases , Proteínas ras , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas ras/química , Ligação Proteica , Guanosina Trifosfato/metabolismo , FosfatidilinositóisRESUMO
Mutations highly affect the structural flexibility of two switch domains in M-RAS considered an important target of anticancer drug design. Gaussian accelerated molecular dynamics (GaMD) simulations were applied to probe the effect of mutations P40D, D41E, and P40D/D41E/L51R on the conformational transition of the switch domains from the GTP-bound M-RAS. The analyses of free energy landscapes (FELs) not only reveal that three mutations induce less energetic states than the wild-type (WT) M-RAS but also verify that the switch domains are extremely disordered. Principal component analysis (PCA) and dynamics analysis suggest that three mutations greatly affect collective motions and structural flexibility of the switch domains that mostly overlap with binding regions of M-RAS to its effectors, which in turn disturbs the activity of M-RAS. The analyses of the interaction network between GTP and M-RAS show that the high instability in hydrogen bonding interactions (HBIs) of GTP with residue 41 and Y42 in the switch domain I drives the disordered states of the switch domains. This work is expected to provide a molecular mechanism for deeply understanding the function of M-RAS and future drug design towards the treatment of cancers.