Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 819
Filtrar
1.
Plant Cell ; 36(6): 2103-2116, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38445983

RESUMO

Bacterial pathogens deliver effectors into host cells to suppress immunity. How host cells target these effectors is critical in pathogen-host interactions. SUMOylation, an important type of posttranslational modification in eukaryotic cells, plays a critical role in immunity, but its effect on bacterial effectors remains unclear in plant cells. In this study, using bioinformatic and biochemical approaches, we found that at least 16 effectors from the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 are SUMOylated by the enzyme cascade from Arabidopsis thaliana. Mutation of SUMOylation sites on the effector HopB1 enhances its function in the induction of plant cell death via stability attenuation of a plant receptor kinase BRASSINOSTEROID INSENSITIVE 1 (BRI1)-ASSOCIATED RECEPTOR KINASE 1. By contrast, SUMOylation is essential for the function of another effector, HopG1, in the inhibition of mitochondria activity and jasmonic acid signaling. SUMOylation of both HopB1 and HopG1 is increased by heat treatment, and this modification modulates the functions of these 2 effectors in different ways in the regulation of plant survival rates, gene expression, and bacterial infection under high temperatures. Therefore, the current work on the SUMOylation of effectors in plant cells improves our understanding of the function of dynamic protein modifications in plant-pathogen interactions in response to environmental conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Resposta ao Choque Térmico , Pseudomonas syringae , Sumoilação , Arabidopsis/microbiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Morte Celular , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Interações Hospedeiro-Patógeno , Temperatura Alta , Células Vegetais/metabolismo , Células Vegetais/microbiologia , Doenças das Plantas/microbiologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/fisiologia , Transdução de Sinais
2.
Plant Cell ; 36(7): 2587-2606, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536743

RESUMO

Cold stress affects plant immune responses, and this process may involve the salicylic acid (SA) signaling pathway. However, the underlying mechanism by which low-temperature signals coordinate with SA signaling to regulate plant immunity remains unclear. Here, we found that low temperatures enhanced the disease resistance of Arabidopsis thaliana against Pseudomonas syringae pv. tomato DC3000. This process required INDUCER OF CBF EXPRESSION 1 (ICE1), the core transcription factor in cold-signal cascades. ICE1 physically interacted with NONEXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1), the master regulator of the SA signaling pathway. Enrichment of ICE1 on the PATHOGENESIS-RELATED GENE 1 (PR1) promoter and its ability to transcriptionally activate PR1 were enhanced by NPR1. Further analyses revealed that cold stress signals cooperate with SA signals to facilitate plant immunity against pathogen attack in an ICE1-dependent manner. Cold treatment promoted interactions of NPR1 and TGACG-BINDING FACTOR 3 (TGA3) with ICE1 and increased the ability of the ICE1-TGA3 complex to transcriptionally activate PR1. Together, our results characterize a critical role of ICE1 as an indispensable regulatory node linking low-temperature-activated and SA-regulated immunity. Understanding this crucial role of ICE1 in coordinating multiple signals associated with immunity broadens our understanding of plant-pathogen interactions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Imunidade Vegetal , Pseudomonas syringae , Ácido Salicílico , Transdução de Sinais , Ácido Salicílico/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/metabolismo , Imunidade Vegetal/genética , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Resistência à Doença/genética , Temperatura Baixa , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regiões Promotoras Genéticas/genética
3.
Nature ; 598(7881): 500-503, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34544113

RESUMO

Plant immune responses are mainly activated by two types of receptor. Pattern recognition receptors localized on the plasma membrane perceive extracellular microbial features, and nucleotide-binding leucine-rich repeat receptors (NLRs) recognize intracellular effector proteins from pathogens1. NLRs possessing amino-terminal Toll/interleukin-1 receptor (TIR) domains activate defence responses via the NADase activity of the TIR domain2,3. Here we report that activation of TIR signalling has a key role in pattern-triggered immunity (PTI) mediated by pattern recognition receptors. TIR signalling mutants exhibit attenuated PTI responses and decreased resistance against pathogens. Consistently, PTI is compromised in plants with reduced NLR levels. Treatment with the PTI elicitor flg22 or nlp20 rapidly induces many genes encoding TIR-domain-containing proteins, which is likely to be responsible for activating TIR signalling during PTI. Overall, our study reveals that activation of TIR signalling is an important mechanism for boosting plant defence during PTI.


Assuntos
Arabidopsis/imunologia , Imunidade Vegetal , Domínios Proteicos , Receptores de Interleucina-1/química , Receptores de Reconhecimento de Padrão/imunologia , Transdução de Sinais , Receptores Toll-Like/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/genética , Proteínas de Ligação a DNA/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Pseudomonas syringae/imunologia , Pseudomonas syringae/fisiologia , Receptores de Superfície Celular/metabolismo , Nicotiana/genética , Ubiquitina-Proteína Ligases
4.
Plant Cell ; 35(5): 1572-1592, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36762404

RESUMO

Mitogen-activated protein (MAP) kinase signaling cascades play important roles in eukaryotic defense against various pathogens. Activation of the extracellular ATP (eATP) receptor P2K1 triggers MAP kinase 3 and 6 (MPK3/6) phosphorylation, which leads to an elevated plant defense response. However, the mechanism by which P2K1 activates the MAPK cascade is unclear. In this study, we show that in Arabidopsis thaliana, P2K1 phosphorylates the Raf-like MAP kinase kinase kinase (MAPKKK) INTEGRIN-LINKED KINASE 5 (ILK5) on serine 192 in the presence of eATP. The interaction between P2K1 and ILK5 was confirmed both in vitro and in planta and their interaction was enhanced by ATP treatment. Similar to P2K1 expression, ILK5 expression levels were highly induced by treatment with ATP, flg22, Pseudomonas syringae pv. tomato DC3000, and various abiotic stresses. ILK5 interacts with and phosphorylates the MAP kinase MKK5. Moreover, phosphorylation of MPK3/6 was significantly reduced upon ATP treatment in ilk5 mutant plants, relative to wild-type (WT). The ilk5 mutant plants showed higher susceptibility to P. syringae pathogen infection relative to WT plants. Plants expressing only the mutant ILK5S192A protein, with decreased kinase activity, did not activate the MAPK cascade upon ATP addition. These results suggest that eATP activation of P2K1 results in transphosphorylation of the Raf-like MAPKKK ILK5, which subsequently triggers the MAPK cascade, culminating in activation of MPK3/6 associated with an elevated innate immune response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , MAP Quinase Quinase Quinases/genética , Proteínas de Arabidopsis/metabolismo , Imunidade Inata , Receptores Purinérgicos/metabolismo , Trifosfato de Adenosina/metabolismo , Pseudomonas syringae/fisiologia , Regulação da Expressão Gênica de Plantas , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Imunidade Vegetal/genética
5.
Plant J ; 117(1): 7-22, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37844152

RESUMO

Plant intracellular immune receptors, primarily nucleotide-binding, leucine-rich repeat proteins (NLRs), detect pathogen effector proteins and activate NLR-triggered immunity (NTI). Recently, 'sensor' NLRs have been reported to function with 'helper' NLRs to activate immunity. We investigated the role of two helper NLRs, Nrc2 and Nrc3, on immunity in tomato to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) mediated by the sensor NLR Prf and the Pto kinase. An nrc2/nrc3 mutant no longer activated Prf/Pto-mediated NTI to Pst containing the effectors AvrPto and AvrPtoB. An nrc3 mutant showed intermediate susceptibility between wild-type plants and a Prf mutant, while an nrc2 mutant developed only mild disease. These observations indicate that Nrc2 and Nrc3 act additively in Prf-/Pto-mediated immunity. We examined at what point Nrc2 and Nrc3 act in the Prf/Pto-mediated immune response. In the nrc2/3 mutant, programmed cell death (PCD) normally induced by constitutively active variants of AvrPtoB, Pto, or Prf was abolished, but that induced by M3Kα or Mkk2 was not. PCD induced by a constitutively active Nrc3 was also abolished in a Nicotiana benthamiana line with reduced expression of Prf. MAPK activation triggered by expression of AvrPto in the wild-type tomato plants was completely abolished in the nrc2/3 mutant. These results indicate that Nrc2 and Nrc3 act with Prf/Pto and upstream of MAPK signaling. Nrc2 and Nrc3 were not required for PCD triggered by Ptr1, another sensor NLR-mediating Pst resistance, although these helper NLRs do appear to be involved in resistance to certain Pst race 1 strains.


Assuntos
Proteínas Serina-Treonina Quinases , Solanum lycopersicum , Proteínas Serina-Treonina Quinases/metabolismo , Solanum lycopersicum/genética , Pseudomonas syringae/fisiologia , Apoptose , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Bactérias/metabolismo
6.
Plant J ; 119(4): 1920-1936, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38924321

RESUMO

Photorespiratory serine hydroxymethyltransferases (SHMTs) are important enzymes of cellular one-carbon metabolism. In this study, we investigated the potential role of SHMT6 in Arabidopsis thaliana. We found that SHMT6 is localized in the nucleus and expressed in different tissues during development. Interestingly SHMT6 is inducible in response to avirulent, virulent Pseudomonas syringae and to Fusarium oxysporum infection. Overexpression of SHMT6 leads to larger flowers, siliques, seeds, roots, and consequently an enhanced overall biomass. This enhanced growth was accompanied by increased stomatal conductance and photosynthetic capacity as well as ATP, protein, and chlorophyll levels. By contrast, a shmt6 knockout mutant displayed reduced growth. When challenged with Pseudomonas syringae pv tomato (Pst) DC3000 expressing AvrRpm1, SHMT6 overexpression lines displayed a clear hypersensitive response which was characterized by enhanced electrolyte leakage and reduced bacterial growth. In response to virulent Pst DC3000, the shmt6 mutant developed severe disease symptoms and becomes very susceptible, whereas SHMT6 overexpression lines showed enhanced resistance with increased expression of defense pathway associated genes. In response to Fusarium oxysporum, overexpression lines showed a reduction in symptoms. Moreover, SHMT6 overexpression lead to enhanced production of ethylene and lignin, which are important components of the defense response. Collectively, our data revealed that SHMT6 plays an important role in development and defense against pathogens.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Resistência à Doença , Etilenos , Fusarium , Glicina Hidroximetiltransferase , Lignina , Doenças das Plantas , Pseudomonas syringae , Arabidopsis/genética , Arabidopsis/microbiologia , Etilenos/metabolismo , Lignina/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Pseudomonas syringae/fisiologia , Fusarium/fisiologia , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas
7.
Plant J ; 120(2): 552-568, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39189381

RESUMO

The casein kinase II (CK2) complex consists of catalytic (α) and regulatory (ß) subunits and is highly conserved throughout eukaryotes. Plant CK2 plays critical roles in multiple physiological processes; however, its function in plant immunity remains obscure. In this study, we demonstrated that the unique chloroplast-localized CK2 α subunit (CPCK2) is a negative regulator of Arabidopsis thaliana innate immunity. cpck2 mutants displayed enhanced resistance against the fungal pathogen powdery mildew, Golovinomyces cichoracearum and the virulent bacterial pathogen, Pseudomonas syringae pv. tomato (Pto) DC3000. Moreover, the cpck2-1 mutant accumulated higher salicylic acid (SA) levels and mutations that disabled SA biosynthesis or signaling inhibited cpck2-1-mediated disease resistance. CPCK2 interacted with the chloroplast-localized carbonic anhydrase (CA), SA-binding protein 3 (SABP3), which was required for cpck2-mediated immunity. Significantly, CPCK2 phosphorylated SABP3, which promoted S-nitrosylation of this enzyme. It has previously been established that S-nitrosylation of SABP3 reduces both its SA binding function and its CA activity, which compromises the immune-related function of SABP3. Taken together, our results establish CPCK2 as a negative regulator of SA accumulation and associated immunity. Importantly, our findings unveil a mechanism by which CPCK2 negatively regulates plant immunity by promoting S-nitrosylation of SABP3 through phosphorylation, which provides the first example in plants of S-nitrosylation being promoted by cognate phosphorylation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Caseína Quinase II , Cloroplastos , Resistência à Doença , Doenças das Plantas , Imunidade Vegetal , Pseudomonas syringae , Ácido Salicílico , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/metabolismo , Caseína Quinase II/metabolismo , Caseína Quinase II/genética , Cloroplastos/metabolismo , Pseudomonas syringae/fisiologia , Pseudomonas syringae/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Ácido Salicílico/metabolismo , Resistência à Doença/genética , Ascomicetos/fisiologia , Regulação da Expressão Gênica de Plantas , Fosforilação , Proteínas de Transporte
8.
Plant J ; 120(1): 45-59, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39126292

RESUMO

Stomatal movement plays a critical role in plant immunity by limiting the entry of pathogens. OPEN STOMATA 1 (OST1) is a key component that mediates stomatal closure in plants, however, how OST1 functions in response to pathogens is not well understood. RECEPTOR-LIKE KINASE 902 (RLK902) phosphorylates BRASSINOSTEROID-SIGNALING KINASE 1 (BSK1) and positively modulates plant resistance. In this study, by a genome-wide phosphorylation analysis, we found that the phosphorylation of BSK1 and OST1 was missing in the rlk902 mutant compared with the wild-type plants, indicating a potential connection between the RLK902-BSK1 module and OST1-mediated stomatal closure. We showed that RLK902 and BSK1 contribute to stomatal immunity, as the stomatal closure induced by the bacterial pathogen Pto DC3000 was impaired in rlk902 and bsk1-1 mutants. Stomatal immunity mediated by RLK902 was dependent on BSK1 phosphorylation at Ser230, a key phosphorylation site for BSK1 functions. Several phosphorylation sites of OST1 were important for RLK902- and BSK1-mediated stomatal immunity. Interestingly, the phosphorylation of Ser171 and Ser175 in OST1 contributed to the stomatal immunity mediated by RLK902 but not by BSK1, while phosphorylation of OST1 at Ser29 and Thr176 residues was critical for BSK1-mediated stomatal immunity. Taken together, these results indicate that RLK902 and BSK1 contribute to disease resistance via OST1-mediated stomatal closure. This work revealed a new function of BSK1 in activating stomatal immunity, and the role of RLK902-BSK1 and OST1 module in regulating pathogen-induced stomatal movement.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Imunidade Vegetal , Estômatos de Plantas , Proteínas Quinases , Estômatos de Plantas/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosforilação , Arabidopsis/imunologia , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia , Mutação
9.
Plant J ; 119(2): 676-688, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38683723

RESUMO

Stomatal immunity plays an important role during bacterial pathogen invasion. Abscisic acid (ABA) induces plants to close their stomata and halt pathogen invasion, but many bacterial pathogens secrete phytotoxin coronatine (COR) to antagonize ABA signaling and reopen the stomata to promote infection at early stage of invasion. However, the underlining mechanism is not clear. SAD2 is an importin ß family protein, and the sad2 mutant shows hypersensitivity to ABA. We discovered ABI1, which negatively regulated ABA signaling and reduced plant sensitivity to ABA, was accumulated in the plant nucleus after COR treatment. This event required SAD2 to import ABI1 to the plant nucleus. Abolition of SAD2 undermined ABI1 accumulation. Our study answers the long-standing question of how bacterial COR antagonizes ABA signaling and reopens plant stomata during pathogen invasion.


Assuntos
Ácido Abscísico , Aminoácidos , Proteínas de Arabidopsis , Arabidopsis , Indenos , Estômatos de Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estômatos de Plantas/fisiologia , Arabidopsis/microbiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ácido Abscísico/metabolismo , Indenos/metabolismo , Indenos/farmacologia , Aminoácidos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Pseudomonas syringae/fisiologia , Pseudomonas syringae/patogenicidade , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Núcleo Celular/metabolismo , Fosfoproteínas Fosfatases
10.
Plant J ; 118(5): 1528-1549, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38507319

RESUMO

Rapid alkalinization factors (RALFs), belonging to a family of small secreted peptides, have been considered as important signaling molecules in diverse biological processes, including immunity. Current studies on RALF-modulated immunity mainly focus on Arabidopsis, but little is reported in crop plants. The rice immune receptor XA21 confers immunity to the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae (Xoo). Here, we pursued functional characterization of rice RALF26 (OsRALF26) up-regulated by Xoo during XA21-mediated immune response. When applied exogenously as a recombinant peptide, OsRALF26 induced a series of immune responses, including pathogenesis-related genes (PRs) induction, reactive oxygen species (ROS) production, and callose deposition in rice and/or Arabidopsis. Transgenic rice and Arabidopsis overexpressing OsRALF26 exhibited significantly enhanced resistance to Xoo and Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), respectively. In yeast two-hybrid, pull-down assays, and co-immunoprecipitation analyses, rice FER-like receptor 1 (OsFLR1) was identified as a receptor of OsRALF26. Transient expression of OsFLR1 in Nicotiana benthamiana leaves displayed significantly increased ROS production and callose deposition after OsRALF26 treatment. Together, we propose that OsRALF26 induced by Xoo in an XA21-dependent manner is perceived by OsFLR1 and may play a novel role in the enforcement of XA21-mediated immunity.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Oryza , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio , Xanthomonas , Oryza/genética , Oryza/microbiologia , Oryza/imunologia , Oryza/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Xanthomonas/fisiologia , Xanthomonas/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Espécies Reativas de Oxigênio/metabolismo , Resistência à Doença/genética , Glucanos/metabolismo , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/fisiologia
11.
Plant J ; 118(5): 1500-1515, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38516730

RESUMO

Meloidogyne incognita is one of the most widely distributed plant-parasitic nematodes and causes severe economic losses annually. The parasite produces effector proteins that play essential roles in successful parasitism. Here, we identified one such effector named MiCE108, which is exclusively expressed within the nematode subventral esophageal gland cells and is upregulated in the early parasitic stage of M. incognita. A yeast signal sequence trap assay showed that MiCE108 contains a functional signal peptide for secretion. Virus-induced gene silencing of MiCE108 impaired the parasitism of M. incognita in Nicotiana benthamiana. The ectopic expression of MiCE108 in Arabidopsis suppressed the deposition of callose, the generation of reactive oxygen species, and the expression of marker genes for bacterial flagellin epitope flg22-triggered immunity, resulting in increased susceptibility to M. incognita, Botrytis cinerea, and Pseudomonas syringae pv. tomato (Pst) DC3000. The MiCE108 protein physically associates with the plant defense protease RD21A and promotes its degradation via the endosomal-dependent pathway, or 26S proteasome. Consistent with this, knockout of RD21A compromises the innate immunity of Arabidopsis and increases its susceptibility to a broad range of pathogens, including M. incognita, strongly indicating a role in defense against this nematode. Together, our data suggest that M. incognita deploys the effector MiCE108 to target Arabidopsis cysteine protease RD21A and affect its stability, thereby suppressing plant innate immunity and facilitating parasitism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Nicotiana , Doenças das Plantas , Tylenchoidea , Animais , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/parasitologia , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Nicotiana/genética , Nicotiana/parasitologia , Nicotiana/imunologia , Nicotiana/metabolismo , Pseudomonas syringae/fisiologia , Pseudomonas syringae/patogenicidade , Botrytis/fisiologia , Botrytis/patogenicidade , Cisteína Proteases/metabolismo , Cisteína Proteases/genética , Imunidade Vegetal , Interações Hospedeiro-Parasita , Raízes de Plantas/parasitologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética
12.
Plant Physiol ; 195(3): 1835-1850, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38535832

RESUMO

Plant transporters regulating the distribution of secondary metabolites play critical roles in defending against pathogens, insects, and interacting with beneficial microbes. The phosphorylation of these transporters can alter their activity, stability, and intracellular protein trafficking. However, the regulatory mechanism underlying this modification remains elusive. In this study, we discovered two orthologs of mammalian PKA, PKG, and PKC (AGC) kinases, oxidative signal-inducible 1 (OXI1) and its closest homologue, AGC subclass 2 member 2 (AGC2-2; 75% amino acid sequence identity with OXI1), associated with the extracellular secretion of camalexin and Arabidopsis (Arabidopsis thaliana) resistance to Pseudomonas syringae, and Botrytis cinerea. These kinases can undergo in vitro kinase reactions with three pleiotropic drug resistance (PDR) transporters: PDR6, PDR8, and PDR12. Moreover, our investigation confirmed PDR6 interaction with OXI1 and AGC2-2. By performing LC-MS/MS and parallel reaction monitoring, we identified the phosphorylation sites on PDR6 targeted by these kinases. Notably, chitin-induced PDR6 phosphorylation at specific residues, namely S31, S33, S827, and T832. Additional insights emerged by expressing dephosphorylated PDR6 variants in a pdr6 mutant background, revealing that the target residues S31, S33, and S827 promote PDR6 efflux activity, while T832 potentially contributes to PDR6 stability within the plasma membrane. The findings of this study elucidate partial mechanisms involved in the activity regulation of PDR-type transporters, providing valuable insights for their potential application in future plant breeding endeavors.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Botrytis , Resistência à Doença , Doenças das Plantas , Pseudomonas syringae , Tiazóis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Botrytis/fisiologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Indóis/metabolismo , Fosforilação , Fitoalexinas , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/fisiologia , Tiazóis/metabolismo
13.
Plant Physiol ; 195(2): 1053-1068, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38245840

RESUMO

The hemibiotrophic bacterial pathogen Pseudomonas syringae infects a range of plant species and causes enormous economic losses. Auxin and WRKY transcription factors play crucial roles in plant responses to P. syringae, but their functional relationship in plant immunity remains unclear. Here, we characterized tomato (Solanum lycopersicum) SlWRKY75, which promotes defenses against P. syringae pv. tomato (Pst) DC3000 by regulating plant auxin homeostasis. Overexpressing SlWRKY75 resulted in low free indole-3-acetic acid (IAA) levels, leading to attenuated auxin signaling, decreased expansin transcript levels, upregulated expression of PATHOGENESIS-RELATED GENES (PRs) and NONEXPRESSOR OF PATHOGENESIS-RELATED GENE 1 (NPR1), and enhanced tomato defenses against Pst DC3000. RNA interference-mediated repression of SlWRKY75 increased tomato susceptibility to Pst DC3000. Yeast one-hybrid, electrophoretic mobility shift assays, and luciferase activity assays suggested that SlWRKY75 directly activates the expression of GRETCHEN HAGEN 3.3 (SlGH3.3), which encodes an IAA-amido synthetase. SlGH3.3 enhanced tomato defense against Pst DC3000 by converting free IAA to the aspartic acid (Asp)-conjugated form IAA-Asp. In addition, SlWRKY75 interacted with a tomato valine-glutamine (VQ) motif-containing protein 16 (SlVQ16) in vivo and in vitro. SlVQ16 enhanced SlWRKY75-mediated transcriptional activation of SlGH3.3 and promoted tomato defense responses to Pst DC3000. Our findings illuminate a mechanism in which the SlVQ16-SlWRKY75 complex participates in tomato pathogen defense by positively regulating SlGH3.3-mediated auxin homeostasis.


Assuntos
Regulação da Expressão Gênica de Plantas , Homeostase , Ácidos Indolacéticos , Doenças das Plantas , Proteínas de Plantas , Pseudomonas syringae , Solanum lycopersicum , Fatores de Transcrição , Solanum lycopersicum/microbiologia , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/imunologia , Ácidos Indolacéticos/metabolismo , Pseudomonas syringae/fisiologia , Pseudomonas syringae/patogenicidade , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Imunidade Vegetal/genética , Plantas Geneticamente Modificadas
14.
Plant Physiol ; 195(3): 2323-2338, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38478585

RESUMO

Hydroxylated monoterpenes (HMTPs) are differentially emitted by tomato (Solanum lycopersicum) plants resisting bacterial infection. We have studied the defensive role of these volatiles in the tomato response to bacteria, whose main entrance is through stomatal apertures. Treatments with some HMTPs resulted in stomatal closure and pathogenesis-related protein 1 (PR1) induction. Particularly, α-terpineol induced stomatal closure in a salicylic acid (SA) and abscisic acid-independent manner and conferred resistance to bacteria. Interestingly, transgenic tomato plants overexpressing or silencing the monoterpene synthase MTS1, which displayed alterations in the emission of HMTPs, exhibited changes in the stomatal aperture but not in plant resistance. Measures of both 2-C-methyl-D-erythritol-2,4-cyclopyrophosphate (MEcPP) and SA levels revealed competition for MEcPP by the methylerythritol phosphate (MEP) pathway and SA biosynthesis activation, thus explaining the absence of resistance in transgenic plants. These results were confirmed by chemical inhibition of the MEP pathway, which alters MEcPP levels. Treatments with benzothiadiazole (BTH), a SA functional analog, conferred enhanced resistance to transgenic tomato plants overexpressing MTS1. Additionally, these MTS1 overexpressors induced PR1 gene expression and stomatal closure in neighboring plants. Our results confirm the role of HMTPs in both intra- and interplant immune signaling and reveal a metabolic crosstalk between the MEP and SA pathways in tomato plants.


Assuntos
Monoterpenos , Doenças das Plantas , Estômatos de Plantas , Plantas Geneticamente Modificadas , Ácido Salicílico , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Ácido Salicílico/metabolismo , Monoterpenos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Hidroxilação , Tiadiazóis/farmacologia , Regulação da Expressão Gênica de Plantas , Fosfatos Açúcares/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/fisiologia , Eritritol/análogos & derivados , Eritritol/metabolismo , Resistência à Doença/genética , Resistência à Doença/efeitos dos fármacos
15.
Plant Physiol ; 195(4): 3097-3118, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38588051

RESUMO

In humans and plants, 40% of the proteome is cotranslationally acetylated at the N-terminus by a single Nα-acetyltransferase (Nat) termed NatA. The core NatA complex is comprised of the catalytic subunit Nα-acetyltransferase 10 (NAA10) and the ribosome-anchoring subunit NAA15. The regulatory subunit Huntingtin Yeast Partner K (HYPK) and the acetyltransferase NAA50 join this complex in humans. Even though both are conserved in Arabidopsis (Arabidopsis thaliana), only AtHYPK is known to interact with AtNatA. Here we uncover the AtNAA50 interactome and provide evidence for the association of AtNAA50 with NatA at ribosomes. In agreement with the latter, a split-luciferase approach demonstrated close proximity of AtNAA50 and AtNatA in planta. Despite their interaction, AtNatA/HYPK and AtNAA50 exerted different functions in vivo. Unlike NatA/HYPK, AtNAA50 did not modulate drought tolerance or promote protein stability. Instead, transcriptome and proteome analyses of a novel AtNAA50-depleted mutant (amiNAA50) implied that AtNAA50 negatively regulates plant immunity. Indeed, amiNAA50 plants exhibited enhanced resistance to oomycetes and bacterial pathogens. In contrast to what was observed in NatA-depleted mutants, this resistance was independent of an accumulation of salicylic acid prior to pathogen exposure. Our study dissects the in vivo function of the NatA interactors HYPK and NAA50 and uncovers NatA-independent roles for NAA50 in plants.


Assuntos
Acetiltransferases , Proteínas de Arabidopsis , Arabidopsis , Acetiltransferase N-Terminal E , Imunidade Vegetal , Acetiltransferases/metabolismo , Acetiltransferases/genética , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal A/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Imunidade Vegetal/genética , Pseudomonas syringae/fisiologia , Pseudomonas syringae/patogenicidade , Ácido Salicílico/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo
16.
Plant Cell ; 34(3): 1100-1116, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34954802

RESUMO

Chromatin remodelers act in an ATP-dependent manner to modulate chromatin structure and thus genome function. Here, we report that the Arabidopsis (Arabidopsis thaliana) remodeler CHROMATIN REMODELING19 (CHR19) is enriched in gene body regions, and its depletion causes massive changes in nucleosome position and occupancy in the genome. Consistent with these changes, an in vitro assay verified that CHR19 can utilize ATP to slide nucleosomes. A variety of inducible genes, including several important genes in the salicylic acid (SA) and jasmonic acid (JA) pathways, were transcriptionally upregulated in the chr19 mutant under normal growth conditions, indicative of a role of CHR19 in transcriptional repression. In addition, the chr19 mutation triggered higher susceptibility to the JA pathway-defended necrotrophic fungal pathogen Botrytis cinerea, but did not affect the growth of the SA pathway-defended hemibiotrophic bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Expression of CHR19 was tissue-specific and inhibited specifically by SA treatment. Such inhibition significantly decreased the local chromatin enrichment of CHR19 at the associated SA pathway genes, which resulted in their full activation upon SA treatment. Overall, our findings clarify CHR19 to be a novel regulator acting at the chromatin level to impact the transcription of genes underlying plant resistance to different pathogens.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Trifosfato de Adenosina/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/genética , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Oxilipinas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia , Ácido Salicílico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Mol Plant Microbe Interact ; 37(2): 112-126, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37903461

RESUMO

Several elicitors of plant defense have been identified and numerous efforts to use them in the field have been made. Exogenous elicitor treatments mimic the in planta activation of pattern-triggered immunity (PTI), which relies on the perception of pathogen-associated molecular patterns (PAMPs) such as bacterial flg22 or fungal chitins. Early transcriptional responses to distinct PAMPs are mostly overlapping, regardless of the elicitor being used. However, it remains poorly known if the same patterns are observed for metabolites and proteins produced later during PTI. In addition, little is known about the impact of a combination of elicitors on PTI and the level of induced resistance to pathogens. Here, we monitored Arabidopsis thaliana resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) following application of flg22 and chitosan elicitors, used individually or in combination. A slight, but not statistically significant increase in induced resistance was observed when the elicitors were applied together when compared with individual treatments. We investigated the effect of these treatments on the metabolome by using an untargeted analysis. We found that the combination of flg22 and chitosan impacted a higher number of metabolites and deregulated specific metabolic pathways compared with the elicitors individually. These results contribute to a better understanding of plant responses to elicitors, which might help better rationalize their use in the field. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Quitosana , Arabidopsis/microbiologia , Imunidade Vegetal , Quitosana/farmacologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metaboloma , Pseudomonas syringae/fisiologia , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
18.
Mol Plant Microbe Interact ; 37(2): 155-165, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38079389

RESUMO

The plant hormone indole-3-acetic acid (IAA), also known as auxin, plays important roles in plant growth and development, as well as in several plant-microbe interactions. IAA also acts as a microbial signal and in many bacteria regulates metabolism, stress responses, and virulence. In the bacterial plant pathogen Pseudomonas syringae pv. tomato strain DC3000 (PtoDC3000), exposure to IAA results in large-scale transcriptional reprogramming, including the differential expression of several known virulence genes. However, how PtoDC3000 senses and responds to IAA and what aspects of its biology are regulated by IAA is not understood. To investigate the mechanisms involved in perceiving and responding to IAA, we carried out a genetic screen for mutants with altered responses to IAA. One group of mutants of particular interest carried disruptions in the aefR gene encoding a TetR family transcriptional regulator. Gene expression analysis confirmed that the aefR mutants have altered responses to IAA. Thus, AefR is the first demonstrated auxin response regulator in PtoDC3000. We also investigated several aspects of PtoDC3000 biology that are regulated by both AefR and IAA, including antibiotic resistance, motility, and virulence. The observation that the aefR mutant has altered virulence on Arabidopsis, suggests that the sector of the IAA response regulated by aefR is important during pathogenesis. Our findings also provide evidence that AefR plays a role in coordinating changes in gene expression during the transition from early to late stages of infection. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Arabidopsis , Pseudomonas syringae , Pseudomonas syringae/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácidos Indolacéticos/metabolismo , Virulência/genética , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Bactérias/metabolismo
19.
Mol Plant Microbe Interact ; 37(4): 380-395, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38114195

RESUMO

Bemisia tabaci (whitefly) is a polyphagous agroeconomic pest species complex. Two members of this species complex, Mediterranean (MED) and Middle-East-Asia Minor 1 (MEAM1), have a worldwide distribution and have been shown to manipulate plant defenses through effectors. In this study, we used three different strategies to identify three MEAM1 proteins that can act as effectors. Effector B1 was identified using a bioinformatics-driven effector-mining strategy, whereas effectors S1 and P1 were identified in the saliva of whiteflies collected from artificial diet and in phloem exudate of tomato on which nymphs were feeding, respectively. These three effectors were B. tabaci specific and able to increase whitefly fecundity when transiently expressed in tobacco plants (Nicotiana tabacum). Moreover, they reduced growth of Pseudomonas syringae pv. tabaci in Nicotiana benthamiana. All three effectors changed gene expression in planta, and B1 and S1 also changed phytohormone levels. Gene ontology and KEGG pathway enrichment analysis pinpointed plant-pathogen interaction and photosynthesis as the main enriched pathways for all three effectors. Our data thus show the discovery and validation of three new B. tabaci MEAM1 effectors that increase whitefly fecundity and modulate plant immunity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Hemípteros , Nicotiana , Animais , Nicotiana/genética , Nicotiana/microbiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Solanum lycopersicum/parasitologia , Pseudomonas syringae/fisiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Fertilidade/genética
20.
Biochem Biophys Res Commun ; 710: 149871, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38579538

RESUMO

Brassinosteroid activated kinase 1 (BAK1) is a cell-surface coreceptor which plays multiple roles in innate immunity of plants. HopF2 is an effector secreted by the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 into Arabidopsis and suppresses host immune system through interaction with BAK1 as well as its downstream kinase MKK5. The association mechanism of HopF2 to BAK1 remains unclear, which prohibits our understanding and subsequent interfering of their interaction for pathogen management. Herein, we found the kinase domain of BAK1 (BAK1-KD) is sufficient for HopF2 association. With a combination of hydrogen/deuterium exchange mass spectrometry and mutational assays, we found a region of BAK1-KD N-lobe and a region of HopF2 head subdomain are critical for intermolecular interaction, which is also supported by unbiased protein-protein docking with ClusPro and kinase activity assay. Collectively, this research presents the interaction mechanism between Arabidopsis BAK1 and P. syringae HopF2, which could pave the way for bactericide development that blocking the functioning of HopF2 toward BAK1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Pseudomonas syringae/fisiologia , Brassinosteroides , Proteínas de Bactérias/química , Proteínas de Arabidopsis/fisiologia , Doenças das Plantas/microbiologia , Proteínas Serina-Treonina Quinases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA