RESUMO
Salmonella is a zoonotic pathogen posing a serious risk to the farming industry and public health due to food animals serving as reservoirs for future contamination and spread of Salmonella. The present study is designed to monitor the contamination status of Salmonella in duck farms and the main control points during breeding. 160 strains of duck-derived Salmonella were isolated from the 736 samples (cloacal swabs, feces, water, feed, soil, air and dead duck embryos) collected in southwest Shandong Province and the province's surrounding area. The percentage of Salmonella-positive samples collected was 21.74 % (160/736), and the greatest prevalence from duck embryo samples (40.00 %, 36/90). These Salmonella were classified into 23 serotypes depending on their O and H antigens, in which S. Typhimurium (30.15 %), S. Kottbus (13.97 %) and S. Enteritidis (10.29 %) were the prevailing serotypes. Subsequently, the molecular subtyping was done. Clustered regularly interspaced short palindromic repeats (CRISPR) analysis showed that 41 strains of S. Typhimurium and 14 strains of S. Enteritidis were classified into 13 and 3 genotypes, respectively. 19 S. Kottbus isolates from different sources featured ST1546, ST198, ST321, and ST1690 by multilocus sequence typing (MLST) analysis, among which ST1546 belongs to S. Kottbus was a new ST. The minimum spanning tree analysis based on the two CRISPR loci and seven MLST loci from all S. Typhimurium, S. Enteritidis and S. Kottbus isolates revealed that duck embryos, feed and water were key control points to the spread of Salmonella along the breeding chain. Meanwhile, the emergence of S. Kottbus in duck flocks was considered a potential public health hazard.
Assuntos
Patos , Fazendas , Fezes , Genótipo , Doenças das Aves Domésticas , Salmonelose Animal , Salmonella , Sorogrupo , Animais , Patos/microbiologia , China/epidemiologia , Salmonelose Animal/microbiologia , Salmonelose Animal/epidemiologia , Salmonella/genética , Salmonella/isolamento & purificação , Salmonella/classificação , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/epidemiologia , Fezes/microbiologia , Salmonella typhimurium/genética , Salmonella typhimurium/isolamento & purificação , Salmonella typhimurium/classificação , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Prevalência , Filogenia , Salmonella enteritidis/genética , Salmonella enteritidis/isolamento & purificação , Salmonella enteritidis/classificação , Tipagem de Sequências Multilocus , SorotipagemRESUMO
In December 2018, an outbreak of Salmonella Enteritidis infections was identified in Canada by whole-genome sequencing (WGS). An investigation was initiated to identify the source of the illnesses, which proved challenging and complex. Microbiological hypothesis generation methods included comparisons of Salmonella isolate sequence data to historical domestic outbreaks and international repositories. Epidemiological hypothesis generation methods included routine case interviews, open-ended centralized re-interviewing, thematic analysis of open-ended interview data, collection of purchase records, a grocery store site visit, analytic comparison to healthy control groups, and case-case analyses. Food safety hypothesis testing methods included food sample collection and analysis, and traceback investigations. Overall, 83 cases were identified across seven provinces, with onset dates from 6 November 2018 to 7 May 2019. Case ages ranged from 1 to 88 years; 60% (50/83) were female; 39% (22/56) were hospitalized; and three deaths were reported. Brand X profiteroles and eclairs imported from Thailand were identified as the source of the outbreak, and eggs from an unregistered facility were hypothesized as the likely cause of contamination. This study aims to describe the outbreak investigation and highlight the multiple hypothesis generation methods that were employed to identify the source.
Assuntos
Surtos de Doenças , Intoxicação Alimentar por Salmonella , Salmonella enteritidis , Humanos , Salmonella enteritidis/isolamento & purificação , Salmonella enteritidis/genética , Pré-Escolar , Idoso , Feminino , Adolescente , Masculino , Criança , Pessoa de Meia-Idade , Adulto , Idoso de 80 Anos ou mais , Adulto Jovem , Lactente , Intoxicação Alimentar por Salmonella/epidemiologia , Intoxicação Alimentar por Salmonella/microbiologia , Canadá/epidemiologia , Alimentos Congelados/microbiologia , Sequenciamento Completo do Genoma , Microbiologia de Alimentos , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/microbiologiaRESUMO
BACKGROUND: Salmonellosis is a widespread zoonotic disease that poses a significant threat to livestock and public health. This study aimed to serotype 20 Salmonella isolates obtained from sixty retail chicken meats, assess Salmonella contamination from eggs, and evaluate antibiotic resistance profiles. METHODS AND RESULTS: Twenty eggs were randomly collected in the new Borg El Arab market. Bacterial isolation was carried out utilizing both traditional culture, biochemical, and PCR methods. Among the twenty eggs analyzed, three (15%) tested positive for Salmonella, while the remaining seventeen (85%) were confirmed as negative. Genotyping through multiplex PCR revealed the presence of two S. Enteritidis and other serovar, with the use of three specific gene sets: a random sequence for Salmonella spp., sdfI gene for S. Enteritidis, and flagellin (fliC gene) for S. Typhimurium. Out of the 20 isolates obtained from chicken meat, five (25%) were identified as S. Typhimurium, and three (15%) were classified as S. Enteritidis. All isolates sourced from chicken meat exhibited resistance to Rifampicin and Amoxicillin, with 90% displaying sensitivity to cefotaxime, gemifloxacin, and Erythromycin. Importantly, S. Blegdam, identified via serological methods, displayed resistance to all tested antibiotics. For the three isolates obtained from eggs, 66.6% showed sensitivity to cefotaxime, erythromycin, cefuraxime, and cefaclor, while displaying complete resistance (100%) to Amoxicillin, rifampicin, clarithromycin, and cefadroxil. Notably, one serovar exhibited absolute resistance to all tested drugs. CONCLUSION: Stakeholders must implement strict control measures and rationalize antibiotic use in veterinary and human medicine due to the rise of antibiotic-resistant strains.
Assuntos
Antibacterianos , Galinhas , Ovos , Microbiologia de Alimentos , Reação em Cadeia da Polimerase Multiplex , Salmonella enteritidis , Salmonella typhimurium , Salmonella enteritidis/genética , Salmonella enteritidis/efeitos dos fármacos , Salmonella enteritidis/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex/métodos , Animais , Egito , Galinhas/microbiologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Salmonella typhimurium/isolamento & purificação , Antibacterianos/farmacologia , Ovos/microbiologia , Microbiologia de Alimentos/métodos , Testes de Sensibilidade Microbiana/métodos , Genótipo , Farmacorresistência Bacteriana/genética , Carne/microbiologia , Técnicas de Genotipagem/métodosRESUMO
This study examined the prevalence and antibiotic resistance pattern of blaCTX-M extended-spectrum ß-lactamase positive Salmonella species isolated from a hospital in Weifang. Salmonella strains were isolated from hospitalized patients from January 2018 to April 2023. Whole-genome sequencing was performed by Illumina platform. CTX-M-producing Salmonella were identified by Comprehensive Antibiotic Research Database (CARD). Strain susceptibility to six antimicrobial agents was assessed by BD Phoenix™ M50 System. MLST analysis confirmed sequence types and additionally, serotypes were determined by SeqSero2. Genetic environments of blaCTX-M genes were analyzed by Isfinder and BLASTn. Single nucleotide polymorphisms were used to construct a phylogenetic tree to analyze homology. A total of 34 CTX-M-producing Salmonella were detected. The most prevalent serotype was Salmonella enterica subsp. enterica 1,4,[5],12:i:- (14/34, 41.18%), belonging to ST34, followed by Salmonella Enteritidis (10/34, 29.41%), belonging to ST11. The highest resistance rate was detected to ampicillin (97.06%), followed by ceftriaxone (94.12%) and ceftazidime (58.83%). In CTX-M-producing Salmonella five types of blaCTX-M genes were identified, the most prevalent was blaCTX-M-55 (47.06%, 16/34), followed by blaCTX-M-14, blaCTX-M-65, blaCTX-M-125, and blaCTX-M-27 at 26.47% (9/34), 11.77% (4/34), 8.82% (3/34), and 5.88% (2/34), respectively. Apart from blaCTX-M, 40 antibiotic resistance genes were also detected, conveying resistance to multiple drugs and the most frequent genes were namely, mcr-1.1, aph(6)-Id, aph(3â³)-Ib, oqxAB, qnrB6, qnrS1. According to genetic environment analysis, the insertion sequence ISEcp1 was prevalent upstream of the blaCTX-M gene. Our study demonstrates that multiple resistance genes are carried by clinical isolates of Salmonella spp. however, the dominant ESBL genotype is CTX-M-55, that is associated with ISEcp1.
Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Infecções por Salmonella , Salmonella , beta-Lactamases , Humanos , China/epidemiologia , beta-Lactamases/genética , Infecções por Salmonella/microbiologia , Infecções por Salmonella/epidemiologia , Salmonella/genética , Salmonella/efeitos dos fármacos , Salmonella/enzimologia , Salmonella/isolamento & purificação , Salmonella/classificação , Antibacterianos/farmacologia , Prevalência , Filogenia , Sorogrupo , Farmacorresistência Bacteriana Múltipla , Tipagem de Sequências Multilocus , Sequenciamento Completo do Genoma , Salmonella enteritidis/genética , Salmonella enteritidis/efeitos dos fármacos , Salmonella enteritidis/enzimologia , Salmonella enteritidis/isolamento & purificaçãoRESUMO
In China, Salmonella is one of the most frequent causes of bacterial gastroenteritis, and food handlers in restaurants as an important contaminated source were rarely reported. In May 2023, an outbreak of Salmonella enterica serovar Enteritidis infection in a restaurant in Jiangxi Province, China, was investigated. Cases were interviewed. Stool samples from cases, anal swabs from restaurant employees, suspicious raw food materials, and semifinished food were collected and examined. Pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS) were performed to determine the relatedness of the pathogen isolates. Antimicrobial resistance genes and virulence genes of isolates were analyzed by WGS. The antimicrobial profile of the isolates was detected by broth microdilution, which involved 20 different antibiotics. Among the 31 patrons, 26 showed gastrointestinal symptoms. Five Salmonella Enteritidis strains were isolated from patients (2), semifinished food (2), and food handler (1). The results of PFGE and single-nucleotide polymorphism showed that these five isolates were identical clones. These findings demonstrated that this outbreak was a restaurant Salmonella Enteritidis outbreak associated with an infected food handler. The rates of resistance to nalidixic acid and colistin and intermediate resistance to ciprofloxacin were 100%, 80%, and 100%, respectively. These outbreak isolates harbored point mutation gyrA p.D87G. The cause of inconsistency between the genotype and phenotype of resistance was deeply discussed. A total of 107 virulence genes were found in each isolate, with many being associated with Salmonella pathogenicity island (SPI)-1 and SPI-2. As an overlooked contamination source, infected food handlers can easily cause large-scale outbreaks. This outbreak highlighted that the government should enhance the training and supervision of food hygiene and safety for food handlers to prevent foodborne outbreaks.
Assuntos
Surtos de Doenças , Restaurantes , Intoxicação Alimentar por Salmonella , Salmonella enteritidis , Sequenciamento Completo do Genoma , Humanos , Salmonella enteritidis/genética , Salmonella enteritidis/isolamento & purificação , Salmonella enteritidis/efeitos dos fármacos , China/epidemiologia , Intoxicação Alimentar por Salmonella/epidemiologia , Intoxicação Alimentar por Salmonella/microbiologia , Antibacterianos/farmacologia , Manipulação de Alimentos , Masculino , Feminino , Microbiologia de Alimentos , Adulto , Eletroforese em Gel de Campo Pulsado , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Fezes/microbiologia , Genoma BacterianoRESUMO
Salmonella is a rod-shaped gram-negative bacterium of the family Enterobacteriaceae, commonly present in the gastrointestinal tract in humans and animals. Salmonella-associated bacteriuria and prostatitis are rare but have been reported in humans, predominantly older patients with underlying diseases, including urinary tract obstructions, diabetes mellitus, and compromised immunity. In dogs, Salmonella bacteriuria and prostatitis have only been described in patients on immunosuppressive medications. This study reports the case of a 7 yr old male Pit bull terrier mix with Salmonella prostatitis. The patient had a 3 day history of lethargy and anorexia. He was fed a commercial diet and had no previous medical or medication history. On physical examination, he had caudal abdominal pain and a firm, enlarged, painful prostate. Ultrasound revealed marked prostatomegaly with multifocal echogenic fluid-filled cavitations and regional peritonitis. Urine and prostatic fluid culture grew Salmonella (>100,000 colony-forming units/mL) using standard culture methods. Treatment with enrofloxacin was initiated for 8 wk. Repeat urine and prostatic cultures after cessation of antibiotics were negative, and serial fecal cultures were Salmonella negative. This case report is, to the best of our knowledge, the first to describe Salmonella prostatitis and bacteriuria in an immunocompetent dog who was not fed a raw diet.
Assuntos
Antibacterianos , Doenças do Cão , Prostatite , Salmonelose Animal , Salmonella enteritidis , Cães , Animais , Masculino , Doenças do Cão/microbiologia , Doenças do Cão/tratamento farmacológico , Prostatite/veterinária , Prostatite/microbiologia , Prostatite/tratamento farmacológico , Salmonella enteritidis/isolamento & purificação , Salmonelose Animal/microbiologia , Salmonelose Animal/tratamento farmacológico , Antibacterianos/uso terapêutico , Enrofloxacina/uso terapêuticoRESUMO
AIM: The aim of the article is to present and assess the epidemiological situation of salmonellosis in Poland in 2021, in relation to previous years. MATERIAL AND METHODS: The assessment of the epidemiological situation of salmonellosis in Poland was made on the basis of individual data on salmonellosis cases, entered by sanitary-epidemiological stations into the EpiBaza System, data on outbreaks caused by Salmonella bacilli from the Registry of Epidemic Outbreaks System (ROE), as well as on the basis of aggregated data published in the annual bulletins "Infectious Diseases and Poisoning in Poland" (NIPH NIH - NRI, GIS, Warsaw), including information sent by laboratories of sanitary-epidemiological stations, data from the article on the epidemiological situation of salmonellosis in Poland in 2020 and data from the Demographic Research Department of the Central Statistical Office. RESULTS: In 2021, in Poland sanitary-epidemiological stations registered 8,294 cases of salmonellosis - 8,014 cases of intestinal salmonellosis and 280 extra-intestinal salmonellosis, including 190 cases of salmonellosis septicemia. The incidence rate for total salmonellosis was 21.7/100,000 population, for intestinal salmonellosis 21.0, for salmonellosis septicemia 0.50, and 0.23 per 100,000 population for other extra-intestinal infections of salmonellosis etiology. The reported 7,988 cases were classified as confirmed and 306 as probable. There were 5,127 hospitalizations due to salmonellosis, mainly children and the elderly. The peak of the incidence was registered in July. The highest incidence rate of salmonellosis in 2021 was recorded in the Podkarpackie voivodeship (39.8/100,000 population), the lowest in the Swietokrzyskie voivodeship (10.7/100,000 population). The highest incidence of intestinal salmonellosis was registered in the age group 0-4 years, accounting for 44.2% of the total number of cases. Among extra-intestinal infections, almost 62% of cases occurred in people aged 60+. In 2021, sanitary-epidemiological stations were detected and reported 229 outbreaks of food poisoning caused by Salmonella bacilli, 75% of them was Enteritidis serotype. In 2021, the most frequently isolated serotypes were S. Enteritidis 72%, S. Typhimurium (2%) and S. Infantis (0.5%). The serotype was not determined in 24.3% of cases. There were 24 imported cases of salmonellosis from different regions of the world. Due to Salmonella infection 11 people died in 2021. Laboratories of sanitary-epidemiological stations performed 438,183 tests for the presence of Salmonella and Shigella bacilli among humans, 92% of these tests concerned people working in contact with food. CONCLUSIONS: In 2021, there was an increase in the number of salmonellosis cases in Poland, compared to 2020. It can therefore be concluded that the COVID-19 pandemic did not have a long-term impact on reducing the number of Salmonella infections. At the same time, despite the increase, the situation of salmonellosis in Poland has not fully returned to the state before the COVID-19 pandemic.The area where we observe a significant difference, is the percentage of hospitalizations, which is the lowest in 2021 since 1998. It can be assumed, that one of the reasons for this, could be a stricter qualification of people with milder symptoms for hospital treatment, in favour of outpatient care.
Assuntos
Surtos de Doenças , Sistema de Registros , População Rural , Infecções por Salmonella , População Urbana , Polônia/epidemiologia , Humanos , Infecções por Salmonella/epidemiologia , Criança , Pré-Escolar , Lactente , Adolescente , Adulto , Surtos de Doenças/estatística & dados numéricos , Incidência , Feminino , Pessoa de Meia-Idade , Masculino , Recém-Nascido , Adulto Jovem , População Urbana/estatística & dados numéricos , Distribuição por Idade , Idoso , População Rural/estatística & dados numéricos , Sistema de Registros/estatística & dados numéricos , Distribuição por Sexo , Salmonella enteritidis/isolamento & purificação , Intoxicação Alimentar por Salmonella/epidemiologia , Idoso de 80 Anos ou maisRESUMO
BACKGROUND: Salmonella Enteritidis (S. Enteritidis) being one of the most prevalent foodborne pathogens worldwide poses a serious threat to public safety. Prevention of zoonotic infectious disease and controlling the risk of transmission of S. Enteriditidis critically requires the evolution of rapid and sensitive detection methods. The detection methods based on nucleic acid and conventional antibodies are fraught with limitations. Many of these limitations of the conventional antibodies can be circumvented using natural nanobodies which are endowed with characteristics, such as high affinity, thermal stability, easy production, especially higher diversity. This study aimed to select the special nanobodies against S. Enteriditidis for developing an improved nanobody-horseradish peroxidase-based sandwich ELISA to detect S. Enteritidis in the practical sample. The nanobody-horseradish peroxidase fusions can help in eliminating the use of secondary antibodies labeled with horseradish peroxidase, which can reduce the time of the experiment. Moreover, the novel sandwich ELISA developed in this study can be used to detect S. Enteriditidis specifically and rapidly with improved sensitivity. RESULTS: This study screened four nanobodies from an immunized nanobody library, after four rounds of screening, using the phage display technology. Subsequently, the screened nanobodies were successfully expressed with the prokaryotic and eukaryotic expression systems, respectively. A sandwich ELISA employing the SE-Nb9 and horseradish peroxidase-Nb1 pair to capture and to detect S. Enteritidis, respectively, was developed and found to possess a detection limit of 5 × 104 colony forming units (CFU)/mL. In the established immunoassay, the 8 h-enrichment enabled the detection of up to approximately 10 CFU/mL of S. Enteriditidis in milk samples. Furthermore, we investigated the colonization distribution of S. Enteriditidis in infected chicken using the established assay, showing that the S. Enteriditidis could subsist in almost all parts of the intestinal tract. These results were in agreement with the results obtained from the real-time PCR and plate culture. The liver was specifically identified to be colonized with quite a several S. Enteriditidis, indicating the risk of S. Enteriditidis infection outside of intestinal tract. CONCLUSIONS: This newly developed a sandwich ELISA that used the SE-Nb9 as capture antibody and horseradish peroxidase-Nb1 to detect S. Enteriditidis in the spike milk sample and to analyze the colonization distribution of S. Enteriditidis in the infected chicken. These results demonstrated that the developed assay is to be applicable for detecting S. Enteriditidis in the spiked milk in the rapid, specific, and sensitive way. Meanwhile, the developed assay can analyze the colonization distribution of S. Enteriditidis in the challenged chicken to indicate it as a promising tool for monitoring S. Enteriditidis in poultry products. Importantly, the SE-Nb1-vHRP as detection antibody can directly bind S. Enteritidis captured by SE-Nb9, reducing the use of commercial secondary antibodies and shortening the detection time. In short, the developed sandwich ELISA ushers great prospects for monitoring S. Enteritidis in food safety control and further commercial production.
Assuntos
Contaminação de Alimentos , Microbiologia de Alimentos , Carne , Leite , Salmonella enteritidis , Animais , Galinhas , Ensaio de Imunoadsorção Enzimática , Microbiologia de Alimentos/métodos , Peroxidase do Rábano Silvestre/metabolismo , Carne/microbiologia , Leite/microbiologia , Salmonella enteritidis/isolamento & purificaçãoRESUMO
Development of a rapid and sensitive method for Salmonella spp. detection is of great importance for ensuring food product safety due to its low infective dose. In this study, a colorimetric method based on the peroxidase-like activity of Cu(II)-modified reduced graphene oxide nanoparticles (Cu2+-rGO NPs) and PCR was successfully developed to detect Salmonella spp. in milk. Under optimal conditions, the developed colorimetric method exhibited high sensitivity and strong specificity for Salmonella spp. detection. The limit of detection was 0.51 CFU/mL with a linear range from 1.93 × 101 to 1.93 × 105 CFU/mL. A specificity study demonstrated that this method can specifically distinguish Salmonella typhimurium and Salmonella enteritidis from other foodborne pathogens. The application of the proposed method for milk sample detection was also validated, and the recovery rates of S. typhimurium in spiked milk sample ranged from 102.84% to 112.25%. This colorimetric sensor exhibits enormous potential for highly sensitive detection of bacteria in milk sample.
Assuntos
Colorimetria/métodos , Cobre/química , Nanopartículas Metálicas/química , Leite/microbiologia , Peroxidase/química , Salmonella/isolamento & purificação , Animais , Microbiologia de Alimentos/métodos , Grafite/química , Humanos , Limite de Detecção , Oxirredução , Peroxidase/metabolismo , Reação em Cadeia da Polimerase/métodos , Salmonella/genética , Salmonella enteritidis/genética , Salmonella enteritidis/isolamento & purificação , Salmonella typhimurium/genética , Salmonella typhimurium/isolamento & purificaçãoRESUMO
We sought to determine the relative value of conventional molecular methods and whole-genome sequencing (WGS) for subtyping Salmonella enterica serovar Enteritidis recovered from 2000 to 2015 in Tunisia and to investigate the genetic diversity of this serotype. A total of 175 Salmonella Enteritidis isolates were recovered from human, animal, and foodborne outbreak samples. Pulsed-field gel electrophoresis (PFGE), multiple locus variable-number tandem repeat analysis (MLVA), and whole-genome sequencing were performed. Eight pulsotypes were detected for all isolates with PFGE (DI = 0.518). Forty-five Salmonella Enteritidis isolates were selected for the MLVA and WGS techniques. Eighteen MLVA profiles were identified and classified into two major clusters (DI = 0.889). Core genome multilocus typing (cgMLST) analysis revealed 16 profiles (DI = 0.785). Whole-genome analysis indicated 660 single-nucleotide polymorphism (SNP) divergences dividing these isolates into 43 haplotypes (DI = 0.997). The phylogenetic tree supported the classification of Salmonella Enteritidis isolates into two distinct lineages subdivided into five clades and seven subclades. Pairwise SNP differences between the isolates ranged between 302 and 350. We observed about 311 SNP differences between the two foodborne outbreaks, while only less or equal to 4 SNP differences within each outbreak. SNP-based WGS typing showed an excellent discriminatory power comparing with the conventional methods such as PFGE and MLVA. Besides, we demonstrate the added value of WGS as a complementary subtyping method to discriminate outbreak from non-outbreak isolates belonging to common subtypes. It is important to continue the survey of Salmonella Enteritidis lineages in Tunisia using WGS.
Assuntos
Tipagem Molecular , Infecções por Salmonella/microbiologia , Salmonella enteritidis/classificação , Sequenciamento Completo do Genoma , Animais , Eletroforese em Gel de Campo Pulsado , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/microbiologia , Variação Genética , Humanos , Repetições Minissatélites/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Infecções por Salmonella/epidemiologia , Salmonella enteritidis/genética , Salmonella enteritidis/isolamento & purificação , Sorogrupo , Tunísia/epidemiologiaRESUMO
Several rapid methods based on nucleic acids can detect foodborne pathogens, such as Salmonella spp. However, a common reference that enables metrological traceability among measurement results is not available. Reference materials (RM) are thus key to guarantee methodological comparability. This study developed a candidate genomic DNA reference material for Salmonella enteritidis quantification to establish performance conditions and reference values for normalized RM production. The growth of Salmonella enteritidis ATCC® 13076 in Rappaport Vassiliadis selective medium was characterized, and we optimized a method of DNA extraction using cetrimonium bromide (CTAB) and LiCl. In a first stage six concentrations of DNA were prepared with and without yeast RNA (40 ng/µL) to evaluate its effect as a stabilizer in terms of homogeneity and short-term stability. Based on the findings, in a second stage two DNA concentrations were prepared and a reference value with its uncertainty was assigned based on the results of characterization, homogeneity, and stability studies using digital polymerase chain reaction and the gene targets, invA, ttr, and hilA. The material was stable for 9 months at 4 °C, with a expanded uncertainty contribution range of 11%-14%. The novel candidate RM is the first to be developed nationwide and will improve the quality of measurements in the area of food safety.
Assuntos
Genoma Bacteriano , Reação em Cadeia da Polimerase/métodos , Salmonella enteritidis/genética , Salmonella enteritidis/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Congelamento , Cinética , Padrões de Referência , Análise de Regressão , Salmonella enteritidis/crescimento & desenvolvimento , IncertezaRESUMO
BACKGROUND: Salmonella enterica serovar Enteritidis (S. Enteritidis) is one of the most common serovars, associated with human salmonellosis. The food-borne outbreak of this bacterium is mainly related to the consumption of contaminated poultry meat and poultry products, including eggs. Therefore, rapid and accurate detection, besides investigation of virulence characteristics and antimicrobial resistance profiles of S. Enteritidis in poultry and poultry egg samples is essential. A total of 3125 samples (2250 poultry and 875 poultry egg samples), sent to the administrative centers of veterinary microbiology laboratories in six provinces of Iran, were examined for Salmonella contamination, according to the ISO 6579 guideline. Next, duplex PCR was conducted on 250 presumptive Salmonella isolates to detect invA gene for identification of the genus Salmonella and sdf gene for identification of S. Enteritidis. Subsequently, the S. Enteritidis isolates were examined for detection of important virulence genes (pagC, cdtB, msgA, spaN, tolC, lpfC, and spvC) and determination of antibiotic resistance patterns against nalidixic acid, trimethoprim-sulfamethoxazole, cephalothin, ceftazidime, colistin sulfate, and kanamycin by the disk diffusion method. RESULTS: Overall, 8.7 and 2.3% of poultry samples and 6.3 and 1.3% of eggs were contaminated with Salmonella species and S. Enteritidis, respectively. The invA and msgA genes (100%) and cdtB gene (6.3%) had the highest and the lowest prevalence rates in S. Enteritidis isolates. The spvC gene, which is mainly located on the Salmonella virulence plasmid, was detected in 50.8% of S. Enteritidis isolates. The S. Enteritidis isolates showed the highest and the lowest resistance to nalidixic acid (87.3%) and ceftazidime (11.1%), respectively. Unfortunately, 27.0% of S. Enteritidis isolates were multidrug-resistant (MDR). CONCLUSION: The rate of contamination with Salmonella in the poultry and egg samples, besides the presence of antimicrobial resistant and MDR Salmonella isolates harboring the virulence genes in these samples, could significantly affect food safety and subsequently, human health. Therefore, continuous monitoring of animal-source foods, enhancement of poultry farm control measures, and limiting the use of antibiotics for prophylactic purposes in food producing animals, are essential for reducing the zoonotic risk of this foodborne pathogen for consumers and also choosing effective antibiotics for the treatment of salmonellosis.
Assuntos
Ovos/microbiologia , Aves Domésticas/microbiologia , Salmonella enteritidis/efeitos dos fármacos , Salmonella enteritidis/isolamento & purificação , Salmonella enteritidis/patogenicidade , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Genótipo , Irã (Geográfico) , Testes de Sensibilidade Microbiana/veterinária , Fenótipo , Produtos Avícolas/microbiologia , Prevalência , Salmonella enteritidis/genética , Virulência/genéticaRESUMO
As an important foodborne pathogen, Salmonella enterica serotype Enteritidis is recognized as one of the most common causes of human salmonellosis globally. Outbreak detection for this highly homogenous serotype, however, has remained challenging. Rapid advances in sequencing technologies have presented whole-genome sequencing (WGS) as a significant advancement for source tracing and molecular typing of foodborne pathogens. A retrospective analysis was conducted using Salmonella Enteritidis isolates (n = 65) from 11 epidemiologically confirmed outbreaks and a collection of contemporaneous sporadic isolates (n = 258) during 2007-2017 to evaluate the performance of WGS in delineating outbreak-associated isolates. Whole-genome single-nucleotide polymorphism (SNP)-based phylogenetic analysis revealed well-supported clades in concordance with epidemiological evidence and pairwise distances of ≤3 SNPs for all outbreaks. WGS-based framework of outbreak detection was thus proposed and applied prospectively to investigate isolates (n = 66) from nine outbreaks during 2018-2019. We further demonstrated the superior discriminatory power and accuracy of WGS to resolve and delineate outbreaks for pragmatic food source tracing. The proposed integrated WGS framework is the first in China for Salmonella Enteritidis and has the potential to serve as a paradigm for outbreak detection and source tracing of Salmonella throughout the stages of food production, as well as expanded to other foodborne pathogens.
Assuntos
Surtos de Doenças/estatística & dados numéricos , Epidemiologia Molecular/métodos , Intoxicação Alimentar por Salmonella/epidemiologia , Salmonella enteritidis/isolamento & purificação , Sequenciamento Completo do Genoma/métodos , China/epidemiologia , Busca de Comunicante/métodos , Genoma Bacteriano/genética , Humanos , Tipagem Molecular/métodos , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Estudos Retrospectivos , Intoxicação Alimentar por Salmonella/microbiologia , SorogrupoRESUMO
A total of 91 draft genome sequences were used to analyze isolates of Salmonella enterica serovar Enteritidis obtained from feral mice caught on poultry farms in Pennsylvania. One objective was to find mutations disrupting open reading frames (ORFs) and another was to determine if ORF-disruptive mutations were present in isolates obtained from other sources. A total of 83 mice were obtained between 1995-1998. Isolates separated into two genomic clades and 12 subgroups due to 742 mutations. Nineteen ORF-disruptive mutations were found, and in addition, bigA had exceptional heterogeneity requiring additional evaluation. The TRAMS algorithm detected only 6 ORF disruptions. The sefD mutation was the most frequently encountered mutation and it was prevalent in human, poultry, environmental and mouse isolates. These results confirm previous assessments of the mouse as a rich source of Salmonella enterica serovar Enteritidis that varies in genotype and phenotype.
Assuntos
Mutação , Salmonella enteritidis/genética , Algoritmos , Animais , Fazendas , Genoma Bacteriano , Mutação INDEL , Camundongos , Repetições Minissatélites , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Aves Domésticas , Salmonella enteritidis/classificação , Salmonella enteritidis/isolamento & purificação , Sequenciamento Completo do GenomaRESUMO
Pathogen-associated infections represent one of the major threats to human health and require reliable methods for immediate and robust identification of pathogenic microorganisms. Here, an inexpensive cellulase-linked immunomagnetic methodology was developed for the specific and ultrasensitive analysis of bacteria at their single-cell levels within a 3 h procedure. Detection of a model bacterium, Escherichia coli, was performed in a sandwich reaction with E. coli-specific either aptamer or antibody (Ab)-modified magnetic beads (MBs) and Ab/aptamer reporter molecules linked to cellulase. The cellulase-labeled immuno-aptamer sandwich applied onto nitrocellulose-film-modified electrodes digested the film and changed its electrical conductivity. Electrode's chronocoulometric responses at 0.3 V, in the absence of any redox indicators, allowed a single E. coli cell detection and from 1 to 4 × 104 CFU mL-1 E. coli quantification. No interference/cross-reactivity from Salmonella enteritidis, Enterobacter agglomerans, Pseudomonas putida, Staphylococcus aureus, and Bacillus subtilis was observed when the assay was performed on Ab-modified MBs, and E. coli could be quantified in tap water and milk. This electrochemically label-free methodology is sufficiently fast, highly specific, and sensitive to be used in direct in-field applications. The assay can be adapted for specific detection of other bacterial strains of either the same or different species and offers new analytical tools for fast, specific, and reliable analysis of bacteria in the clinic, food, and environment.
Assuntos
Celulase/metabolismo , Escherichia coli/isolamento & purificação , Separação Imunomagnética , Bacillus subtilis/citologia , Bacillus subtilis/isolamento & purificação , Bacillus subtilis/metabolismo , Celulase/química , Eletrodos , Enterobacter/citologia , Enterobacter/isolamento & purificação , Enterobacter/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Pseudomonas putida/citologia , Pseudomonas putida/isolamento & purificação , Pseudomonas putida/metabolismo , Salmonella enteritidis/citologia , Salmonella enteritidis/isolamento & purificação , Salmonella enteritidis/metabolismo , Análise de Célula Única , Staphylococcus aureus/citologia , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/metabolismoRESUMO
Clusters of Salmonella Enteritidis cases were identified by the Minnesota Department of Health using both pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS) single nucleotide polymorphism analysis from 1 January 2015 through 31 December 2017. The median turnaround time for obtaining WGS results was 11 days longer than for PFGE (12 vs. 1 day). WGS analysis more than doubled the number of clusters compared to PFGE analysis, but reduced the total number of cases included in clusters by 34%. The median cluster size was two cases for WGS compared to four for PFGE, and the median duration of WGS clusters was 27 days shorter than PFGE clusters. While the percentage of PFGE clusters with a confirmed source (46%) was higher than WGS clusters (32%), a higher percentage of cases in clusters that were confirmed as outbreaks reported the vehicle or exposure of interest for WGS (78%) than PFGE (46%). WGS cluster size was a significant predictor of an outbreak source being confirmed. WGS data have enhanced S. Enteritidis cluster investigations in Minnesota by improving the specificity of cluster case definitions and has become an integral part of the S. Enteritidis surveillance process.
Assuntos
Genoma Bacteriano , Vigilância da População/métodos , Infecções por Salmonella/microbiologia , Salmonella enteritidis/genética , Sequenciamento Completo do Genoma , Surtos de Doenças , Humanos , Minnesota/epidemiologia , Infecções por Salmonella/epidemiologia , Salmonella enteritidis/isolamento & purificaçãoRESUMO
Salmonella is a leading cause of foodborne outbreaks in Taiwan. On 27 April 2018, a salmonellosis outbreak among customers of a restaurant was reported to the Taiwan CDC. We investigated the outbreak to identify infection sources and prevent further transmission. We interviewed ill customers and their dining companions. We conducted a case-control study to identify foods associated with the illness. Case-patients were those who had diarrhoea within 72 h after eating at the restaurant during 16-27 April 2018. Specimens, food samples and environmental samples were collected and tested for enteric pathogens. Salmonella isolates were analysed with pulse-field gel electrophoresis and whole-genome sequencing. We inspected the restaurant sanitation and reviewed kitchen surveillance camera recordings. We identified 47 case-patients, including one decedent. Compared with 44 controls, case-patients were more likely to have had a French toast sandwich (OR: 102.4; 95% CI: 18.7-952.3). Salmonella Enteritidis isolates from 16 case-patients shared an indistinguishable genotype. Camera recordings revealed eggshell contamination, long holding time at room temperature and use of leftovers during implicated food preparation. Recommendations for restaurant egg-containing food preparation are to use pasteurised egg products and ensure a high enough cooking temperature and long enough cooking time to prevent Salmonella contamination.
Assuntos
Surtos de Doenças , Restaurantes , Infecções por Salmonella/epidemiologia , Salmonella enteritidis/isolamento & purificação , Gravação em Vídeo , Ovos/microbiologia , Microbiologia de Alimentos , Genótipo , Humanos , Razão de Chances , Salmonella enteritidis/genética , Taiwan/epidemiologiaRESUMO
BACKGROUND: Infectious aortic aneurysm, defined as a focal dilation of an infectious arterial wall, is an uncommon life-threatening disease. Compared with open surgery, endovascular repair yields acceptable clinical outcomes. However, residual tissue infection may increase the risk of secondary intervention. Here, we present a successful case of endovascular repair combined with staged drainage for the treatment of infectious aortic aneurysm. CASE PRESENTATION: A 58-year-old man presented to hospital with a 3-day history of lower back pain radiating to the back associated with fever. The dynamic imaging characteristics revealed rapid progress of infectious abdominal aortic aneurysm with negative blood culture. The patient underwent endovascular repair and salmonella enteritidis was identified through drain culture. CONCLUSIONS: Endovascular procedure and staged drainage can be feasible and effective option in selected cases.
Assuntos
Aneurisma Infectado/cirurgia , Aneurisma da Aorta Abdominal/cirurgia , Implante de Prótese Vascular , Drenagem , Procedimentos Endovasculares , Infecções por Salmonella/cirurgia , Salmonella enteritidis/isolamento & purificação , Aneurisma Infectado/diagnóstico por imagem , Aneurisma Infectado/microbiologia , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Infecções por Salmonella/diagnóstico por imagem , Infecções por Salmonella/fisiopatologia , Resultado do TratamentoRESUMO
BACKGROUND: Salmonella is a very important foodborne pathogen causing illness in humans. The emergence of drug-resistant strains also constitutes a serious worry to global health and livestock productivity. This study investigated Salmonella isolates from chicken and chicken meat products using the phenotypic antimicrobial screening as well as the molecular characteristics of Salmonella isolates. Upon serotyping of the isolates, the antimicrobial susceptibility profiling using a panel of 9 commonly used antimicrobials was done. Subsequently, the molecular profiles of all the isolates were further determined using Pulsed Field Gel Electrophoresis (PFGE) and the Whole Genome Multi-Locus Sequence Type (wgMLST) analysis in order to obtain the sequence types. RESULTS: The PFGE data was input into FPQuest software, and the dendrogram generated was studied for possible genetic relatedness among the isolates. All the isolates were found to belong to the Salmonella Enteritidis serotype with notable resistance to tetracycline, gentamycin, streptomycin, and sulfadimidine. The S. Enteritidis isolates tested predominantly subtyped into the ST11 and ST1925, which was found to be a single cell variant of ST11. The STs were found to occur in chicken meats, foods, and live chicken cloacal swabs, which may indicate the persistence of the bacteria in multiple foci. CONCLUSION: The data demonstrate the presence of S. Enteritidis among chickens, indicating its preference and reservoir status for enteric Salmonella pathogens.
Assuntos
Galinhas/microbiologia , Produtos da Carne/microbiologia , Salmonella enteritidis/isolamento & purificação , Animais , Eletroforese em Gel de Campo Pulsado/veterinária , Microbiologia de Alimentos , Genoma Bacteriano , Malásia , Testes de Sensibilidade Microbiana/veterinária , Tipagem Molecular , Salmonella enteritidis/classificação , Salmonella enteritidis/efeitos dos fármacos , Salmonella enteritidis/genética , Sorotipagem , Sequenciamento Completo do GenomaRESUMO
A capture probe complex containing a specific Salmonella enteritidis (S. enteritidis) aptamer and partly hybridized signal trigger sequence was designed with the ability to directly detect viable S. enteritidis. In the presence of the target S. enteritidis, single-stranded trigger sequences were liberated and in turn reacted with hairpins I, II, and III to initiate the triple strand migration reaction; this in turn produced numerous hairpin I·II·III complexes with scaffolds of copper nanoparticles (CuNPs) and replaced the trigger sequence which initiated the next cycle of triple migration reaction. Cyclically, the reuse of the trigger sequences and the successive, cascading production of scaffolds of CuNPs achieved the synthesis of highly fluorescent CuNPs, thus providing significantly enhanced fluorescent signals to achieve ultrasensitive detection of live S. enteritidis as low as 25 CFU/mL with a linear range of detection from 50 to 104 CFU/mL with an emission wavelength at 590 nm. By integrating the triple cascade strand migration amplification with recyclable trigger sequences, aptamer-based target recognition, and self-protection mediated by CuNPs hairpin scaffolds, this is the first report on a non-labeled, non-enzymatic, modification-free, and DNA extraction-free ultrasensitive fluorescent biosensor for the direct detection of live Salmonella, which is distinguished from dead Salmonella. It also provides a new strategy to detect viable bacteria by applying the CuNPs, thus extending the application of metal nanoparticles. Graphical abstract.