Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.040
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Cereb Cortex ; 30(2): 488-504, 2020 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-31210267

RESUMO

Neocortical GABAergic interneurons expressing vasoactive intestinal polypeptide (VIP) contribute to sensory processing, sensorimotor integration, and behavioral control. In contrast to other major subpopulations of GABAergic interneurons, VIP neurons show a remarkable diversity. Studying morphological and electrophysiological properties of VIP cells, we found a peculiar group of neurons in layer II/III of mouse primary somatosensory (barrel) cortex, which showed a highly dynamic burst firing behavior at resting membrane potential that switched to tonic mode at depolarized membrane potentials. Furthermore, we demonstrate that burst firing depends on T-type calcium channels. The burst-tonic switch could be induced by acetylcholine (ACh) and serotonin. ACh mediated a depolarization via nicotinic receptors whereas serotonin evoked a biphasic depolarization via ionotropic and metabotropic receptors in 48% of the population and a purely monophasic depolarization via metabotropic receptors in the remaining cells. These data disclose an electrophysiologically defined subpopulation of VIP neurons that via neuromodulator-induced changes in firing behavior is likely to regulate the state of cortical circuits in a profound manner.


Assuntos
Potenciais de Ação , Neurônios GABAérgicos/fisiologia , Córtex Somatossensorial/fisiologia , Peptídeo Intestinal Vasoativo/análise , Acetilcolina/administração & dosagem , Acetilcolina/fisiologia , Animais , Canais de Cálcio Tipo T/fisiologia , Agonistas Colinérgicos/administração & dosagem , Neurônios GABAérgicos/efeitos dos fármacos , Camundongos Transgênicos , Serotonina/administração & dosagem , Serotonina/fisiologia , Serotoninérgicos/administração & dosagem , Córtex Somatossensorial/diagnóstico por imagem
2.
Physiol Genomics ; 51(7): 302-310, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31125292

RESUMO

The fall in mean arterial pressure (MAP) after 24 h of 5-HT infusion is associated with a dilation of the portal vein (PV) and abdominal inferior vena cava (Ab IVC); all events were blocked by the selective 5-HT7 receptor antagonist SB269970. Few studies have investigated the contribution of the 5-HT7 receptor in long-term cardiovascular control, and this requires an understanding of the chronic activation of the receptor. Using the newly created 5-HT7 receptor knockout (KO) rat, we presently test the hypothesis that continuous activation of the 5-HT7 receptor by 5-HT is necessary for the chronic (1 wk) depressor response and splanchnic venodilation. We also address if the 5-HT7 receptor contributes to endogenous cardiovascular regulation. Conscious MAP (radiotelemeter), splanchnic vessel diameter (ultrasound), and cardiac function (echocardiogram) were measured in ambulatory rats during multiday 5-HT infusion (25 µg·kg-1·min-1 via minipump) and after pump removal. 5-HT infusion reduced MAP and caused splanchnic venodilation of wild-type (WT) but not KO rats at any time point. The efficacy of 5-HT-induced contraction was elevated in the isolated abdominal inferior vena cava from the KO compared with WT rats, supporting loss of a relaxant receptor. Similarly, the efficacy of 5-HT causing an acute pressor response to higher doses of 5-HT in vivo was also increased in the KO vs. WT rat. Our work supports a novel mechanism for the cardiovascular effects of 5-HT, activation of 5-HT7 receptors mediating venodilation in the splanchnic circulation, which could prove useful in the treatment of cardiovascular disease.


Assuntos
Animais Geneticamente Modificados , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Hipertensão/genética , Receptores de Serotonina/genética , Serotonina/administração & dosagem , Animais , Ecocardiografia , Feminino , Técnicas de Inativação de Genes , Infusões Intravenosas , Masculino , Veia Porta/diagnóstico por imagem , Ratos , Ratos Sprague-Dawley
3.
J Neurophysiol ; 121(1): 105-114, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30281395

RESUMO

Understanding how afferent information is integrated by cortical structures requires identifying the factors shaping excitation and inhibition within their input layers. The input layer of the cerebellar cortex integrates diverse sensorimotor information to enable learned associations that refine the dynamics of movement. Specifically, mossy fiber afferents relay sensorimotor input into the cerebellum to excite granule cells, whose activity is regulated by inhibitory Golgi cells. To test how this integration can be modulated, we have used an acute brain slice preparation from young adult rats and found that encoding of mossy fiber input in the cerebellar granule cell layer can be regulated by serotonin (5-hydroxytryptamine, 5-HT) via a specific action on Golgi cells. We find that 5-HT depolarizes Golgi cells, likely by activating 5-HT2A receptors, but does not directly act on either granule cells or mossy fibers. As a result of Golgi cell depolarization, 5-HT significantly increases tonic inhibition onto both granule cells and Golgi cells. 5-HT-mediated Golgi cell depolarization is not sufficient, however, to alter the probability or timing of mossy fiber-evoked feed-forward inhibition onto granule cells. Together, increased granule cell tonic inhibition paired with normal feed-forward inhibition acts to reduce granule cell spike probability without altering spike timing. Hence, these data provide a circuit mechanism by which 5-HT can reduce granule cell activity without altering temporal representations of mossy fiber input. Such changes in network integration could enable flexible, state-specific suppression of cerebellar sensorimotor input that should not be learned or enable reversal learning for unwanted associations. NEW & NOTEWORTHY Serotonin (5-hydroxytryptamine, 5-HT) regulates synaptic integration at the input stage of cerebellar processing by increasing tonic inhibition of granule cells. This circuit mechanism reduces the probability of granule cell spiking without altering spike timing, thus suppressing cerebellar input without altering its temporal representation in the granule cell layer.


Assuntos
Cerebelo/metabolismo , Inibição Neural/fisiologia , Neurônios/metabolismo , Serotonina/metabolismo , Animais , Cerebelo/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Inibição Neural/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Receptor 5-HT2A de Serotonina/metabolismo , Serotonina/administração & dosagem , Serotoninérgicos/farmacologia , Técnicas de Cultura de Tecidos
4.
Brain Behav Immun ; 80: 255-265, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30885841

RESUMO

An exceptionally high mortality rate is observed in sepsis and septic shock. Systemic administration of lipopolysaccharide (LPS) has been used as an experimental model for sepsis resulting in an exacerbated immune response, brain neurochemistry adjustments, hypotension, and hypothermia followed by fever. Central serotonergic pathways not only modulate systemic inflammation (SI) but also are affected by SI, including in the anteroventral region of the hypothalamus (AVPO), which is the hierarchically most important region for body temperature (Tb) control. In this study, we sought to determine if central serotonin (5-HT) plays a role in SI induced by intravenous administration of LPS (1.5 mg/kg) in male Wistar rats (280-350 g) by assessing 5-HT levels in the AVPO, mean arterial pressure, heart rate, and Tb up to 300 min after LPS administration, as well as assessing plasma and spleen cytokine levels, nitric oxide (NO) plasma levels, and prostaglandin (PG) E2 levels in the AVPO at 75 min and 300 min after LPS administration. We observed reduced AVPO 5-HT levels, hypotension, tachycardia, hypothermia followed by fever, as well as observing increased plasma NO, plasma and spleen cytokines and AVPO PGE2 levels in SI. Intracerebroventricular (icv) administration of 5-HT 30 min before LPS administration prevented hypotension and hypothermia, which were accompanied by reduced plasma NO, as well as plasma TNF-α, IL-1ß, IL-6, and IL-10 and spleen TNF-α and IL-10 levels. We suggest that SI reduced 5-HT levels in the AVPO favor an increased pro-inflammatory status both centrally and peripherally that converge to hypotension and hypothermia. Moreover, our results are consistent with the notion that exogenous 5-HT given icv prevents hypotension and hypothermia probably activating the splenic anti-inflammatory pathway.


Assuntos
Citocinas/sangue , Hipotensão/metabolismo , Hipotermia/metabolismo , Inflamação/metabolismo , Serotonina/metabolismo , Baço/metabolismo , Animais , Dopamina/metabolismo , Hipotensão/complicações , Hipotálamo Anterior/metabolismo , Hipotermia/complicações , Inflamação/induzido quimicamente , Inflamação/complicações , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/administração & dosagem , Masculino , Óxido Nítrico/sangue , Norepinefrina/metabolismo , Ratos Wistar , Serotonina/administração & dosagem
5.
Artigo em Russo | MEDLINE | ID: mdl-30724880

RESUMO

RATIONALE: At sports submaximal loads accompanied by muscle fatigue due to metabolic transformations, the conditions are created for the development of combined endogenous and exogenous emotional stresses. An important role in the development of stress is played by the state of adaptation mechanisms, in which sintoxic and catatoxic programs are involved, as well as the GABA-dopaminergic system. There is insufficient information on the possibilities for reducing the manifestations of stress. PURPOSE: The objective of the presser study was to estimate the possibilities for the prevention of the development of psycho-emotional stress with the use of transcranial electrostimulation in the combination with serotonin laser phoresis. METHODS: The assessment of the psychological status before and after transcranial electrostimulation in the combination with serotonin laser phoresis was performed in 96 athletes who were engaged in weightlifting and athletic gymnastics, as well as in 37 athletes comprising the control group in the state of sparing rest. Transcranial electrostimulation was carried out during 14 days. The laser phoresis of serotonin was conducted with the application of the Matrix device and transcranial electrostimulation with the use of the Magnon-DKS apparatus. The assessment of the psychological status was carried out based on the Hospital Anxiety and Depression Scale (HADS) and the results of the well-being-activity-mood (WAM) questionnaire and in accordance with the Hildebrandt index, and the Spielberger-Hanin test. RESULTS: The two-week course of exposure to transcranial electrostimulation and serotonin laser phoresis of the patients comprising the main group resulted in a faster stabilization of the psychological status than in the control group. This effect was due to the multi-component involvement of the athletes in the adaptation programs including the management of homeostasis and the influence on the GABA-dopaminergic system via the serotonin and opioidergic mechanisms. CONCLUSION: The results of this study give reason to recommend the proposed method of transcranial electrostimulation and serotonin laser phoresis for the use in sports medicine.


Assuntos
Atletas/psicologia , Terapia a Laser , Fadiga Muscular , Estresse Psicológico/terapia , Estimulação Transcraniana por Corrente Contínua , Atletas/estatística & dados numéricos , Ginástica , Humanos , Serotonina/administração & dosagem , Medicina Esportiva , Resultado do Tratamento
6.
J Physiol ; 596(2): 281-303, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29086918

RESUMO

KEY POINTS: Spinal compression injury targeted to the neonatal upper lumbar spinal cord, the region of highest hindlimb locomotor rhythmogenicity, leads to an initial paralysis of the hindlimbs. Behavioural recovery is evident within a few days and approaches normal function within about 3 weeks. Fictive locomotion in the isolated injured spinal cord cannot be elicited by a neurochemical cocktail containing NMDA, dopamine and serotonin 1 day post-injury, but can 3 days post-injury as readily as in the uninjured spinal cord. Low frequency coordinated rhythmic activity can be elicited in the isolated uninjured spinal cord by NMDA + dopamine (without serotonin), but not in the isolated injured spinal cord. In both the injured and uninjured spinal cord, eliciting bona fide fictive locomotion requires the additional presence of serotonin. ABSTRACT: Following incomplete compression injury in the thoracic spinal cord of neonatal mice 1 day after birth (P1), we previously reported that virtually normal hindlimb locomotor function is recovered within about 3 weeks despite substantial permanent thoracic tissue loss. Here, we asked whether similar recovery occurs following lumbar injury that impacts more directly on the locomotor central pattern generator (CPG). As in thoracic injuries, lumbar injuries caused about 90% neuronal loss at the injury site and increased serotonergic innervation below the injury. Motor recovery was slower after lumbar than thoracic injury, but virtually normal function was attained by P25 in both cases. Locomotor CPG status was tested by eliciting fictive locomotion in isolated spinal cords using a widely used neurochemical cocktail (NMDA, dopamine, serotonin). No fictive locomotion could be elicited 1 day post-injury, but could within 3 days post-injury as readily as in age-matched uninjured control spinal cords. Burst patterning and coordination were largely similar in injured and control spinal cords but there were differences. Notably, in both groups there were two main locomotor frequencies, but injured spinal cords exhibited a shift towards the higher frequency. Injury also altered the neurochemical dependence of locomotor CPG output, such that injured spinal cords, unlike control spinal cords, were incapable of generating low frequency rhythmic coordinated activity in the presence of NMDA and dopamine alone. Thus, the neonatal spinal cord also exhibits remarkable functional recovery after lumbar injuries, but the neurochemical sensitivity of locomotor circuitry is modified in the process.


Assuntos
Geradores de Padrão Central/fisiologia , Dopamina/administração & dosagem , Neurônios Motores/fisiologia , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/prevenção & controle , Animais , Animais Recém-Nascidos , Geradores de Padrão Central/efeitos dos fármacos , Dopaminérgicos/administração & dosagem , Agonistas de Aminoácidos Excitatórios/administração & dosagem , Feminino , Membro Posterior/inervação , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neurônios Motores/efeitos dos fármacos , N-Metilaspartato/administração & dosagem , Serotonina/administração & dosagem , Agonistas do Receptor de Serotonina/administração & dosagem , Traumatismos da Medula Espinal/etiologia
7.
J Neurophysiol ; 120(3): 1119-1134, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29873617

RESUMO

Understanding of processing and transmission of information related to itch and pain in the thalamus is incomplete. In fact, no single unit studies of pruriceptive transmission in the thalamus have yet appeared. In urethane-anesthetized rats, we examined responses of 66 thalamic neurons to itch- and pain- inducing stimuli including chloroquine, serotonin, ß-alanine, histamine, and capsaicin. Eighty percent of all cells were activated by intradermal injections of one or more pruritogens. Forty percent of tested neurons responded to injection of three, four, or even five agents. Almost half of the examined neurons had mechanically defined receptive fields that extended onto distant areas of the body. Pruriceptive neurons were located within what appeared to be a continuous cell column extending from the posterior triangular nucleus (PoT) caudally to the ventral posterior medial nucleus (VPM) rostrally. All neurons tested within PoT were found to be pruriceptive. In addition, neurons in this nucleus responded at higher frequencies than did those in VPM, an indication that PoT might prove to be a particularly interesting region for additional studies of itch transmission. NEW & NOTEWORTHY Processing of information related to itch within in the thalamus is not well understood, We show in this, the first single-unit electrophysiological study of responses of thalamic neurons to pruritogens, that itch-responsive neurons are concentrated in two nuclei within the rat thalamus, the posterior triangular, and the ventral posterior medial nuclei.


Assuntos
Neurônios/fisiologia , Dor/induzido quimicamente , Prurido/induzido quimicamente , Núcleos Ventrais do Tálamo/fisiologia , Potenciais de Ação , Animais , Antipruriginosos/efeitos adversos , Capsaicina/administração & dosagem , Capsaicina/efeitos adversos , Cloroquina/administração & dosagem , Cloroquina/efeitos adversos , Histamina/administração & dosagem , Histamina/efeitos adversos , Injeções Intradérmicas , Masculino , Neurotransmissores/efeitos adversos , Distribuição de Poisson , Ratos , Ratos Sprague-Dawley , Serotonina/administração & dosagem , Serotonina/efeitos adversos , beta-Alanina/administração & dosagem , beta-Alanina/efeitos adversos
8.
Am J Physiol Gastrointest Liver Physiol ; 314(3): G341-G348, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167116

RESUMO

Colorectal motility is regulated by two defecation centers located in the brain and spinal cord. In previous studies, we have shown that administration of serotonin (5-HT) in the lumbosacral spinal cord causes enhancement of colorectal motility. Because spinal 5-HT is derived from neurons of the medullary raphe nuclei, including the raphe magnus, raphe obscurus, and raphe pallidus, we examined whether stimulation of the medullary raphe nuclei enhances colorectal motility via the lumbosacral defecation center. Colorectal pressure was recorded with a balloon in vivo in anesthetized rats. Electrical stimulation of the medullary raphe nuclei failed to enhance colorectal motility. Because GABAergic neurons can be simultaneously activated by the raphe stimulation and released GABA masks accelerating actions of the raphe nuclei on the lumbosacral defecation center, a GABAA receptor antagonist was preinjected intrathecally to manifest excitatory responses. When spinal GABAA receptors were blocked by the antagonist, electrical stimulation of the medullary raphe nuclei increased colorectal contractions. This effect of the raphe nuclei was inhibited by intrathecal injection of 5-hydroxytryptamine type 2 (5-HT2) and type 3 (5-HT3) receptor antagonists. In addition, injection of a selective 5-HT reuptake inhibitor in the lumbosacral spinal cord augmented the raphe stimulation-induced enhancement of colorectal motility. Transection of the pelvic nerves, but not transection of the colonic nerves, prevented the effect of the raphe nuclei on colorectal motility. These results demonstrate that activation of the medullary raphe nuclei causes augmented contractions of the colorectum via 5-HT2 and 5-HT3 receptors in the lumbosacral defecation center. NEW & NOTEWORTHY We have shown that electrical stimulation of the medullary raphe nuclei causes augmented contractions of the colorectum via pelvic nerves in rats. The effect of the medullary raphe nuclei on colorectal motility is exerted through activation of 5-hydroxytryptamine type 2 and type 3 receptors in the lumbosacral defecation center. The descending serotoninergic raphespinal tract represents new potential therapeutic targets against colorectal dysmotility such as irritable bowel syndrome.


Assuntos
Colo/inervação , Defecação , Motilidade Gastrointestinal , Plexo Lombossacral/fisiologia , Bulbo/fisiologia , Núcleos da Rafe/fisiologia , Neurônios Serotoninérgicos/fisiologia , Animais , Defecação/efeitos dos fármacos , Estimulação Elétrica , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Motilidade Gastrointestinal/efeitos dos fármacos , Injeções Espinhais , Plexo Lombossacral/efeitos dos fármacos , Plexo Lombossacral/metabolismo , Masculino , Bulbo/metabolismo , Inibição Neural , Pressão , Núcleos da Rafe/metabolismo , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Receptores 5-HT2 de Serotonina/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Neurônios Serotoninérgicos/efeitos dos fármacos , Neurônios Serotoninérgicos/metabolismo , Serotonina/administração & dosagem , Serotonina/metabolismo
9.
Am J Physiol Regul Integr Comp Physiol ; 314(3): R489-R498, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29187382

RESUMO

We have addressed the hypothesis that the opposing effects of bronchopulmonary C-fiber activation on cough are attributable to the activation of C-fiber subtypes. Coughing was evoked in anesthetized guinea pigs by citric acid (0.001-2 M) applied topically in 100-µl aliquots to the tracheal mucosa. In control preparations, citric acid evoked 10 ± 1 coughs cumulatively. Selective activation of the pulmonary C fibers arising from the nodose ganglia with either aerosols or continuous intravenous infusion of adenosine or the 5-HT3 receptor-selective agonist 2-methyl-5-HT nearly abolished coughing evoked subsequently by topical citric acid challenge. Delivering adenosine or 2-methyl-5-HT directly to the tracheal mucosa (where few if any nodose C fibers terminate) was without effect on citric acid-evoked cough. These actions of pulmonary administration of adenosine and 2-methyl-5-HT were accompanied by an increase in respiratory rate, but it is unlikely that the change in respiratory pattern caused the decrease in coughing, as the rapidly adapting receptor stimulant histamine also produced a marked tachypnea but was without effect on cough. In awake guinea pigs, adenosine failed to evoke coughing but reduced coughing induced by the nonselective C-fiber stimulant capsaicin. We conclude that bronchopulmonary C-fiber subtypes in guinea pigs have opposing effects on cough, with airway C fibers arising from the jugular ganglia initiating and/or sensitizing the cough reflex and the intrapulmonary C fibers arising from the nodose ganglia actively inhibiting cough upon activation.


Assuntos
Tosse/fisiopatologia , Fibras Nervosas Amielínicas/classificação , Gânglio Nodoso/fisiopatologia , Traqueia/inervação , Potenciais de Ação , Adenosina/administração & dosagem , Animais , Bradicinina/administração & dosagem , Ácido Cítrico , Tosse/induzido quimicamente , Tosse/prevenção & controle , Modelos Animais de Doenças , Cobaias , Histamina/administração & dosagem , Masculino , Fibras Nervosas Amielínicas/efeitos dos fármacos , Gânglio Nodoso/efeitos dos fármacos , Agonistas do Receptor Purinérgico P1/administração & dosagem , Reflexo , Taxa Respiratória , Serotonina/administração & dosagem , Serotonina/análogos & derivados , Agonistas do Receptor 5-HT3 de Serotonina/administração & dosagem
10.
Artigo em Inglês | MEDLINE | ID: mdl-29679684

RESUMO

Neuropeptides in the central nervous system regulate reproductive activities in vertebrates. Ala-Pro-Gly-Trp-NH2 (APGWamide), a neuromediator expressed in the neural ganglia of mollusks, controls sexual maturation and reproduction. To clarify the role of APGWamide in sexual behavior regulation and gamete cell maturation in mollusks, we cloned the cDNA of APGWamide precursor (Hdh-APGWamide) and examined the spatiotemporal expression of the transcript in the Pacific abalone Haliotis discus hannai. The 222-amino acid sequence of the precursor deduced from the cDNA sequence showed typical features of gastropod APGWamide precursors. Phylogenetic analysis revealed that Hdh-APGWamide is classified with other gastropod APGWamide precursors, which form a separate branch from those of the bivalves. Hdh-APGWamide mRNA was highly expressed in the neural ganglia in both sexes. In females, the three ganglia (pleuro-pedal ganglion, PPG; branchial ganglion, and cerebral ganglion) showed similar expression in immature and mature animals, whereas in males, the level in the PPG only was higher at maturity (P < 0.05). In vivo injection of APGWamide or 5-hydroxytryptamine (10-3 M) increased the frequency of spawning and the number of released sperm cells by mature males (P < 0.05), while concentrations above 10-7 M enhanced germinal vesicle breakdown in fully developed cultured oocytes (P < 0.05). Thus, the phylogenetic branch of the APGWamide precursor gene in Haliotidae was separate from the other branches under the phylum Mollusca, and this gene exhibited ganglion-specific expression, indicating that it may induce final maturation and spawning in both sexes of Haliotis spp.


Assuntos
Gastrópodes/genética , Gastrópodes/fisiologia , Perfilação da Expressão Gênica , Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar , Feminino , Gânglios/metabolismo , Masculino , Neuropeptídeos/administração & dosagem , Neuropeptídeos/genética , Oócitos/citologia , Oócitos/efeitos dos fármacos , Filogenia , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , Reprodução , Serotonina/administração & dosagem , Comportamento Sexual Animal
11.
Learn Mem ; 24(8): 331-340, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28716953

RESUMO

When presented with noxious stimuli, Aplysia exhibits concurrent sensitization of defensive responses, such as the tail-induced siphon withdrawal reflex (TSWR) and suppression of feeding. At the cellular level, sensitization of the TSWR is accompanied by an increase in the excitability of the tail sensory neurons (TSNs) that elicit the reflex, whereas feeding suppression is accompanied by decreased excitability of B51, a decision-making neuron in the feeding neural circuit. The goal of this study was to develop an in vitro analog coexpressing the above cellular correlates. We used a reduced preparation consisting of buccal, cerebral, and pleural-pedal ganglia, which contain the neural circuits controlling feeding and the TSWR, respectively. Sensitizing stimuli were delivered in vitro by electrical stimulation of afferent nerves. When trained with sensitizing stimuli, the in vitro analog expressed concomitant increased excitability in TSNs and decreased excitability in B51, which are consistent with the occurrence of sensitization and feeding suppression induced by in vivo training. This in vitro analog expressed both short-term (15 min) and long-term (24 h) excitability changes in TSNs and B51, depending on the amount of training administered. Finally, in vitro application of serotonin increased TSN excitability without altering B51 excitability, mirroring the in vivo application of the monoamine that induces sensitization, but not feeding suppression.


Assuntos
Aprendizagem/fisiologia , Neurônios Aferentes/fisiologia , Técnicas de Cultura de Tecidos , Animais , Aplysia , Ingestão de Alimentos/fisiologia , Estimulação Elétrica , Gânglios dos Invertebrados/fisiologia , Potenciais da Membrana/fisiologia , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Técnicas de Patch-Clamp , Serotonina/administração & dosagem , Serotonina/metabolismo
12.
Acta Biol Hung ; 69(3): 225-243, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30257576

RESUMO

Hatching is an important phase of the development of pulmonate gastropods followed by the adult-like extracapsular foraging life. Right before hatching the juveniles start to display a rhythmic radula movement, executed by the buccal complex, consisting of the buccal musculature (mass) and a pair of the buccal ganglia. In order to have a detailed insight into this process, we investigated the serotonergic regulation of the buccal (feeding) rhythm in 100% stage embryos of the pond snail, Lymnaea stagnalis, applying quantitative immunohistochemistry combined with the pharmacological manipulation of the serotonin (5-HT) synthesis, by either stimulating (by the 5-HT precursor 5-hydroxytryptophan, 5-HTP) or inhibiting (by the 5-HT synthesis blocker para-chlorophenylalanine, pCPA) it. Corresponding to the direction of the drug effect, significant changes of the fluorescence intensity could be detected both in the cerebral ganglia and the buccal complex. HPLC-MS assay demonstrated that 5-HTP increased meanwhile pCPA decreased the 5-HT content both of the central ganglia and the buccal complex. As to the feeding activity, 5-HTP induced only a slight (20%) increase, whereas the pCPA resulted in a 20% decrease of the radula protrusion frequency. Inhibition of 5-HT re-uptake by clomipramine reduced the frequency by 75%. The results prove the role of both central and peripheral 5-HTergic processes in the regulation of feeding activity. Application of specific receptor agonists and antagonists revealed that activation of a 5-HT1-like receptor depressed the feeding activity, meanwhile activation of a 5-HT6,7-like receptor enhanced it. Saturation binding plot of [3H]-5-HT to receptor and binding experiments performed on membrane pellets prepared from the buccal mass indicated the presence of a 5-HT6-like receptor positively coupled to cAMP. The results suggest that 5-HT influences the buccal (feeding) rhythmic activity in two ways: an inhibitory action is probably exerted via 5-HT1-like receptors, while an excitatory action is realized through 5-HT6,7-like receptors.


Assuntos
Comportamento Alimentar/fisiologia , Lymnaea/fisiologia , Serotonina/metabolismo , 5-Hidroxitriptofano/administração & dosagem , 5-Hidroxitriptofano/farmacologia , Animais , Sistema Nervoso Central/efeitos dos fármacos , Clomipramina/administração & dosagem , Clomipramina/farmacologia , Imuno-Histoquímica , Serotonina/administração & dosagem , Serotonina/farmacologia
13.
Biophys J ; 112(9): 1863-1873, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28494957

RESUMO

Serotonin (5-hydroxytryptamine, 5-HT) is a well-known neurotransmitter that is involved in a growing number of functions in peripheral tissues. Recent studies have shown nonpharmacological functions of 5-HT linked to its chemical properties. Indeed, it was reported that 5-HT may, on the one hand, bind lipid membranes and, on the other hand, protect red blood cells through a mechanism independent of its specific receptors. To better understand these underevaluated properties of 5-HT, we combined biochemical, biophysical, and molecular dynamics simulations approaches to characterize, at the molecular level, the antioxidant capacity of 5-HT and its interaction with lipid membranes. To do so, 5-HT was added to red blood cells and lipid membranes bearing different degrees of unsaturation. Our results demonstrate that 5-HT acts as a potent antioxidant and binds with a superior affinity to lipids with unsaturation on both alkyl chains. We show that 5-HT locates at the hydrophobic-hydrophilic interface, below the glycerol group. This interfacial location is stabilized by hydrogen bonds between the 5-HT hydroxyl group and lipid headgroups and allows 5-HT to intercept reactive oxygen species, preventing membrane oxidation. Experimental and molecular dynamics simulations using membrane enriched with oxidized lipids converge to further reveal that 5-HT contributes to the termination of lipid peroxidation by direct interaction with active groups of these lipids and could also contribute to limit the production of new radicals. Taken together, our results identify 5-HT as a potent inhibitor of lipid peroxidation and offer a different perspective on the role of this pleiotropic molecule.


Assuntos
Antioxidantes/metabolismo , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Serotonina/metabolismo , Antioxidantes/administração & dosagem , Antioxidantes/química , Membrana Celular/química , Eritrócitos/química , Eritrócitos/metabolismo , Citometria de Fluxo , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Peroxidação de Lipídeos , Lipossomos/química , Lipossomos/metabolismo , Microscopia Confocal , Simulação de Dinâmica Molecular , Oxirredução , Serotonina/administração & dosagem , Serotonina/química
14.
Am J Physiol Heart Circ Physiol ; 313(3): H676-H686, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28626072

RESUMO

Serotonin [5-hydroxytryptamine (5-HT)] causes relaxation of the isolated superior mesenteric vein, a splanchnic blood vessel, through activation of the 5-HT7 receptor. As part of studies designed to identify the mechanism(s) through which chronic (≥24 h) infusion of 5-HT lowers blood pressure, we tested the hypothesis that 5-HT causes in vitro and in vivo splanchnic venodilation that is 5-HT7 receptor dependent. In tissue baths for measurement of isometric contraction, the portal vein and abdominal inferior vena cava relaxed to 5-HT and the 5-HT1/7 receptor agonist 5-carboxamidotryptamine; relaxation was abolished by the 5-HT7 receptor antagonist SB-269970. Western blot analyses showed that the abdominal inferior vena cava and portal vein express 5-HT7 receptor protein. In contrast, the thoracic vena cava, outside the splanchnic circulation, did not relax to serotonergic agonists and exhibited minimal expression of the 5-HT7 receptor. Male Sprague-Dawley rats with chronically implanted radiotelemetry transmitters underwent repeated ultrasound imaging of abdominal vessels. After baseline imaging, minipumps containing vehicle (saline) or 5-HT (25 µg·kg-1·min-1) were implanted. Twenty-four hours later, venous diameters were increased in rats with 5-HT-infusion (percent increase from baseline: superior mesenteric vein, 17.5 ± 1.9; portal vein, 17.7 ± 1.8; and abdominal inferior vena cava, 46.9 ± 8.0) while arterial pressure was decreased (~13 mmHg). Measures returned to baseline after infusion termination. In a separate group of animals, treatment with SB-269970 (3 mg/kg iv) prevented the splanchnic venodilation and fall in blood pressure during 24 h of 5-HT infusion. Thus, 5-HT causes 5-HT7 receptor-dependent splanchnic venous dilation associated with a fall in blood pressure.NEW & NOTEWORTHY This research is noteworthy because it combines and links, through the 5-HT7 receptor, an in vitro observation (venorelaxation) with in vivo events (venodilation and fall in blood pressure). This supports the idea that splanchnic venodilation plays a role in blood pressure regulation.


Assuntos
Veias Mesentéricas/efeitos dos fármacos , Receptores de Serotonina/efeitos dos fármacos , Agonistas do Receptor de Serotonina/farmacologia , Serotonina/farmacologia , Circulação Esplâncnica/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Pressão Arterial/efeitos dos fármacos , Relação Dose-Resposta a Droga , Técnicas In Vitro , Infusões Intravenosas , Masculino , Veias Mesentéricas/diagnóstico por imagem , Veias Mesentéricas/metabolismo , Veia Porta/efeitos dos fármacos , Veia Porta/metabolismo , Ratos Sprague-Dawley , Receptores de Serotonina/metabolismo , Serotonina/administração & dosagem , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/administração & dosagem , Telemetria , Fatores de Tempo , Ultrassonografia , Vasodilatadores/administração & dosagem , Veia Cava Inferior/efeitos dos fármacos , Veia Cava Inferior/metabolismo
15.
Brain Behav Immun ; 66: 372-381, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28723348

RESUMO

Serotonin (5-HT) is a neuromodulator involved in several central-mediated mechanisms, such as endocrine processes, behavior, and sleep. Dysfunction of the serotonergic system is mainly linked to psychiatric disorders, but emerging evidence suggests that immune system activation may also alter brain 5-HT signaling. However, whether central 5-HT modulates systemic inflammation (SI) remains unknown. For this purpose, male Wistar rats (280-350g, 8-9weeks) were submitted to the experimental protocols beginning between 9 and 10AM with the performance of injections. The animals were housed at controlled conditions [temperature (25±1°C), light (06:00-18:00) and humidity (60-65%)]. Thus, we measured 5-HT and its metabolite 5-hydroxyindole-3-acetic acid (5-HIAA) in the anteroventral preoptic region [(AVPO) - the hierarchically most important region for body temperature (Tb) control] during lipopolysaccharide (LPS)-induced SI. We also combined LPS (100µg/kg) treatment with intracerebroventricular (icv) injection of 5-HT (5, 10 and 40µg/µL) and measured Tb ("hallmark" of SI), AVPO prostaglandin E2 [(PGE2) - an essential mediator of fever] and prostaglandin D2 [(PGD2) - a cryogenic mediator], plasma corticosterone [(CORT) - a stress marker with an endogenous anti-inflammatory effect] and interleukin-6 [(IL-6) - an immune mediator] levels. Detection limits of PGE2, PGD2, CORT and IL-6 assays were 39.1-2500pg/mL, 19.5-2500pg/mL, 0.12-2000µg/dL, and 0.125-8ng/mL, respectively. We also assessed tail skin temperature [used to calculate heat loss index (HLI)] to assess a key thermoeffector mechanism. As expected we observed LPS-induced increases in Tb, AVPO PGE2 (whereas PGD2 remained unchanged), plasma CORT and IL-6 levels, as well as a decrease in HLI. These changes were accompanied by reduced levels of AVPO 5-HT and 5-HIAA. Furthermore, we also observed a negative correlation between 5-HT and plasma CORT levels. Moreover, icv 5-HT (5, 10 and 40µg/µL) microinjection caused a U-shaped dose-response curve in LPS fever, in which the intermediate dose reduced the febrile response. Icv 5-HT (10µg/µL) microinjection prevented the LPS-induced increases in AVPO PGE2 (whereas not altering PGD2), plasma CORT and IL-6 levels, as well as preventing reduced HLI. Our data are consistent with the notion that AVPO 5-HT synthesis is down-regulated during SI, favoring AVPO PGE2 synthesis and consequently potentiating the immune response. These results reveal a novel effect of central 5-HT as an anti-inflammatory neuromodulator that may take place during psychiatric disorder treatment with 5-HT reuptake inhibitors as well as suggesting that 5-HT modulation per se is a potential therapeutic approach for inflammatory diseases.


Assuntos
Inflamação/metabolismo , Área Pré-Óptica/metabolismo , Serotonina/metabolismo , Animais , Corticosterona/sangue , Dinoprostona/metabolismo , Febre/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Inflamação/induzido quimicamente , Lipopolissacarídeos/administração & dosagem , Masculino , Prostaglandina D2/metabolismo , Ratos Wistar , Serotonina/administração & dosagem , Temperatura Cutânea
16.
Pulm Pharmacol Ther ; 45: 170-180, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28645584

RESUMO

We have investigated the effects of slow (GYY4137) and rapid (NaHS) hydrogen sulfide (H2S) releasing donors in lipopolysaccharide (LPS)-induced airway inflammation in mice. LPS (0.1 mg/ml) in 60 µl PBS was administered by the intranasal (i.n.) route and control group received vehicle, whereas the subgroups of mice were treated with i.n. GYY4137 or NaHS. The tracheal reactivity, inflammatory cell count in bronchoalveolar lavage (BAL) fluid and lung histopathology were evaluated in all groups 48 h after LPS/PBS applications. 5-Hydroxytryptamine (5-HT)-induced contraction response in isolated tracheas was enhanced after LPS treatment but carbachol response was not altered. Incubation with atropine (10-6 M), 5-HT2A receptor antagonist ketanserin (10-9-10-7 M) and 5-HT3 receptor antagonist alosetron (10-8 and 10-7 M) prevented 5-HT-induced hyperreactivity whereas 5-HT4 receptor antagonist GR113808 (10-7 M, 10-6 M) did not have any effect in LPS-treated group. Electrical field stimulation (EFS) of isolated tracheas elicited frequency-dependent contractile response, which was not altered by LPS treatment alone but was enhanced in the presence of 5-HT (10-9-10-4 M). This data indicated that 5-HT2A and 5-HT3 receptors, and acetylcholine released from cholinergic nerves were contributing to 5-HT-induced hyperreactivity in the present experiments. The increase in neutrophil count along with cytokine (IL-1ß, TNF-α) levels in bronchoalveolar lavage (BAL) fluid and histopathological changes like paranchymal inflammation and interalveolar thickening were determined in LPS-treated mice. H2S production in lung homogenates were determined by the methylene blue assay, and found to be similar in both LPS and control groups. The experiments conducted after i.n. treatment with H2S donors has shown that only GYY4137 (1 mg/kg) inhibited 5-HT-induced hyperreactivity, and both GYY4137 and NaHS (1 mg/kg) prevented the neutrophil increase in BAL fluid in LPS-induced airway inflammation. IL-1ß increase in BAL fluid was abolished by both GYY4137 and NaHS treatments whereas TNF-α levels remained unchanged. Furthermore, GYY4137 treatment did not have any effect in LPS-induced changes of lung pathology whereas NaHS prevented the paranchymal inflammation. The different H2S releasing pattern of these donors may explain the difference of their effects in this model. Compounds that provide stable H2S levels via local application may be a new therapeutic approach in airway inflammation.


Assuntos
Sulfeto de Hidrogênio/farmacologia , Inflamação/prevenção & controle , Morfolinas/administração & dosagem , Compostos Organotiofosforados/administração & dosagem , Sulfetos/administração & dosagem , Administração Intranasal , Animais , Hiper-Reatividade Brônquica/prevenção & controle , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Feminino , Inflamação/patologia , Interleucina-1beta/metabolismo , Lipopolissacarídeos/toxicidade , Pulmão/patologia , Camundongos , Morfolinas/farmacologia , Neutrófilos/metabolismo , Compostos Organotiofosforados/farmacologia , Serotonina/administração & dosagem , Serotonina/metabolismo , Sulfetos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
17.
Br Poult Sci ; 58(3): 298-304, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28362179

RESUMO

1. Serotoninergic and adrenergic systems play crucial roles in feed intake regulation in avians but there is no report on possible interactions among them. So, in this study, 5 experiments were designed to evaluate the interaction of central serotonergic and adrenergic systems on food intake regulation in 3 h food deprived (FD3) neonatal layer-type chickens. 2. In Experiment 1, chickens received intracerebroventricular (ICV) injection of control solution, serotonin (56.74 nmol), prazosin (α1 receptor antagonist, 10 nmol) and co-injection of serotonin plus prazosin. In Experiment 2, control solution, serotonin (56.74 nmol), yohimbine (α2 receptor antagonist, 13 nmol) and co-injection of serotonin plus yohimbine were used. In Experiment 3, the birds received control solution, serotonin (56.74 nmol), metoprolol (ß1 receptor antagonist, 24 nmol) and co-injection of serotonin plus metoprolol. In Experiment 4, injections were control solution, serotonin (56.74 nmol), ICI 118.551 (ß2 receptor antagonist, 5 nmol) and serotonin plus ICI 118.551. In Experiment 5, control solution, serotonin (56.74 nmol), SR59230R (ß3 receptor antagonist, 20 nmol) and co-administration of serotonin and SR59230R were injected. In all experiments the cumulative food intake was measured until 120 min post injection. 3. The results showed that ICV injection of serotonin alone decreased food intake in chickens. A combined injection of serotonin plus ICI 118.551 significantly attenuated serotonin-induced hypophagia. Also, co-administration of serotonin and yohimbine significantly amplified the hypophagic effect of serotonin. However, prazosin, metoprolol and SR59230R had no effect on serotonin-induced hypophagia in chickens. 4. These results suggest that serotonin-induced feeding behaviour is probably mediated via α2 and ß2 adrenergic receptors in neonatal layer-type chicken.


Assuntos
Galinhas/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Animais , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Privação de Alimentos , Infusões Intraventriculares , Serotonina/administração & dosagem , Serotonina/farmacologia
18.
Acta Neuropsychiatr ; 29(6): 324-329, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27938441

RESUMO

OBJECTIVE: The cannabinoid receptor 1 (CB1) and transient receptor potential cation channel subfamily V member 1 (TRPV1) are proposed to mediate opposite behavioural responses. Their common denominator is the endocannabinoid ligand anandamide (AEA), which is believed to mediate antidepressant-like effect via CB1-R stimulation and depressive-like effect via TRPV1 activation. This is supposed to explain the bell-shaped dose-response curve for anandamide in preclinical models. METHODS: We investigated this assumption by administering the dual inhibitor of AEA hydrolysis and TRPV1 activation N-arachidonoyl-serotonin (AA-5HT) into the medial prefrontal cortex of rats. AA-5HT was given in three different doses (0.125, 0.250, 0.500 nmol/0.4 µl/side) and rat behaviour was assessed in the forced swim test. RESULTS: Our results show significant antidepressant-like effect of AA-5HT (0.250 nmol) but no effects of low or high doses. The effect of 0.250 nmol AA-5HT was partially attenuated when coadministering the inverse CB1-agonist rimonabant (1.6 µg). CONCLUSION: A 0.250 nmol of AA-5HT administration into the medial prefrontal cortex induced a significant antidepressant-like effect that was partially attenuated by locally blocking CB1-receptor.


Assuntos
Amidoidrolases/antagonistas & inibidores , Antidepressivos/administração & dosagem , Ácidos Araquidônicos/administração & dosagem , Depressão , Córtex Pré-Frontal/efeitos dos fármacos , Serotonina/análogos & derivados , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Comportamento Animal/efeitos dos fármacos , Antagonistas de Receptores de Canabinoides/administração & dosagem , Relação Dose-Resposta a Droga , Agonismo Inverso de Drogas , Masculino , Piperidinas/administração & dosagem , Pirazóis/administração & dosagem , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/antagonistas & inibidores , Rimonabanto , Serotonina/administração & dosagem
19.
Pharmacol Res ; 111: 251-263, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27326920

RESUMO

There is considerable evidence to support the role of anandamide (AEA), an endogenous ligand of cannabinoid receptors, in neuropathic pain modulation. AEA also produces effects mediated by other biological targets, of which the transient receptor potential vanilloid type 1 (TRPV1) has been the most investigated. Both, inhibition of AEA breakdown by fatty acid amide hydrolase (FAAH) and blockage of TRPV1 have been shown to produce anti-nociceptive effects. Recent research suggests the usefulness of dual-action compounds, which may afford greater anti-allodynic efficacy. Therefore, in the present study, we examined the effect of N-arachidonoyl-serotonin (AA-5-HT), a blocker of FAAH and TRPV1, in a rat model of neuropathic pain after intrathecal administration. We found that treatment with AA-5-HT increased the pain threshold to mechanical and thermal stimuli, with highest effect at the dose of 500nM, which was most strongly attenuated by AM-630, CB2 antagonist, administration. The single action blockers PF-3845 (1000nM, for FAAH) and I-RTX (1nM, for TRPV1) showed lower efficacy than AA-5-HT. Moreover AA-5-HT (500nM) elevated AEA and palmitoylethanolamide (PEA) levels. Among the possible targets of these mediators, only the mRNA levels of CB2, GPR18 and GPR55, which are believed to be novel cannabinoid receptors, were upregulated in the spinal cord and/or DRG of CCI rats. It was previously reported that AA-5-HT acts in CB1 and TRPV1-dependent manner after systemic administration, but here for the first time we show that AA-5-HT action at the spinal level involves CB2, with potential contributions from GRP18 and/or GPR55 receptors.


Assuntos
Analgésicos/farmacologia , Ácidos Araquidônicos/farmacologia , Neuralgia/prevenção & controle , Nociceptividade/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Serotonina/análogos & derivados , Medula Espinal/efeitos dos fármacos , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/genética , Amidoidrolases/metabolismo , Analgésicos/administração & dosagem , Animais , Ácidos Araquidônicos/administração & dosagem , Ácidos Araquidônicos/metabolismo , Antagonistas de Receptores de Canabinoides/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Endocanabinoides/metabolismo , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Glicerídeos/metabolismo , Injeções Espinhais , Masculino , Neuralgia/genética , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Alcamidas Poli-Insaturadas/metabolismo , Ratos Wistar , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/efeitos dos fármacos , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Receptores de Canabinoides/efeitos dos fármacos , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Serotonina/administração & dosagem , Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Fatores de Tempo
20.
J Negat Results Biomed ; 15: 8, 2016 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-27133202

RESUMO

BACKGROUND: Evidence suggests that vagal nerve activity may play a role in sleep apnea induction. In anesthetized rats, dronabinol, a cannabinoid (CB) receptor agonist, injected into the nodose ganglia attenuates reflex apnea and increases genioglossus activity, and reflex apnea attenuation is blocked by systemic pre-treatment with cannabinoid type 1 and/or type 2 receptor antagonists. However, it is unclear whether dronabinol has similar effects in the central nervous system; CB receptors are widely distributed in the brain, especially on neuronal circuitry important for respiration and upper airway activation. Here, we examine the effects of intracerebroventricular (ICV) injection of dronabinol on serotonin (5-HT)-induced apnea. METHODS: Adult male Sprague-Dawley rats were anesthetized and instrumented with bilateral electrodes to monitor genioglossi EMG and with a piezoelectric strain gauge to monitor respiratory pattern. Serotonin was intravenously infused into a femoral vein to induce reflex apnea. After baseline recordings, rats were placed in a stereotaxic apparatus. A unilateral osteotomy was made to allow access for injection to the right lateral ventricle, and the dura were carefully removed. Dronabinol (100, 10, 1, or 0.1 µg/3 µl DMSO) or control (3 µl DMSO) was injected into the right lateral ventricle and 5-HT infusion was repeated. Data (mean ± SEM) were analyzed using a mixed model analysis with a repeated/fixed measure. RESULTS: There was no main effect in 5-HT-induced apnea or breath duration, or in breath instability, between ICV dronabinol injected and ICV vehicle control injected groups. Moreover, there was no main effect in phasic or tonic genioglossus activity between ICV dronabinol injected and ICV vehicle control injected groups. CONCLUSION: Our data show that ICV injection of dronabinol did not decrease 5-HT-induced apneas, and did not increase genioglossus activity. This in contrast to published results of dronabinol's effect on apnea via the vagus nerve. Our results suggest that the effects of dronabinol on reflex apneas are peripherally mediated via suppression of vagal nerve activity.


Assuntos
Apneia/prevenção & controle , Agonistas de Receptores de Canabinoides/administração & dosagem , Dronabinol/administração & dosagem , Serotonina/administração & dosagem , Animais , Apneia/induzido quimicamente , Apneia/fisiopatologia , Agonistas de Receptores de Canabinoides/farmacologia , Dronabinol/farmacologia , Eletromiografia , Injeções Intraventriculares , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA