Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.013
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 327(2): H364-H369, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38847757

RESUMO

The transcriptional regulator nuclear factor-κB (NF-κB) is a mediator of endothelial dysfunction. Inhibiting NF-κB with salsalate is used to investigate inflammatory mechanisms contributing to accelerated cardiovascular disease risk. However, in the absence of disease, inhibition of NF-κB can impact redox mechanisms, resulting in paradoxically decreased endothelial function. This study aimed to measure microvascular endothelial function during inhibition of the transcriptional regulator NF-κB in reproductive-aged healthy women. In a randomized, single-blind, crossover, placebo-controlled design, nine healthy women were randomly assigned oral salsalate (1,500 mg, twice daily) or placebo treatments for 5 days. Subjects underwent graded perfusion with the endothelium-dependent agonist acetylcholine (ACh, 10-10 to 10-1 M, 33°C) alone and in combination with 15 mM NG-nitro-l-arginine methyl ester [l-NAME; nonselective nitric oxide (NO) synthase inhibitor] through intradermal microdialysis. Laser-Doppler flux was measured over each microdialysis site, and cutaneous vascular conductance (CVC) was calculated as flux divided by mean arterial pressure and normalized to site-specific maximum (CVC%max; 28 mM sodium nitroprusside + 43°C). The l-NAME sensitive component was calculated as the difference between the areas under the dose-response curves. During the placebo and salsalate treatments, the l-NAME sites were reduced compared with the control sites (both P < 0.0001). Across treatments, there was a significant difference between the control and l-NAME sites, where both sites shifted upward following salsalate treatment (both P < 0.0001), whereas the l-NAME-sensitive component was not different (P = 0.94). These data demonstrate that inhibition of the transcriptional regulator NF-κB improves cutaneous microvascular function in reproductive-aged healthy women through non-NO-dependent mechanisms.NEW & NOTEWORTHY The transcription factor nuclear factor-κB (NF-κB) regulates multiple aspects of innate and adaptive immunity by encoding for genes that participate in inflammation and impact endothelial function following NF-κB inhibition with salsalate treatment. Our results show that cutaneous microvascular function is increased through non-nitric oxide (NO)-dependent mechanisms following salsalate treatment in reproductive-aged healthy women.


Assuntos
Estudos Cross-Over , Microcirculação , NF-kappa B , Óxido Nítrico , Pele , Humanos , Feminino , Adulto , Pele/irrigação sanguínea , Pele/efeitos dos fármacos , Pele/metabolismo , NF-kappa B/metabolismo , Método Simples-Cego , Microcirculação/efeitos dos fármacos , Óxido Nítrico/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Vasodilatação/efeitos dos fármacos , Adulto Jovem , Acetilcolina/farmacologia , Voluntários Saudáveis , Vasodilatadores/farmacologia , Inibidores Enzimáticos/farmacologia , Salicilatos/farmacologia , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Fluxo Sanguíneo Regional/efeitos dos fármacos
2.
J Chem Ecol ; 50(5-6): 262-275, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38647585

RESUMO

The production of herbivore-induced plant volatiles (HIPVs) is a type of indirect defense used by plants to attract natural enemies and reduce herbivory by insect pests. In many crops little is known about genotypic variation in HIPV production or how this may affect natural enemy attraction. In this study, we identified and quantified HIPVs produced by 10 sorghum (Sorghum bicolor) cultivars infested with a prominent aphid pest, the sorghum aphid (Melanaphis sorghi Theobald). Volatiles were collected using dynamic headspace sampling techniques and identified and quantified using GC-MS. The total amounts of volatiles induced by the aphids did not differ among the 10 cultivars, but overall blends of volatiles differed significantly in composition. Most notably, aphid herbivory induced higher levels of methyl salicylate (MeSA) emission in two cultivars, whereas in four cultivars, the volatile emissions did not change in response to aphid infestation. Dual-choice olfactometer assays were used to determine preference of the aphid parasitoid, Aphelinus nigritus, and predator, Chrysoperla rufilabris, between plants of the same cultivar that were un-infested or infested with aphids. Two aphid-infested cultivars were preferred by natural enemies, while four other cultivars were more attractive to natural enemies when they were free of aphids. The remaining four cultivars elicited no response from parasitoids. Our work suggests that genetic variation in HIPV emissions greatly affects parasitoid and predator attraction to aphid-infested sorghum and that screening crop cultivars for specific predator and parasitoid attractants has the potential to improve the efficacy of biological control.


Assuntos
Afídeos , Herbivoria , Sorghum , Compostos Orgânicos Voláteis , Afídeos/fisiologia , Animais , Sorghum/metabolismo , Sorghum/química , Sorghum/parasitologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Cromatografia Gasosa-Espectrometria de Massas , Salicilatos/metabolismo , Salicilatos/farmacologia , Vespas/fisiologia
3.
Int J Mol Sci ; 25(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38791472

RESUMO

Yellow pitahaya is a tropical fruit that has gained popularity in recent years. Natural elicitors are compounds that can stimulate the resistance and quality of fruits. The objective of this study was to evaluate the effects of natural elicitors, methyl salicylate (MeSa), methyl jasmonate (JaMe), salicylic acid (SA) and oxalic acid (OA) at concentrations of 0.1 mM (MeSa and JaMe) and 5 mM (SA and OA), applied to the yellow pitahaya fruits under greenhouse conditions. After full blossom, four applications were made with a frequency of 15 days. At the time of harvest and after storage, the following variables were evaluated: firmness (whole fruit), total soluble solids (TSS), total acidity (TA), phenolics and carotenoids (in the pulp), while phenolics, carotenoids, macronutrients and micronutrients were determined in the peel. The results showed MeSa advanced the fruit maturation, according to higher TSS, lower TA and firmness than MeJa-treated fruits, for which a delayed ripening process was shown. All treatments induced a higher polyphenolic concentration during storage. Regarding the alternative use of the peel as a by-product, the application of natural elicitors significantly increased the content of polyphenols, carotenoids, macronutrients and micronutrients in the peel, especially MeSa, which can be used as a bioactive compound in the food industry. In conclusion, the results indicate that natural elicitors can be an alternative to improve the quality and shelf life of yellow pitahaya fruits.


Assuntos
Acetatos , Cactaceae , Carotenoides , Ciclopentanos , Armazenamento de Alimentos , Frutas , Oxilipinas , Ácido Salicílico , Frutas/química , Frutas/efeitos dos fármacos , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Acetatos/farmacologia , Carotenoides/metabolismo , Armazenamento de Alimentos/métodos , Cactaceae/química , Cactaceae/crescimento & desenvolvimento , Cactaceae/metabolismo , Ácido Salicílico/farmacologia , Salicilatos/farmacologia , Salicilatos/metabolismo , Fenóis/análise , Ácido Oxálico/metabolismo
4.
Blood ; 137(4): 513-523, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33507295

RESUMO

Chromosome region maintenance protein 1 (CRM1) mediates protein export from the nucleus and is a new target for anticancer therapeutics. Broader application of KPT-330 (selinexor), a first-in-class CRM1 inhibitor recently approved for relapsed multiple myeloma and diffuse large B-cell lymphoma, have been limited by substantial toxicity. We discovered that salicylates markedly enhance the antitumor activity of CRM1 inhibitors by extending the mechanisms of action beyond CRM1 inhibition. Using salicylates in combination enables targeting of a range of blood cancers with a much lower dose of selinexor, thereby potentially mitigating prohibitive clinical adverse effects. Choline salicylate (CS) with low-dose KPT-330 (K+CS) had potent, broad activity across high-risk hematological malignancies and solid-organ cancers ex vivo and in vivo. The K+CS combination was not toxic to nonmalignant cells as compared with malignant cells and was safe without inducing toxicity to normal organs in mice. Mechanistically, compared with KPT-330 alone, K+CS suppresses the expression of CRM1, Rad51, and thymidylate synthase proteins, leading to more efficient inhibition of CRM1-mediated nuclear export, impairment of DNA-damage repair, reduced pyrimidine synthesis, cell-cycle arrest in S-phase, and cell apoptosis. Moreover, the addition of poly (ADP-ribose) polymerase inhibitors further potentiates the K+CS antitumor effect. K+CS represents a new class of therapy for multiple types of blood cancers and will stimulate future investigations to exploit DNA-damage repair and nucleocytoplasmic transport for cancer therapy in general.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Colina/análogos & derivados , Reparo do DNA/efeitos dos fármacos , Hidrazinas/farmacologia , Carioferinas/antagonistas & inibidores , Linfoma não Hodgkin/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Salicilatos/farmacologia , Triazóis/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Colina/administração & dosagem , Colina/efeitos adversos , Colina/farmacologia , Replicação do DNA/efeitos dos fármacos , DNA de Neoplasias/efeitos dos fármacos , Combinação de Medicamentos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Hidrazinas/administração & dosagem , Hidrazinas/efeitos adversos , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/patologia , Linfoma não Hodgkin/genética , Linfoma não Hodgkin/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Ftalazinas/administração & dosagem , Ftalazinas/farmacologia , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Distribuição Aleatória , Salicilatos/administração & dosagem , Salicilatos/efeitos adversos , Triazóis/administração & dosagem , Triazóis/efeitos adversos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Exportina 1
5.
Physiol Plant ; 175(6): e14070, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148221

RESUMO

We assumed that miRNAs might regulate the physiological and biochemical processes in plants through their effects on the redox system and phytohormones. To check this hypothesis, the transcriptome profile of wild-type Arabidopsis and lines with decreased ascorbate (Asc), glutathione (GSH), or salicylate (Sal) levels were compared. GSH deficiency did not influence the miRNA expression, whereas lower levels of Asc and Sal reduced the accumulation of 9 and 44 miRNAs, respectively, but only four miRNAs were upregulated. Bioinformatics analysis revealed that their over-represented target genes are associated with the synthesis of nitrogen-containing and aromatic compounds, nucleic acids, and sulphate assimilation. Among them, the sulphate reduction-related miR395 - ATP-sulfurylase couple was selected to check the assumed modulating role of the light spectrum. A greater induction of the Asc- and Sal-responsive miR395 was observed under sulphur starvation in far-red light compared to white and blue light in wild-type and GSH-deficient Arabidopsis lines. Sal deficiency inhibited the induction of miR395 by sulphur starvation in blue light, whereas Asc deficiency greatly reduced it independently of the spectrum. Interestingly, sulphur starvation decreased only the level of ATP sulfurylase 4 among the miR395 target genes in far-red light. The expression level of ATP sulfurylase 3 was higher in far-red light than in blue light in wild-type and Asc-deficient lines. The results indicate the coordinated control of miRNAs by the redox and hormonal system since 11 miRNAs were affected by both Asc and Sal deficiency. This process can be modulated by light spectrum, as shown for miR395.


Assuntos
Arabidopsis , MicroRNAs , Arabidopsis/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Sulfato Adenililtransferase/genética , Sulfato Adenililtransferase/metabolismo , Sulfato Adenililtransferase/farmacologia , Salicilatos/metabolismo , Salicilatos/farmacologia , Sulfatos/metabolismo , Sulfatos/farmacologia , Enxofre/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Bioorg Med Chem ; 92: 117417, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37531922

RESUMO

Salirasib, or farnesylthiosalicylic acid (FTS), is a salicylic acid derivative with demonstrated antineoplastic activity. While designed as a competitor of the substrate S-farnesyl cysteine on Ras, it is a potent competitive inhibitor of isoprenylcysteine carboxymethyl transferase. In this study, the antiproliferative activity on six different solid tumor cell lines was evaluated with a series of lipophilic thioether modified salirasib analogues, including those with or without a 1,2,3-triazole linker. A combination of bioassay, cheminformatics, docking, and in silico ADME-Tox was also performed. SAR analysis that analogues with three or more isoprene units or a long aliphatic chain exhibited the most potent activity. Furthermore, three compounds display superior antiproliferative activity than salirasib and similar potency compared to control anticancer drugs across all tested solid tumor cell lines. In addition, the behavior of the collection on migration and invasion, a key process in tumor metastasis, was also studied. Three analogues with specific antimigratory activity were identified with differential structural features being interesting starting points on the development of new antimetastatic agents. The antiproliferative and antimigratory effects observed suggest that modifying the thiol aliphatic/prenyl substituents can modulate the activity.


Assuntos
Antineoplásicos , Antineoplásicos/farmacologia , Salicilatos/farmacologia , Farneseno Álcool/farmacologia , Linhagem Celular Tumoral , Proliferação de Células
7.
Exp Parasitol ; 246: 108456, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36610471

RESUMO

Echinococcosis is a zoonotic disease caused by larval stages of the Echinococcus genus (metastasis). In this study, salicylate-coated Zinc oxide nanoparticles (SA-ZnO-NPs) were fabricated and characterized by SEM, FTIR and XRD analytical techniques. After that, different doses of SA-ZnO-NPs, SA and ZnO-NPs were taken to assess scolicidal potency. Scanning electron microscopy (SEM) micrographs were also used to evaluate the morphological deformities of treated protoscoleces. Furthermore, Caspase-3&7 inductions were examined in protoscoleces cysts treated with all formulations. Based on SEM and DLS analyses, the size of SA-ZnO-NPs was between 30 and 40 nm, with a spherical shape. The FTIR spectrum verified the presence of SA functional groups on the ZnO coating. At 20 min, SA-ZnO-NPs at 2000 µg/ml exhibited the greatest activity on protoscolices with 100% mortality, followed by ZnO-NPs at 1500 µg/ml at 10 min and SA alone at 2000 µg/ml at 30 min. The activation of Caspase-3&7 apoptotic enzyme was determined for 2000 µg/ml of SA-ZnO-NPs, ZnO-NPs and SA to be 16.4, 31.4, and 35.7%, respectively. The SEM image revealed apoptogenic alterations and the induction of tegument surface wrinkles, as well as abnormalities in rostellum protoscolices. According to the current study, SA-ZnO-NPs have a high mortality rate against hydatid cyst protoscolices. As a result, further studies on the qualitative assessment of these nanoformulations in vivo and preclinical animal trials seem to be required. Furthermore, the adoption of nano-drugs potentially offers alternative therapeutic approaches to combat hydatid cysts.


Assuntos
Equinococose , Echinococcus granulosus , Echinococcus , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Animais , Caspase 3 , Zinco , Óxido de Zinco/farmacologia , Nanopartículas Metálicas/uso terapêutico , Salicilatos/farmacologia , Salicilatos/uso terapêutico , Equinococose/tratamento farmacológico
8.
Environ Toxicol ; 38(6): 1384-1394, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36891644

RESUMO

In the present study, we investigated the antitumor effect and associated molecular mechanisms of the copper (II) complex of salicylate phenanthroline [Cu(sal)(phen)] against hepatocellular carcinoma (HCC). Cu(sal)(phen) inhibited the proliferation of HCC cells (HepG2 and HCC-LM9) and induced apoptosis of HCC cells in a dose-dependent manner by upregulating mitochondrial reactive oxygen species (ROS) production. The expression of the antiapoptotic proteins survivin and Bcl-2 was decreased, while the expression of the DNA damage marker γ-H2 AX and the apoptotic marker cleaved PARP was upregulated with Cu(sal)(phen) treatment. In vivo, the growth of HepG2 subcutaneous xenograft tumors was greatly attenuated by Cu(sal)(phen) treatment. Immunohistochemistry staining showed that the expression of survivin, Bcl-2, and Ki67 in the tumor was downregulated by Cu(sal)(phen). Toxicity experiments with BALB/c mice revealed that Cu(sal)(phen) is a relatively safe drug. Our results indicate that Cu(sal)(phen) possesses great potential as a therapeutic drug for HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Carcinoma Hepatocelular/patologia , Survivina/farmacologia , Survivina/uso terapêutico , Cobre/toxicidade , Cobre/química , Fenantrolinas/farmacologia , Fenantrolinas/química , Fenantrolinas/uso terapêutico , Neoplasias Hepáticas/patologia , Salicilatos/farmacologia , Salicilatos/química , Salicilatos/uso terapêutico , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Proliferação de Células , Linhagem Celular Tumoral , Antineoplásicos/uso terapêutico , Células Hep G2
9.
Am J Physiol Heart Circ Physiol ; 322(5): H880-H889, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363580

RESUMO

Reactive oxygen species (ROS)-mediated reductions in nitric oxide (NO)-dependent dilation are evident in adults with major depressive disorder (MDD); however, the upstream mechanisms remain unclear. Here, we hypothesized that nuclear factor-κB (NF-κB) activation-induced ROS production contributes to microvascular endothelial dysfunction in MDD. Thirteen treatment-naive adults with MDD (6 women; 19-23 yr) and 10 healthy nondepressed adults (HAs; 5 women; 20-25 yr) were tested before and after (open-label design) systemic NF-κB knockdown (nonacetylated salicylate; 3,000-4,500 mg/day × 4 days). Red cell flux (laser Doppler flowmetry) was measured during graded intradermal microdialysis perfusion of the endothelium-dependent agonist acetylcholine (ACh), alone and in combination with NO synthase inhibition [NG-nitro-l-arginine methyl ester (l-NAME)] or ROS scavenging (apocynin). Serum salicylate concentrations following treatment were not different between groups (22.8 ± 7.4 HAs vs. 20.8 ± 4.3 mg/dL MDD; P = 0.46). When compared with HAs, the NO-dependent component of ACh-induced dilation was blunted in adults with MDD before (P = 0.023), but not after (P = 0.27), salsalate treatment. In adults with MDD, the magnitude of improvement in endothelium-dependent dilation following salsalate treatment was inversely related to the degree of functional impairment at baseline (R2 = 0.43; P = 0.025). Localized ROS scavenging improved NO-dependent dilation before (P < 0.01), but not after (P > 0.05), salsalate treatment. Salsalate did not alter systemic concentrations of pro- or anti-inflammatory cytokines (all P > 0.05). These data suggest that NF-κB activation, via increased vascular ROS production, contributes to blunted NO-dependent dilation in young adults with MDD but otherwise free of clinical disease. These data provide the first direct evidence for a mechanistic role of vascular inflammation-associated endothelial dysfunction in human depression.NEW & NOTEWORTHY Our data indicate that short-term treatment with therapeutic doses of the nuclear factor-κB (NF-κB) inhibitor salsalate improved nitric oxide (NO)-mediated endothelium-dependent dilation in adults with major depressive disorder (MDD). In adults with MDD, acute localized scavenging of reactive oxygen species (ROS) with apocynin improved NO-dependent dilation before, but not after, salsalate administration. These data suggest that activation of NF-κB, in part via stimulation of vascular ROS production, contributes to blunted NO-mediated endothelium-dependent dilation in young adults with MDD.


Assuntos
Transtorno Depressivo Maior , Acetilcolina/farmacologia , Transtorno Depressivo Maior/tratamento farmacológico , Dilatação , Endotélio Vascular , Feminino , Humanos , Masculino , NF-kappa B , Óxido Nítrico , Espécies Reativas de Oxigênio , Salicilatos/farmacologia , Salicilatos/uso terapêutico , Vasodilatação , Adulto Jovem
10.
Chembiochem ; 23(24): e202200532, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36281941

RESUMO

We report the synthesis, characterisation, and anti-osteosarcoma properties of a gallium(III) complex (1) comprising of two 1,10-phenanthroline ligands and salicylate, a non-steroidal anti-inflammatory drug. The gallium(III) complex 1 displays micromolar potency towards bulk osteosarcoma cells and osteosarcoma stem cells (OSCs). Notably, the gallium(III) complex 1 exhibits significantly higher toxicity towards OSCs grown in monolayer and three-dimensional cultures than cisplatin, a frontline anti-osteosarcoma drug. Nuclei isolation and immunoblotting studies show that the gallium(III) complex 1 enters osteosarcoma cell nuclei and induces DNA damage. Flow cytometry and cytotoxicity studies (in the presence of prostaglandin E2) indicate that the gallium(III) complex 1 downregulates cyclooxygenase-2 (COX-2) expression and kills osteosarcoma cells in a COX-2-dependent manner. Further, the mode of osteosarcoma cell death evoked by the gallium(III) complex 1 is characterised as caspase-dependent apoptosis.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Gálio , Osteossarcoma , Humanos , Fenantrolinas/farmacologia , Gálio/farmacologia , Gálio/uso terapêutico , Salicilatos/farmacologia , Salicilatos/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Linhagem Celular Tumoral , Osteossarcoma/tratamento farmacológico , Apoptose , Células-Tronco/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
11.
Appl Environ Microbiol ; 88(2): e0189121, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34788062

RESUMO

Prophage-encoded Escherichia coli O157:H7 transcription factor (TF), PchE, inhibits biofilm formation and attachment to cultured epithelial cells by reducing curli fimbriae expression and increasing flagella expression. To identify pchE regulators that might be used in intervention strategies to reduce environmental persistence or host infections, we performed a computational search of O157:H7 strain PA20 pchE promoter sequences for binding sites used by known TFs. A common site shared by MarA/SoxS/Rob TFs was identified and the typical MarA/Rob inducers, salicylate and decanoate, were tested for biofilm and motility effects. Sodium salicylate, a proven biofilm inhibitor, but not sodium decanoate, strongly reduced O157:H7 biofilms by a pchE-independent mechanism. Both salicylate and decanoate enhanced O157:H7 motility dependent on pchE using media and incubation temperatures optimum for culturing human epithelial cells. However, induction of pchE by salicylate did not activate the SOS response. MarA/SoxS/Rob inducers provide new potential agents for controlling O157:H7 interactions with the host and its persistence in the environment. IMPORTANCE There is a need to develop E. coli serotype O157:H7 nonantibiotic interventions that do not precipitate the release and activation of virulence factor-encoded prophage and transferrable genetic elements. One method is to stimulate existing regulatory pathways that repress bacterial persistence and virulence genes. Here we show that certain inducers of MarA and Rob have that ability, working through both pchE-dependent and pschE-independent pathways.


Assuntos
Biofilmes , Decanoatos , Escherichia coli O157 , Proteínas de Escherichia coli , Salicilatos , Biofilmes/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Decanoatos/farmacologia , Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/fisiologia , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Salicilatos/farmacologia , Sorogrupo , Transativadores/genética
12.
FASEB J ; 35(8): e21759, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34245608

RESUMO

Life-style change and anti-inflammatory interventions have only transient effects in obesity. It is not clear how benefits obtained by these treatments can be maintained longer term, especially during sustained high caloric intake. Constitutive ablation of the activin receptor ALK7 in adipose tissue enhances catecholamine signaling and lipolysis in adipocytes, and protects mice from diet-induced obesity. Here, we investigated the consequences of conditional ALK7 ablation in adipocytes of adult mice with pre-existing obesity. Although ALK7 deletion had little effect on its own, it synergized strongly with a transient switch to low-fat diet (life-style change) or anti-inflammatory treatment (Na-salicylate), resulting in enhanced lipolysis, increased energy expenditure, and reduced adipose tissue mass and body weight gain, even under sustained high caloric intake. By themselves, diet-switch and salicylate had only a temporary effect on weight gain. Mechanistically, combination of ALK7 ablation with either treatment strongly enhanced the levels of ß3-AR, the main adrenergic receptor for catecholamine stimulation of lipolysis, and C/EBPα, an upstream regulator of ß3-AR expression. These results suggest that inhibition of ALK7 can be combined with simple interventions to produce longer-lasting benefits in obesity.


Assuntos
Receptores de Ativinas Tipo I/deficiência , Adipócitos/metabolismo , Ingestão de Alimentos , Lipólise , Obesidade/metabolismo , Receptores de Ativinas Tipo I/metabolismo , Adipócitos/patologia , Animais , Camundongos , Camundongos Transgênicos , Obesidade/genética , Obesidade/patologia , Salicilatos/farmacologia
13.
Isr Med Assoc J ; 24(2): 80-84, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35187895

RESUMO

BACKGROUND: Infections in neonates with herpes simplex virus 1 (HSV-1) following circumcision due to Metzitzah Be'Peh (MBP) performed by a Mohel occur each year in small numbers. One solution to this problem is the use of a mucus extractor device instead of MBP, which has been authorized by some rabbis. Yet, using a mucus extractor remains controversial among ultra-Orthodox Jews; thus, creating a need for additional solutions. OBJECTIVES: To seek to reduce HSV-1 infection of neonates due to MBP. METHODS: We tested several oral rinse solutions for their ability to destroy virus infectivity following incubation for 30 seconds and using plaque reduction assays. RESULTS: Corsodyl, Decapinol, and Listerine® all destroyed plaques formation of spiked virus, while Gengigel and Tantum Verde were found to be less effective. We focused specifically on Listerine® due to its efficacy in eliminating contagious HSV-1 from saliva after a 30-second oral rinse. Five different products of Listerine® reduced the infectivity of a spiked virus by more than 4 orders of magnitude in 30 seconds. We also showed that Listerine (up to 7% v/v) can stay in the mouth but did not harm living cells and therefore will not cause any damage to the injured tissue. CONCLUSIONS: Significant reduction in cases of infection with HSV-1 due to MBP can be achieved if Mohalim consistently adopt the practice of careful mouth washing with Listerine® just before performing MBP.


Assuntos
Anti-Infecciosos Locais/farmacologia , Herpes Simples/prevenção & controle , Herpesvirus Humano 1/efeitos dos fármacos , Antissépticos Bucais/farmacologia , Circuncisão Masculina , Clero , Combinação de Medicamentos , Humanos , Recém-Nascido , Judaísmo , Masculino , Morfolinas/administração & dosagem , Morfolinas/farmacologia , Salicilatos/administração & dosagem , Salicilatos/farmacologia , Terpenos/administração & dosagem , Terpenos/farmacologia
14.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36613764

RESUMO

As a worldwide health issue, obesity is associated with the infiltration of monocytes/macrophages into the adipose tissue causing unresolved inflammation. Monocyte chemoattractant protein-1 (MCP-1) exerts a crucial effect on obesity-related monocytes/macrophages infiltration. Clinically, aspirin and salsalate are beneficial for the treatment of metabolic diseases in which adipose tissue inflammation plays an essential role. Herein, we investigated the effect and precise mechanism of their active metabolite salicylate on TNF-α-elevated MCP-1 in adipocytes. The results indicated that salicylate sodium (SAS) could lower the level of MCP-1 in TNF-α-stimulated adipocytes, which resulted from a previously unrecognized target phosphodiesterase (PDE), 3B (PDE3B), rather than its known targets IKKß and AMPK. The SAS directly bound to the PDE3B to inactivate it, thus elevating the intracellular cAMP level and activating PKA. Subsequently, the expression of MKP-1 was increased, which led to the decrease in p-EKR and p-p38. Both PDE3B silencing and the pharmacological inhibition of cAMP/PKA compromised the suppressive effect of SAS on MCP-1. In addition to PDE3B, the PDE3A and PDE4B activity was also inhibited by SAS. Our findings identify a previously unrecognized pathway through which SAS is capable of attenuating the inflammation of adipocytes.


Assuntos
Quimiocina CCL2 , Fator de Necrose Tumoral alfa , Humanos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Quimiocina CCL2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Adipócitos/metabolismo , Inflamação/metabolismo , Obesidade/metabolismo , Salicilatos/farmacologia
15.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430660

RESUMO

To date, the effect of resveratrol on tinnitus has not been reported. The attenuative effects of resveratrol (RSV) on a salicylate-induced tinnitus model were evaluated by in vitro and in vivo experiments. The gene expression of the activity-regulated cytoskeleton-associated protein (ARC), tumor necrosis factor-alpha (TNFα), and NMDA receptor subunit 2B (NR2B) in SH-SY5Y cells was examined using qPCR. Phosphorylated cAMP response element-binding protein (p-CREB), apoptosis markers, and reactive oxygen species (ROS) were evaluated by in vitro experiments. The in vivo experiment evaluated the gap-prepulse inhibition of the acoustic startle reflex (GPIAS) and auditory brainstem response (ABR) level. The NR2B expression in the auditory cortex (AC) was determined by immunohistochemistry. RSV significantly reduced the salicylate-induced expression of NR2B, ARC, and TNFα in neuronal cells; the GPIAS and ABR thresholds altered by salicylate in rats were recovered close to their normal range. RSV also reduced the salicylate-induced NR2B overexpression of the AC. These results confirmed that resveratrol exerted an attenuative effect on salicylate-induced tinnitus and may have a therapeutic potential.


Assuntos
Neuroblastoma , Resveratrol , Zumbido , Animais , Humanos , Ratos , Ratos Sprague-Dawley , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Salicilatos/farmacologia , Zumbido/induzido quimicamente , Zumbido/tratamento farmacológico , Zumbido/patologia , Fator de Necrose Tumoral alfa/uso terapêutico , Modelos Animais de Doenças
16.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163434

RESUMO

Pigeon Pea (Cajanus cajan (L.) Millsp.) is a common food crop used in many parts of the world for nutritional purposes. One of its chemical constituents is cajanin stilbene acid (CSA), which exerts anticancer activity in vitro and in vivo. In an effort to identify molecular targets of CSA, we performed a kinome-wide approach based on the measurement of the enzymatic activities of 252 human kinases. The serine-threonine kinase WNK3 (also known as protein kinase lysine-deficient 3) was identified as the most promising target of CSA with the strongest enzymatic activity inhibition in vitro and the highest binding affinity in molecular docking in silico. The lowest binding affinity and the predicted binding constant pKi of CSA (-9.65 kcal/mol and 0.084 µM) were comparable or even better than those of the known WNK3 inhibitor PP-121 (-9.42 kcal/mol and 0.123 µM). The statistically significant association between WNK3 mRNA expression and cellular responsiveness to several clinically established anticancer drugs in a panel of 60 tumor cell lines and the prognostic value of WNK3 mRNA expression in sarcoma biopsies for the survival time of 230 patients can be taken as clues that CSA-based inhibition of WNK3 may improve treatment outcomes of cancer patients and that CSA may serve as a valuable supplement to the currently used combination therapy protocols in oncology.


Assuntos
Cajanus/química , Neoplasias/mortalidade , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Salicilatos/farmacologia , Estilbenos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Estimativa de Kaplan-Meier , Modelos Moleculares , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Ligação Proteica , Conformação Proteica , Proteínas Quinases/análise , Proteínas Serina-Treonina Quinases/química , Salicilatos/química , Estilbenos/química , Análise de Sobrevida
17.
Molecules ; 27(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35630834

RESUMO

The leaves of Gaultheria procumbens are polyphenol-rich traditional medicines used to treat inflammation-related diseases. The present study aimed to optimise the solvent for the effective recovery of active leaf components through simple direct extraction and verify the biological effects of the selected extract in a model of human neutrophils ex vivo. The extracts were comprehensively standardised, and forty-one individual polyphenols, representing salicylates, catechins, procyanidins, phenolic acids, and flavonoids, were identified by UHPLC-PDA-ESI-MS3. The chosen methanol-water (75:25, v/v) extract (ME) was obtained with the highest extraction yield and total phenolic levels (397.9 mg/g extract's dw), including 98.9 mg/g salicylates and 299.0 mg/g non-salicylate polyphenols. In biological tests, ME revealed a significant and dose-dependent ability to modulate pro-oxidant and pro-inflammatory functions of human neutrophils: it strongly reduced the ROS level and downregulated the release of pro-inflammatory cytokines and tissue remodelling enzymes, especially IL-1ß and elastase 2, in cells stimulated by fMLP, LPS, or fMLP + cytochalasin B. The extracts were also potent direct scavengers of in vivo relevant oxidants (O2•-, •OH, and H2O2) and inhibitors of pro-inflammatory enzymes (cyclooxygenase-2, hyaluronidase, and lipoxygenase). The statistically significant correlations between the tested variables revealed the synergic contribution of individual polyphenols to the observed effects and indicated them as useful active markers for the standardisation of the extract/plant material. Moreover, the safety of ME was confirmed in cytotoxicity tests. The obtained results might partially explain the ethnomedicinal application of G. procumbens leaves and support the usage of the standardised leaf extract in the adjuvant treatment of oxidative stress and inflammation-related chronic diseases.


Assuntos
Gaultheria , Humanos , Peróxido de Hidrogênio/farmacologia , Inflamação/tratamento farmacológico , Neutrófilos , Oxidantes/farmacologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Salicilatos/farmacologia
18.
J Am Chem Soc ; 143(25): 9297-9302, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34137598

RESUMO

Inhibitors of transcriptional protein-protein interactions (PPIs) have high value both as tools and for therapeutic applications. The PPI network mediated by the transcriptional coactivator Med25, for example, regulates stress-response and motility pathways, and dysregulation of the PPI networks contributes to oncogenesis and metastasis. The canonical transcription factor binding sites within Med25 are large (∼900 Å2) and have little topology, and thus, they do not present an array of attractive small-molecule binding sites for inhibitor discovery. Here we demonstrate that the depsidone natural product norstictic acid functions through an alternative binding site to block Med25-transcriptional activator PPIs in vitro and in cell culture. Norstictic acid targets a binding site comprising a highly dynamic loop flanking one canonical binding surface, and in doing so, it both orthosterically and allosterically alters Med25-driven transcription in a patient-derived model of triple-negative breast cancer. These results highlight the potential of Med25 as a therapeutic target as well as the inhibitor discovery opportunities presented by structurally dynamic loops within otherwise challenging proteins.


Assuntos
Lactonas/farmacologia , Complexo Mediador/metabolismo , Ligação Proteica/efeitos dos fármacos , Salicilatos/farmacologia , Transcrição Gênica/efeitos dos fármacos , Regulação Alostérica , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Humanos , Complexo Mediador/química , Simulação de Dinâmica Molecular , Domínios Proteicos , Fatores de Transcrição/metabolismo
19.
BMC Plant Biol ; 21(1): 413, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503442

RESUMO

BACKGROUND: In plants, basic leucine zipper transcription factors (TFs) play important roles in multiple biological processes such as anthesis, fruit growth & development and stress responses. However, systematic investigation and characterization of bZIP-TFs remain unclear in Chinese white pear. Chinese white pear is a fruit crop that has important nutritional and medicinal values. RESULTS: In this study, 62 bZIP genes were comprehensively identified from Chinese Pear, and 54 genes were distributed among 17 chromosomes. Frequent whole-genome duplication (WGD) and dispersed duplication (DSD) were the major driving forces underlying the bZIP gene family in Chinese white pear. bZIP-TFs are classified into 13 subfamilies according to the phylogenetic tree. Subsequently, purifying selection plays an important role in the evolution process of PbbZIPs. Synteny analysis of bZIP genes revealed that 196 orthologous gene pairs were identified between Pyrus bretschneideri, Fragaria vesca, Prunus mume, and Prunus persica. Moreover, cis-elements that respond to various stresses and hormones were found on the promoter regions of PbbZIP, which were induced by stimuli. Gene structure (intron/exon) and different compositions of motifs revealed that functional divergence among subfamilies. Expression pattern of PbbZIP genes differential expressed under hormonal treatment abscisic acid, salicylic acid, and methyl jasmonate  in pear fruits by real-time qRT-PCR. CONCLUSIONS: Collectively, a systematic analysis of gene structure, motif composition, subcellular localization, synteny analysis, and calculation of synonymous (Ks) and non-synonymous (Ka) was performed in Chinese white pear. Sixty-two bZIP-TFs in Chinese pear were identified, and their expression profiles were comprehensively analyzed under ABA, SA, and MeJa hormones, which respond to multiple abiotic stresses and fruit growth and development. PbbZIP gene occurred through Whole-genome duplication and dispersed duplication events. These results provide a basic framework for further elucidating the biological function characterizations under multiple developmental stages and abiotic stress responses.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Plantas/genética , Pyrus/genética , Estresse Fisiológico/genética , Ácido Abscísico/farmacologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cromossomos de Plantas , Éxons , Fragaria/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Íntrons , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Pyrus/efeitos dos fármacos , Salicilatos/farmacologia , Ácido Salicílico/farmacologia , Sintenia
20.
BMC Cancer ; 21(1): 237, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676427

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC), one of the most lethal cancers, is driven by oncogenic KRAS mutations. Farnesyl thiosalicylic acid (FTS), also known as salirasib, is a RAS inhibitor that selectively dislodges active RAS proteins from cell membrane, inhibiting downstream signaling. FTS has demonstrated limited therapeutic efficacy in PDAC patients despite being well tolerated. METHODS: To improve the efficacy of FTS in PDAC, we performed a genome-wide CRISPR synthetic lethality screen to identify genetic targets that synergize with FTS treatment. Among the top candidates, multiple genes in the endoplasmic reticulum-associated protein degradation (ERAD) pathway were identified. The role of ERAD inhibition in enhancing the therapeutic efficacy of FTS was further investigated in pancreatic cancer cells using pharmaceutical and genetic approaches. RESULTS: In murine and human PDAC cells, FTS induced unfolded protein response (UPR), which was further augmented upon treatment with a chemical inhibitor of ERAD, Eeyarestatin I (EerI). Combined treatment with FTS and EerI significantly upregulated the expression of UPR marker genes and induced apoptosis in pancreatic cancer cells. Furthermore, CRISPR-based genetic ablation of the key ERAD components, HRD1 and SEL1L, sensitized PDAC cells to FTS treatment. CONCLUSION: Our study reveals a critical role for ERAD in therapeutic response of FTS and points to the modulation of UPR as a novel approach to improve the efficacy of FTS in PDAC treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Degradação Associada com o Retículo Endoplasmático/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Sistemas CRISPR-Cas/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Degradação Associada com o Retículo Endoplasmático/genética , Farneseno Álcool/análogos & derivados , Farneseno Álcool/farmacologia , Farneseno Álcool/uso terapêutico , Técnicas de Inativação de Genes , Humanos , Hidrazonas/farmacologia , Hidrazonas/uso terapêutico , Hidroxiureia/análogos & derivados , Hidroxiureia/farmacologia , Hidroxiureia/uso terapêutico , Camundongos , Neoplasias Pancreáticas/patologia , Proteínas/genética , Salicilatos/farmacologia , Salicilatos/uso terapêutico , Mutações Sintéticas Letais , Ubiquitina-Proteína Ligases/genética , Resposta a Proteínas não Dobradas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA