Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 148-149: 3-12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36526528

RESUMO

Plant diseases caused by soilborne pathogens are a major limiting factor in crop production. Bacterial wilt disease, caused by soilborne bacteria in the Ralstonia solanacearum Species Complex (Ralstonia), results in significant crop loss throughout the world. Ralstonia invades root systems and colonizes plant xylem, changing plant physiology and ultimately causing plant wilting in susceptible varieties. Elucidating how Ralstonia invades and colonizes plants is central to developing strategies for crop protection. Here we review Ralstonia pathogenesis from root detection and attachment, early root colonization, xylem invasion and subsequent wilting. We focus primarily on studies in tomato from the last 5-10 years. Recent work has identified elegant mechanisms Ralstonia uses to adapt to the plant xylem, and has discovered new genes that function in Ralstonia fitness in planta. A picture is emerging of an amazingly versatile pathogen that uses multiple strategies to make its surrounding environment more hospitable and can adapt to new environments.


Assuntos
Ralstonia solanacearum , Ralstonia , Virulência , Ralstonia solanacearum/genética , Plantas , Doenças das Plantas/microbiologia
2.
Plant J ; 118(3): 839-855, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38271178

RESUMO

Arabidopsis thaliana WRKY proteins are potential targets of pathogen-secreted effectors. RESISTANT TO RALSTONIA SOLANACEARUM 1 (RRS1; AtWRKY52) is a well-studied Arabidopsis nucleotide-binding and leucine-rich repeat (NLR) immune receptor carrying a C-terminal WRKY domain that functions as an integrated decoy. RRS1-R recognizes the effectors AvrRps4 from Pseudomonas syringae pv. pisi and PopP2 from Ralstonia pseudosolanacearum by direct interaction through its WRKY domain. AvrRps4 and PopP2 were previously shown to interact with several AtWRKYs. However, how these effectors selectively interact with their virulence targets remains unknown. Here, we show that several members of subgroup IIIb of the AtWRKY family are targeted by AvrRps4 and PopP2. We demonstrate that several AtWRKYs induce cell death when transiently expressed in Nicotiana benthamiana, indicating the activation of immune responses. AtWRKY54 was the only cell death-inducing AtWRKY that interacted with both AvrRps4 and PopP2. We found that AvrRps4 and PopP2 specifically suppress AtWRKY54-induced cell death. We also demonstrate that the amino acid residues required for the avirulence function of AvrRps4 and PopP2 are critical for suppressing AtWRKY54-induced cell death. AtWRKY54 residues predicted to form a binding interface with AvrRps4 were predominantly located in the DNA binding domain and necessary for inducing cell death. Notably, one AtWRKY54 residue, E164, contributes to affinity with AvrRps4 and is exclusively present among subgroup IIIb AtWRKYs, yet is located outside of the DNA-binding domain. Surprisingly, AtWRKY54 mutated at E164 evaded AvrRps4-mediated cell death suppression. Taking our observations together, we propose that AvrRp4 and PopP2 specifically target AtWRKY54 to suppress plant immune responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Bactérias , Nicotiana , Doenças das Plantas , Imunidade Vegetal , Pseudomonas syringae , Arabidopsis/imunologia , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Morte Celular , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/imunologia , Nicotiana/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Imunidade Vegetal/genética , Pseudomonas syringae/patogenicidade , Ralstonia/patogenicidade , Ralstonia/genética , Ralstonia solanacearum/patogenicidade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Mol Plant Microbe Interact ; 37(5): 467-476, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805410

RESUMO

The soil-borne phytopathogenic gram-negative bacterium Ralstonia solanacearum species complex (RSSC) produces staphyloferrin B and micacocidin as siderophores that scavenge for trivalent iron (Fe3+) in the environment, depending on the intracellular divalent iron (Fe2+) concentration. The staphyloferrin B-deficient mutant reportedly retains its virulence, but the relationship between micacocidin and virulence remains unconfirmed. To elucidate the effect of micacocidin on RSSC virulence, we generated the micacocidin productivity-deficient mutant (ΔRSc1806) that lacks RSc1806, which encodes a putative polyketide synthase/non-ribosomal peptide synthetase, using the RSSC phylotype I Ralstonia pseudosolanacearum strain OE1-1. When incubated in the condition without Fe2+, ΔRSc1806 showed significantly lower Fe3+-scavenging activity, compared with OE1-1. Until 8 days after inoculation on tomato plants, ΔRSc1806 was not virulent, similar to the mutant (ΔphcA) missing phcA, which encodes the LysR-type transcriptional regulator PhcA that regulates the expression of the genes responsible for quorum sensing (QS)-dependent phenotypes including virulence. The transcriptome analysis revealed that RSc1806 deletion significantly altered the expression of more than 80% of the PhcA-regulated genes in the mutant grown in medium with or without Fe2+. Among the PhcA-regulated genes, the transcript levels of the genes whose expression was affected by the deletion of RSc1806 were strongly and positively correlated between the ΔRSc1806 and the phcA-deletion mutant. Furthermore, the deletion of RSc1806 significantly modified QS-dependent phenotypes, similar to the effects of the deletion of phcA. Collectively, our findings suggest that the deletion of micacocidin production-related RSc1806 alters the regulation of PhcA-regulated genes responsible for QS-dependent phenotypes including virulence as well as Fe3+-scavenging activity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Doenças das Plantas , Percepção de Quorum , Solanum lycopersicum , Percepção de Quorum/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Ferro/metabolismo , Ralstonia/genética , Ralstonia/patogenicidade , Sideróforos/metabolismo , Deleção de Genes , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo
4.
BMC Genomics ; 25(1): 191, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373891

RESUMO

BACKGROUND: Bacterial wilt caused by Ralstonia solanacearum species complex (RSSC) is one of the devastating diseases in crop production, seriously reducing the yield of crops. R. pseudosolanacearum, is known for its broad infrasubspecific diversity and comprises 36 sequevars that are currently known. Previous studies found that R. pseudosolanacearum contained four sequevars (13, 14, 17 and 54) isolated from sunflowers sown in the same field. RESULTS: Here, we provided the complete genomes and the results of genome comparison of the four sequevars strains (RS639, RS642, RS647, and RS650). Four strains showed different pathogenicities to the same cultivars and different host ranges. Their genome sizes were about 5.84 ~ 5.94 Mb, encoding 5002 ~ 5079 genes and the average G + C content of 66.85% ~ 67%. Among the coding genes, 146 ~ 159 specific gene families (contained 150 ~ 160 genes) were found in the chromosomes and 34 ~ 77 specific gene families (contained 34 ~ 78 genes) in the megaplasmids from four strains. The average nucleotide identify (ANI) values between any two strains ranged from 99.05% ~ 99.71%, and the proportion of the total base length of collinear blocks accounts for the total gene length of corresponding genome was all more than 93.82%. Then, we performed a search for genomic islands, prophage sequences, the gene clusters macromolecular secretion systems, type III secreted effectors and other virulence factors in these strains, which provided detailed comparison results of their presence and distinctive features compared to the reference strain GMI1000. Among them, the number and types of T2SS gene clusters were different in the four strains, among which RS650 included all five types. T4SS gene cluster of RS639 and RS647 were missed. In the T6SS gene cluster, several genes were inserted in the RS639, RS647, and RS650, and gene deletion was also detected in the RS642. A total of 78 kinds of type III secreted effectors were found, which included 52 core and 9 specific effectors in four strains. CONCLUSION: This study not only provided the complete genomes of multiple R. pseudosolanacearum strains isolated from a new host, but also revealed the differences in their genomic levels through comparative genomics. Furthermore, these findings expand human knowledge about the range of hosts that Ralstonia can infect, and potentially contribute to exploring rules and factors of the genetic evolution and analyzing its pathogenic mechanism.


Assuntos
Asteraceae , Helianthus , Ralstonia solanacearum , Humanos , Ralstonia/genética , Genômica , Ralstonia solanacearum/genética , Filogenia , Doenças das Plantas/microbiologia
5.
Appl Environ Microbiol ; 90(5): e0024224, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38690890

RESUMO

Ralstonia solanacearum species complex (RSSC) is a phytopathogenic bacterial group that causes bacterial wilt in several crops, being potato (Solanum tuberosum) one of the most important hosts. The relationship between the potato plant ionome (mineral and trace elements composition) and the resistance levels to this pathogen has not been addressed until now. Mineral content of xylem sap, roots, stems and leaves of potato genotypes with different levels of resistance to bacterial wilt was assessed in this work, revealing a positive correlation between divalent calcium (Ca) cation concentrations and genotype resistance. The aim of this study was to investigate the effect of Ca on bacterial wilt resistance, and on the growth and virulence of RSSC. Ca supplementation significantly decreased the growth rate of Ralstonia pseudosolanacearum GMI1000 in minimal medium and affected several virulence traits such as biofilm formation and twitching motility. We also incorporate for the first time the use of microfluidic chambers to follow the pathogen growth and biofilm formation in conditions mimicking the plant vascular system. By using this approach, a reduction in biofilm formation was observed when both, rich and minimal media, were supplemented with Ca. Assessment of the effect of Ca amendments on bacterial wilt progress in potato genotypes revealed a significant delay in disease progress, or a complete absence of wilting symptoms in the case of partially resistant genotypes. This work contributes to the understanding of Ca effect on virulence of this important pathogen and provides new strategies for an integrated control of bacterial wilt on potato. IMPORTANCE: Ralstonia solanacearum species complex (RSSC) includes a diverse group of bacterial strains that cause bacterial wilt. This disease is difficult to control due to pathogen aggressiveness, persistence, wide range of hosts, and wide geographic distribution in tropical, subtropical, and temperate regions. RSSC causes considerable losses depending on the pathogen strain, host, soil type, environmental conditions, and cultural practices. In potato, losses of $19 billion per year have been estimated for this pathogen worldwide. In this study, we report for the first time the mineral composition found in xylem sap and plant tissues of potato germplasm with different levels of resistance to bacterial wilt. This study underscores the crucial role of calcium (Ca) concentration in the xylem sap and stem in relation to the resistance of different genotypes. Our in vitro experiments provide evidence of Ca's inhibitory effect on the growth, biofilm formation, and twitching movement of the model RSSC strain R. pseudosolanacearum GMI1000. This study introduces a novel element, the Ca concentration, which should be included into the integrated disease control management strategies for bacterial wilt in potatoes.


Assuntos
Cálcio , Doenças das Plantas , Ralstonia solanacearum , Solanum tuberosum , Solanum tuberosum/microbiologia , Doenças das Plantas/microbiologia , Cálcio/metabolismo , Ralstonia solanacearum/fisiologia , Ralstonia solanacearum/genética , Ralstonia solanacearum/patogenicidade , Ralstonia solanacearum/crescimento & desenvolvimento , Virulência , Biofilmes/crescimento & desenvolvimento , Ralstonia/genética , Ralstonia/fisiologia , Raízes de Plantas/microbiologia , Xilema/microbiologia
6.
Mol Biol Rep ; 51(1): 511, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622444

RESUMO

BACKGROUND: Lipases play a crucial role in various industrial applications, and microbial lipases, particularly those from bacteria, possess significant properties. With increasing concerns about the environmental and health impacts of hydrocarbons from pipelines and refineries, there is a growing need to mitigate the risks associated with these compounds. METHODS: In this study, 40 bacterial isolates were recovered from contaminated soil samples collected from multiple refineries across Iraq. Using the Vitek system, bacterial isolates were identified up to the species level, revealing that only 12 isolates exhibited lipase-producing capabilities. RESULTS: Among the lipase-producing isolates, Ralstonia mannitolilytica demonstrated the highest extracellular lipase activity, as determined by an olive oil plate assay supplemented with rhodamine B. Confirmation of the species identity was achieved through 16S rRNA gene sequencing, with the obtained sequence deposited under accession number LC772176.1. Further sequence analysis revealed single nucleotide polymorphisms (SNPs) in the genome of Ralstonia mannitolilytica strain H230303-10_N19_7x_R2 (CP011257.1, positions 1,311,102 and 1,311,457). Additionally, the presence of the lipase gene was confirmed through amplification and sequencing using a thermocycler PCR. Sequence analysis of the gene, aligned using Geneious Prime software, identified SNPs (CP010799, CP049132, AY364601, CP011257, and CP023537), and a phylogenetic tree was constructed based on genetic characterization. CONCLUSION: Our findings highlight the potential of Ralstonia mannitolilytica as a promising candidate for lipase production and contribute to our understanding of its genetic diversity and biotechnological applications in hydrocarbon degradation and industrial processes.


Assuntos
Petróleo , Ralstonia , Petróleo/microbiologia , RNA Ribossômico 16S/genética , Filogenia , Iraque , Lipase/genética , Solo
7.
Biosci Biotechnol Biochem ; 88(5): 571-576, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38383669

RESUMO

This study demonstrates the effect of fermented botanical product (FBP) on Ralstonia pseudosolanacearum-induced bacterial wilt disease and unravels its action mechanism. Soaking with diluted FBP solutions (0.1%-0.5%) significantly suppressed bacterial wilt in tomato plants, and FBP-treated tomato plants grew well against R. pseudosolanacearum infection. Growth assays showed that FBP had no antibacterial effect but promoted R. pseudosolanacearum growth. In contrast, few or no R. pseudosolanacearum cells were detected in aerial parts of tomato plants grown in FBP-soaked soil. Subsequent infection assays using the chemotaxis-deficient mutant (ΔcheA) or the root-dip inoculation method revealed that FBP does not affect pathogen migration to plant roots during infection. Moreover, FBP-pretreated tomato plants exhibited reduced bacterial wilt in the absence of FBP. These findings suggest that the plant, but not the pathogen, could be affected by FBP, resulting in an induced resistance against R. pseudosolanacearum, leading to a suppressive effect on bacterial wilt.


Assuntos
Fermentação , Fertilizantes , Doenças das Plantas , Ralstonia , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/crescimento & desenvolvimento , Ralstonia/efeitos dos fármacos , Ralstonia/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia
8.
BMC Infect Dis ; 23(1): 548, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608277

RESUMO

BACKGROUND: Ralstonia is a genus of Gram-negative opportunistic bacteria that can survive in many kinds of solutions and cause a variety of infections. Ralstonia spp. have increasingly been isolated and reported to cause infections in recent years, thanks to the development of identification methods such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and gene sequencing. However, infections caused by Ralstonia insidiosa are still rare. Only a few cases of respiratory infections and bloodstream infections have been reported, none of which involved meningitis. To the best of our knowledge, this is the first reported case of meningitis caused by R. insidiosa worldwide. It is necessary to report and review this case. CASE PRESENTATION: We report a case of meningitis caused by R. insidiosa following lumbar surgery in China. The patient exhibited symptoms of headache, dizziness, and recurrent fever. The fever remained unresolved after empiric antibiotic therapy with intravenous cefotaxime and vancomycin in the initial days. Cerebrospinal fluid (CSF) culture yielded Gram-negative non-fermentative bacteria, which were identified as R. insidiosa. As there was a lack of antibiotic susceptibility testing results, clinical pharmacists conducted a literature review to select appropriate antibiotics. The patient's condition improved after receiving effective treatment with intravenous cefepime and levofloxacin. CONCLUSIONS: Uncommon pathogens, such as R. insidiosa, should be considered in postoperative central nervous system (CNS) infections, particularly in cases with unsatisfactory results of empiric anti-infective therapy. This is the first reported case of meningitis caused by R. insidiosa worldwide. MALDI-TOF MS provides rapid and accurate identification of this pathogen. The antibiotic susceptibility testing results of R. indiosa may be interpreted based on the breakpoints for Pseudomonas spp., Burkholderia cepacia spp., and Acinetobacter spp. Our case presents a potential option for empiric therapy against this pathogen, at least in the local area. This is crucial to minimize the severity and mortality rates associated with meningitis. Standardized antibiotic susceptibility testing and breakpoints for the Ralstonia genus should be established in the future as cases accumulate. Cefepime and levofloxacin may be potential antibiotics for infections caused by R. indiosa.


Assuntos
Levofloxacino , Meningite , Humanos , Cefepima , Ralstonia , Antibacterianos/uso terapêutico
9.
BMC Pulm Med ; 23(1): 20, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36647091

RESUMO

BACKGROUND: Spherical pneumonia is an extremely rare condition that is difficult to diagnose. It is a specific type of lung infection that often manifests as a round or round-like mass on chest imaging. Spherical pneumonia is easily misdiagnosed as a pulmonary tumor; therefore, awareness of this disease must be strengthened. CASE PRESENTATION: The patient was a 29-year-old female who had persistent cough and sputum for approximately 1 month and fever for 5 days. Chest computed tomography (CT) at our hospital revealed a mass in the lower lobe of the right lung near the hilar region, with obstructive pulmonary atelectasis and obstructive pneumonia. Although lung cancer was suspected, Ralstonia mannitolilytica was detected by metagenomic next-generation sequencing (mNGS) of bronchoalveolar lavage fluid, and no cancer cells or Mycobacterium tuberculosis were detected. Finally, the patient was diagnosed with spherical pneumonia caused by R. mannitolilytica. Anti-infective treatment, symptomatic treatment, and administration of a traditional Chinese medicine decoction were performed based on the syndrome differentiation. After 10 days of treatment, chest CT revealed few lesions in the lower lobe of the right lung, which were significantly reduced compared with those in the past. CONCLUSIONS: Spherical pneumonia caused by R. mannitolilytica has not yet been reported and differential diagnosis is key in clinical diagnosis. When spherical pneumonia is difficult to diagnose, mNGS may be a better alternative.


Assuntos
Neoplasias Pulmonares , Pneumonia , Atelectasia Pulmonar , Feminino , Humanos , Adulto , Pneumonia/diagnóstico , Pneumonia/tratamento farmacológico , Pulmão/diagnóstico por imagem , Ralstonia , Líquido da Lavagem Broncoalveolar , Sequenciamento de Nucleotídeos em Larga Escala
10.
Plant Dis ; 107(8): 2320-2324, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36647186

RESUMO

Ralstonia pseudosolanacearum, a European Union quarantine organism, was until recently absent in the aquatic environments and outdoor cultivation systems of the region. This bacterium was only sporadically reported in restricted greenhouse cultivation systems in some EU countries. In this paper, we report the first findings of R. pseudosolanacearum (phylotype I) in surface water in two distinct geographic locations in the Netherlands in 2020. In 2021, the population of R. pseudosolanacearum in surface water ranged from 104 to 106 CFU/liter. An inoculum reservoir for R. pseudosolanacearum in these aquatic environments was the wild bittersweet plant where population densities ranged from 105 to 107 CFU/ml concentrated bittersweet extract. The virulence of the R. pseudosolanacearum isolates from surface water and bittersweet was confirmed by a pathogenicity test on Solanum lycopersicum cv. Moneymaker plants, resulting in wilting and necrosis of the plants. Sequence analysis of the egl locus of R. pseudosolanacearum isolates from surface water and bittersweet revealed that these isolates are closely related to R. pseudosolanacearum (phylotype I) isolates found previously in the Netherlands on rose. R. pseudosolanacearum (phylotype I) has a very broad host plant range, including potato, many ornamentals, and other economically important crops. This highlights the risk for various host plants grown in the vicinity of the geographic locations where R. pseudosolanacearum has been found and shows the importance of unraveling the epidemiological parameters of the survival, establishment, and spread of R. pseudosolanacearum in temperate climates.


Assuntos
Ralstonia solanacearum , Solanum lycopersicum , Países Baixos , Ralstonia
11.
Plant Dis ; 107(12): 3718-3726, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37467134

RESUMO

Potato (Solanum tuberosum L.) ranks fourth among the most important staple food in the world. Ralstonia solanacearum (phylotype [phy] IIB, sequevar [seq] 1 and 2), also known as R3B2, the causal agent of brown rot disease on potato, is extremely damaging, causing great economical losses to potato in temperate regions. It is thought that members of Ralstonia pseudosolanacearum (phy I) are not pathogenic at low temperatures and are usually found in warmer climates. R. pseudosolanacearum strain PD 7123 (seq 33) isolated from roses in the Netherlands, strain P824 (seq 13) isolated from blueberry, and strain P781 (seq 14) from mandevilla in Florida are phylogenetically closely related and could share the same host. The virulence and ability of these novel strains to multiply latently in potato in temperate regions is unknown. The objective of this work was to assess the virulence and presence of latent infections of the mentioned R. pseudosolanacearum strains on three commercial seed potato cultivars under warmer (28°C) and temperate (20°C) temperatures. At 28°C, all three R. pseudosolanacearum strains caused severe symptoms on all potato cultivars. Overall disease severity on potato was lower at 20°C than 28°C, but major differences in virulence of the three strains were observed at 42 days postinoculation (dpi) among potato cultivars. All asymptomatic potato plants and most of their daughter tubers had latent infections at 20°C. Altogether, these results show that the phy I strains from rose, blueberry, and mandevilla may pose a threat to potato production in temperate climates and the worldwide movement of seed potatoes.[Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Doenças das Plantas , Ralstonia , Solanum tuberosum , Mirtilos Azuis (Planta)/microbiologia , Rosa/microbiologia , Solanum tuberosum/microbiologia , Virulência , Doenças das Plantas/microbiologia , Ralstonia/patogenicidade
12.
Mol Genet Genomics ; 297(5): 1371-1388, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35879566

RESUMO

Ralstonia pseudosolanacearum causes bacterial wilt in ginger, reducing ginger production worldwide. We sequenced the whole genome of a highly virulent phylotype I, race 4, biovar 3 Ralstonia pseudosolanacearum strain GRsMep isolated from a severely infected ginger field in India. R. pseudosolanacearum GRsMep genome is organised into two replicons: chromosome and megaplasmid with a total genome size of 5,810,605 bp. This strain encodes approximately 72 effectors which include a combination of core effectors as well as highly variable, diverse repertoire of type III effectors. Comparative genome analysis with GMI1000 identified conservation in the genes involved in the general virulence mechanism. Our analysis identified type III effectors, RipBJ and RipBO as present in GRsMep but absent in the reported genomes of other strains infecting Zingiberaceae family. GRsMep contains 126 unique genes when compared to the pangenome of the Ralstonia strains that infect the Zingiberaceae family. The whole-genome data of R. pseudosolanacearum strain will serve as a resource for exploring the evolutionary processes that structure and regulate the virulence determinants of the strain. Pathogenicity testing of the transposon insertional mutant library of GRsMep through virulence assay on ginger plants identified a few candidate virulence determinants specific to bacterial wilt in ginger.


Assuntos
Ralstonia solanacearum , Zingiber officinale , Filogenia , Doenças das Plantas , Ralstonia , Fatores de Virulência
13.
Nat Chem Biol ; 16(1): 87-94, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31768035

RESUMO

Biological production of chemicals often requires the use of cellular cofactors, such as nicotinamide adenine dinucleotide phosphate (NADP+). These cofactors are expensive to use in vitro and difficult to control in vivo. We demonstrate the development of a noncanonical redox cofactor system based on nicotinamide mononucleotide (NMN+). The key enzyme in the system is a computationally designed glucose dehydrogenase with a 107-fold cofactor specificity switch toward NMN+ over NADP+ based on apparent enzymatic activity. We demonstrate that this system can be used to support diverse redox chemistries in vitro with high total turnover number (~39,000), to channel reducing power in Escherichia coli whole cells specifically from glucose to a pharmaceutical intermediate, levodione, and to sustain the high metabolic flux required for the central carbon metabolism to support growth. Overall, this work demonstrates efficient use of a noncanonical cofactor in biocatalysis and metabolic pathway design.


Assuntos
NADP/química , Mononucleotídeo de Nicotinamida/química , Oxirredução , Biocatálise , Carbono/química , Cromatografia Gasosa , Cicloexanonas/química , Escherichia coli/metabolismo , Cinética , NAD/química , Mononucleotídeo de Nicotinamida/genética , Conformação Proteica , Engenharia de Proteínas , Pseudomonas putida/metabolismo , Ralstonia/metabolismo , Software
14.
Int J Syst Evol Microbiol ; 72(12)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36748420

RESUMO

A Gram-negative, aerobic, motile with paired polar flagella and rod-shaped bacterium strain (56D2T) was isolated from tobacco planting soil in Yunnan, PR China. Major fatty acids were C16  :  1 ω7c (summed feature 3), C16  :  0 and C18  :  1 ω7c (summed feature 8). The polar lipid profile of strain 56D2T consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, one unidentified aminophospholipid and one unidentified glycolipid. Moreover, strain 56D2T contained ubiquinone Q-8 as the sole respiratory quinone. 16S rRNA gene sequence analysis showed that strain 56D2T was closely related to members of the genus Ralstonia and the two type strains with the highest sequence identities were R. mannitolilytica LMG 6866T (98.36 %) and R. pickettii K-288T (98.22 %). The 16S rRNA gene sequence identities between strain 56D2T and other members of the genus Ralstonia were below 98.00 %. Genome sequencing revealed a genome size of 5.87 Mb and a G+C content of 63.7 mol%. The average nucleotide identity values between strain 56D2T and R. pickettii K-288T, R. mannitolilytica LMG 6866 T and R. insidiosa CCUG 46789T were less than 95 %, and the in silico DNA-DNA hybridization values (yielded by formula 2) were less than 70 %. Based on these data, we conclude that strain 56D2T represents a novel species of the genus Ralstonia, for which the name Ralstonia wenshanensis sp. nov. is proposed. The type strain of Ralstonia wenshanensis sp. nov. is 56D2T (=CCTCC AB 2021466T=GDMCC 1.2886T=JCM 35178T).


Assuntos
Ácidos Graxos , Fosfolipídeos , Ácidos Graxos/química , Nicotiana , Ralstonia/genética , RNA Ribossômico 16S/genética , China , Análise de Sequência de DNA , Composição de Bases , Filogenia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Bactérias/genética
15.
Microb Ecol ; 84(2): 527-538, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34557947

RESUMO

Filamentous bacteriophages contain a single-stranded DNA genome and have a peculiar lifestyle, since they do not cause host cell lysis, but establish a persistent association with the host, often causing behavioral changes, with effects on bacterial ecology. Over the years, a gradual reduction in the incidence of bacterial wilt has been observed in some fields from Brazil. This event, which has been associated with the loss of pathogenicity of Rasltonia spp. isolates due to infection by filamentous viruses of the inovirus group, is widely reported for Ralstonia spp. Asian isolates infected by inoviruses. In an attempt to elucidate which factors are associated with the phenomenon reported in Brazil, we investigated one isolate of R. solanacearum (UB-2014), with unusual characteristics for R. solanacearum, obtained from eggplant with mild wilt symptoms. To verify if the presence of filamentous bacteriophage was related to this phenotype, we performed viral purification and nucleic acid extraction. The phage genome was sequenced, and phylogenetic analyses demonstrated that the virus belongs to the family Inoviridae and was named as Ralstonia solanacerarum inovirus Brazil 1 (RSIBR1). RSIBR1 was transmitted to R. pseudosolanacearum GMI1000, and the virus-infected GMI1000 (GMI1000 VI) isolate showed alterations in phenotypic characteristics, as well as loss of pathogenicity, similarly to that observed in R. solanacearum isolate UB-2014. The presence of virus-infected UB-2014 and GMI1000 VI plants without symptoms, after 3 months, confirms that the infected isolates can colonize the plant without causing disease, which demonstrates that the phage infection changed the behavior of these pathogens.


Assuntos
Bacteriófagos , Inovirus , Ralstonia solanacearum , Brasil , Genômica , Inovirus/genética , Filogenia , Doenças das Plantas/microbiologia , Ralstonia/genética , Ralstonia solanacearum/genética , Virulência/genética
16.
Phytopathology ; 112(4): 803-810, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34636648

RESUMO

The bacterium Ralstonia syzygii subsp. celebesensis causes Blood disease of banana, a vascular wilt of economic significance in Indonesia and Malaysia. Blood disease has expanded its geographic range in the last 20 years and is an emerging threat to Southeast Asian banana production. Many aspects of the disease cycle and biology are not well understood, including the ability of different parts of the female and male inflorescence of banana to act as infection courts. This study confirms that the banana varieties of Cavendish, and Kepok 'Kuning' are susceptible to Blood disease and that an inoculum concentration of 102 CFU/ml of R. syzygii subsp. celebesensis is adequate to initiate disease after pseudostem inoculation. Data show that infection occurs through both the male and female parts of a banana inflorescence and the rachis when snapped to remove the male bell. The infection courts are the female flowers, the male bell bract scar, the male bell flower cushion, the snapped rachis, and deflowered fingers. The location of these infection courts concurs with the dye studies demonstrating that dye externally applied to these plants parts enters the plant vascular system. Thus, the hypothesis is supported that infection of R. syzygii subsp. celebesensis occurs through open xylem vessels of the male and female parts of the banana inflorescence.


Assuntos
Doenças Hematológicas , Musa , Inflorescência , Musa/microbiologia , Doenças das Plantas/microbiologia , Ralstonia
17.
Phytopathology ; 112(10): 2072-2083, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35522048

RESUMO

Bacterial wilt, caused by the Ralstonia solanacearum species complex (RSSC), is the most destructive potato disease in Kenya. Studies were conducted to (i) determine the molecular diversity of RSSC strains associated with bacterial wilt of potato in Kenya, (ii) generate an RSSC distribution map for epidemiological inference, and (iii) determine whether phylotype II sequevar 1 strains exhibit epidemic clonality. Surveys were conducted in 2018 and 2019, in which tubers from wilting potato plants and stem samples of potential alternative hosts were collected for pathogen isolation. The pathogen was phylotyped by multiplex PCR and 536 RSSC strains typed at a sequevar level. Two RSSC phylotypes were identified, phylotype II (98.4%, n = 506 [sequevar 1 (n = 505) and sequevar 2 (n = 1)]) and phylotype I (1.6%, n = 30 [sequevar 13 (n = 9) and a new sequevar (n = 21)]). The phylotype II sequevar 1 strains were haplotyped using multilocus tandem repeat sequence typing (TRST) schemes. The TRST scheme identified 51 TRST profiles within the phylotype II sequevar 1 strains with a modest diversity index (HGDI = 0.87), confirming the epidemic clonality of RSSC phylotype II sequevar 1 strains in Kenya. A minimum spanning tree and mapping of the TRST profiles revealed that TRST27 '8-5-12-7-5' is the primary founder of the clonal complex of RSSC phylotype II sequevar 1 and is widely distributed via latently infected seed tubers. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ralstonia solanacearum , Solanum tuberosum , Quênia/epidemiologia , Filogenia , Doenças das Plantas/microbiologia , Ralstonia , Ralstonia solanacearum/genética , Solanum tuberosum/microbiologia
18.
J Infect Chemother ; 28(10): 1387-1392, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35760221

RESUMO

INTRODUCTION: Ralstonia insidiosa, a gram-negative waterborne bacteria able to survive and grow in any type of water source, can cause nosocomial infections, and are considered emerging pathogens of infectious diseases in hospital settings. In this study, we report an outbreak of R. insidiosa at our center related to contaminated heparinized syringes. MATERIAL AND METHODS: The present study was conducted in a tertiary care university hospital in Turkey. An outbreak analysis was performed between September 2021 and December 2021. Microbiological samples were obtained from environmental sources and from patient blood cultures. Species identification was performed using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). To investigate the clonality of strains, all confirmed isolates were sent to the National Reference Laboratory and pulsed-field gel electrophoresis (PFGE) was used to perform molecular typing. RESULTS: Seventeen R. insidiosa isolates were identified from the blood cultures of 13 patients from various wards and intensive care units. Isolates from seven patient blood cultures and two heparinized blood gas syringes were characterized by PFGE. All isolates were found to belong to the same clone of R. insidiosa. CONCLUSION: R. insidiosa was identified as the cause of a nosocomial infection outbreak in our hospital, which was then rapidly controlled by the infection-control team. When rare waterborne microorganisms grow in blood or other body fluid cultures, clinicians and the infection-control team should be made aware of a possible outbreak.


Assuntos
Infecção Hospitalar , Sepse , Infecção Hospitalar/microbiologia , Surtos de Doenças , Humanos , Ralstonia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Seringas
19.
Plant Dis ; 106(8): 2155-2164, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35077223

RESUMO

Banana Blood disease is a bacterial wilt caused by Ralstonia syzygii subsp. celebesensis and is an economically important disease in Indonesia and Malaysia. Transmission of this pathogen is hypothesized to occur through insects mechanically transferring bacteria from diseased to healthy banana inflorescences and other pathways involving pruning tools, water movement, and root-to-root contact. This study demonstrates that the ooze from the infected male bell and the sap from various symptomatic plant parts are infective, and the cut surfaces of a bunch peduncle, petiole, corm, pseudostem, and the rachis act as infection courts for R. syzygii subsp. celebesensis. In addition, evidence is provided that R. syzygii subsp. celebesensis is highly tool transmissible, that the bacterium can be transferred from the roots of a diseased plant to the roots of a healthy plant and transferred from the mother plant to the sucker. We provide evidence that local dispersal of Blood disease occurs predominantly through mechanical transmission by insects, birds, bats, or human activities from diseased to healthy banana plants and that long-distance dispersal occurs through the movement of contaminated planting material. Disease management strategies to prevent crop losses associated with this emerging disease are discussed based on our findings.


Assuntos
Doenças Hematológicas , Musa , Bactérias , Humanos , Musa/microbiologia , Doenças das Plantas/microbiologia , Ralstonia
20.
Plant J ; 103(4): 1433-1445, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32391580

RESUMO

The Ptr1 (Pseudomonas tomato race 1) locus in Solanum lycopersicoides confers resistance to strains of Pseudomonas syringae pv. tomato expressing AvrRpt2 and Ralstonia pseudosolanacearum expressing RipBN. Here we describe the identification and phylogenetic analysis of the Ptr1 gene. A single recombinant among 585 F2 plants segregating for the Ptr1 locus was discovered that narrowed the Ptr1 candidates to eight nucleotide-binding leucine-rich repeat protein (NLR)-encoding genes. From analysis of the gene models in the S. lycopersicoides genome sequence and RNA-Seq data, two of the eight genes emerged as the strongest candidates for Ptr1. One of these two candidates was found to encode Ptr1 based on its ability to mediate recognition of AvrRpt2 and RipBN when it was transiently expressed with these effectors in leaves of Nicotiana glutinosa. The ortholog of Ptr1 in tomato and in Solanum pennellii is a pseudogene. However, a functional Ptr1 ortholog exists in Nicotiana benthamiana and potato, and both mediate recognition of AvrRpt2 and RipBN. In apple and Arabidopsis, recognition of AvrRpt2 is mediated by the Mr5 and RPS2 proteins, respectively. Phylogenetic analysis places Ptr1 in a distinct clade compared with Mr5 and RPS2, and it therefore appears to have arisen by convergent evolution for recognition of AvrRpt2.


Assuntos
Proteínas de Bactérias/metabolismo , Resistência à Doença/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/genética , Solanaceae/genética , Solanum/genética , Evolução Molecular , Solanum lycopersicum/genética , Proteínas de Membrana Transportadoras/fisiologia , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/fisiologia , Pseudogenes/genética , Pseudogenes/fisiologia , Ralstonia/genética , Solanaceae/fisiologia , Solanum tuberosum/genética , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA