Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 210: 111882, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33418153

RESUMO

Changes in the environment as a result of industrialisation and urbanisation impact negatively on plant growth and crop production. Cadmium (Cd) is one of the most dangerous metals that enters the food chain, with toxic effects on plants and human health. This study evaluated the potential of Silene sendtneri as a novel hyperaccumulator and the role of seed priming in tolerance and accumulation rate of Cd. The effect of different priming agents on germination performance, root growth, seedling development, metal uptake and accumulation, antioxidant defences including enzymatic and non-enzymatic antioxidants has been assessed. Seed priming using silicic acid, proline alone or in combination with salicylic acid- enhanced germination, seedling development, and root growth under Cd stress. The same priming treatments induced an increase of water content in shoots and roots when plants were exposed to Cd. The enzymatic antioxidant response was specific for the priming agent used. An increase in ferulic acid and rutin in shoots was related to the increase of Cd concentration in the medium. The concentration of malic and oxalic acid increased significantly in shoots of plants grown on high Cd concentrations compared to low Cd concentrations. Silene sendtneri can accumulate significant levels of Cd with enhanced accumulation rate and tolerance when seeds are primed. The best results are obtained by seed priming using 1% silicic acid, proline and salicylic acid.


Assuntos
Cádmio/administração & dosagem , Prolina/farmacologia , Ácido Salicílico/farmacologia , Silene/efeitos dos fármacos , Ácido Silícico/farmacologia , Poluentes do Solo/administração & dosagem , Bioacumulação , Tolerância a Medicamentos , Germinação/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Silene/crescimento & desenvolvimento , Silene/metabolismo
2.
Planta ; 252(1): 3, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514846

RESUMO

MAIN CONCLUSION: A stable isotope-assisted mass spectrometry-based platform was utilized to demonstrate that the plant hormone, salicylic acid, is catabolized to catechol, a widespread secondary plant compound. The phytohormone salicylic acid (SA) plays a central role in the overall plant defense program, as well as various other aspects of plant growth and development. Although the biosynthetic steps toward SA are well documented, how SA is catabolized in plants remains poorly understood. Accordingly, in this study a series of stable isotope feeding experiments were performed with Silene latifolia (white campion) to explore possible routes of SA breakdown. S. latifolia flowers that were fed a solution of [2H6]-salicylic acid emitted the volatile and potent pollinator attractant, 1,2-dimethoxybenzene (veratrole), which contained the benzene ring-bound deuterium atoms. Extracts from these S. latifolia flowers revealed labeled catechol as a possible intermediate. After feeding flowers with [2H6]-catechol, the stable isotope was recovered in veratrole as well as its precursor, guaiacol. Addition of a trapping pool of guaiacol in combination with [2H6]-salicylic acid resulted in the accumulation of the label into catechol. Finally, we provide evidence for catechol O-methyltransferase enzyme activity in a population of S. latifolia that synthesizes veratrole from guaiacol. This activity was absent in non-veratrole emitting flowers. Taken together, these results imply the conversion of salicylic acid to veratrole in the following reaction sequence: salicylic acid > catechol > guaiacol > veratrole. This catabolic pathway for SA may also be embedded in other lineages of the plant kingdom, particularly those species which are known to accumulate catechol.


Assuntos
Catecol O-Metiltransferase/metabolismo , Catecóis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Salicílico/metabolismo , Silene/metabolismo , Anisóis/metabolismo , Catecol O-Metiltransferase/genética , Flores/genética , Flores/metabolismo , Metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polinização , Silene/genética
3.
Ecotoxicol Environ Saf ; 201: 110823, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32540619

RESUMO

This study compared co-tolerance to salinity and cadmium and investigated its mechanisms in a facultative metallophyte Silene vulgaris originating from distinct habitats. Shoots of calamine (Cal) and non-metallicolous (N-Cal) ecotypes grown in vitro were exposed to 10 and 100 mM NaCl, 5 µM CdCl2 and their combinations. Stress effects were evaluated based on growth, oxidative stress parameters, and DNA content and damage. Tolerance mechanisms were assessed by analyzing non-enzymatic antioxidants, osmolytes and ion accumulation. Irrespective of the ecotype, Cd stimulated shoot proliferation (micropropagation coefficients MC = 15.2 and 12.1 for Cal and N-Cal, respectively, growth tolerance index GTI = 148.1 and 156.7%). In Cal ecotype this was attributed to an increase in glutathione content and reorganization of cell membrane structures under Cd exposure, whereas in N-Cal to enhanced synthesis of other non-enzymatic antioxidants, mainly carotenoids and ascorbate. Low salinity stimulated growth of Cal ecotype due to optimizing Cl- content. High salinity inhibited growth, especially in Cal ecotype, where it enhanced DNA damage and disturbed ionic homeostasis. Species-specific reaction to combined salinity and Cd involved a mutual inhibition of Na+, Cl- and Cd2+ uptake. N-Cal ecotype responded to combined stresses by enhancing its antioxidant defense, presumably induced by Cd, whereas the metallicolous ecotype triggered osmotic adjustment. The study revealed that in S. vulgaris Cd application ameliorated metabolic responses to simultaneous salinity exposure. It also shed a light on distinct strategies of coping with combined abiotic stresses in two ecotypes of the species showing high plasticity in environmental conditions.


Assuntos
Adaptação Fisiológica , Cádmio/toxicidade , Dano ao DNA , Estresse Oxidativo/efeitos dos fármacos , Silene/efeitos dos fármacos , Cloreto de Sódio/toxicidade , Poluentes do Solo/toxicidade , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Carotenoides/metabolismo , Ecótipo , Glutationa/metabolismo , Estresse Oxidativo/genética , Salinidade , Silene/genética , Silene/crescimento & desenvolvimento , Silene/metabolismo , Solo/química
4.
Ecotoxicol Environ Saf ; 204: 111086, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32781345

RESUMO

In the present research, Silene vulgaris as a representative species growing on both unpolluted and heavy metal (HM) polluted terrains were used to identify ecotype-specific responses to metallic stress. Growth, cell ultrastructure and element accumulations were compared between non-metallicolous (NM), calamine (CAL) and serpentine (SER) specimens untreated with HMs and treated with Pb, Cd and Zn ions under in vitro conditions. Moreover, proteins' modifications related to their level, carbonylation and degradations via vacuolar proteases were verified and linked with potential mechanisms to cope with ions toxicity. Our experiment revealed diversified strategy of HM uptake in NM and both metallicolous ecotypes, in which antagonistic relationship of Zn and Pb/Cd ions provided survival benefits for the whole organism. Despite this similarity, growth rate and metabolic pathways induced in CAL and SER shoots varied significantly. Exposition to HMs in CAL culture led to drop in protein level by approximately 16% compared to the control. This parameter nearly correlated with the enhanced activity of proteases at pH 5.2 as well as possible glutamate changes to proline and reduced glutathione, resulting in intensified growth and first signs of cell senescence. In turn, SER shoots were characterized by growth retardation (to 53% of the control), although protein level and carbonylation were not modified, while a deeper insight into protein network showed its remodeling towards production of polyamines and 2-oxoglutarate delivered to the Krebs cycle. Contrary, an uncontrolled HM influx in NM shoots contributed to morpho-structural disorders accompanied by an increase activity of proteases involved in the degradation of oxidized proteins, what pointed to metal-induced autophagy. Taken together, S. vulgaris ecotypes respond to stress by triggering various mechanisms engaged their survival and/or death under HM treatment.


Assuntos
Cádmio/toxicidade , Chumbo/toxicidade , Proteínas de Plantas/metabolismo , Silene/efeitos dos fármacos , Poluentes do Solo/toxicidade , Zinco/toxicidade , Autofagia/efeitos dos fármacos , Bioacumulação/efeitos dos fármacos , Cádmio/metabolismo , Ecótipo , Glutationa/metabolismo , Chumbo/metabolismo , Modelos Teóricos , Estresse Oxidativo/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Brotos de Planta/ultraestrutura , Silene/crescimento & desenvolvimento , Silene/metabolismo , Silene/ultraestrutura , Poluentes do Solo/metabolismo , Zinco/metabolismo
5.
BMC Plant Biol ; 19(1): 568, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856730

RESUMO

BACKGROUND: Gynodioecious species exist in two sexes - male-sterile females and hermaphrodites. Male sterility in higher plants often results from mitonuclear interaction between the CMS (cytoplasmic male sterility) gene(s) encoded by mitochondrial genome and by nuclear-encoded restorer genes. Mitochondrial and nuclear-encoded transcriptomes in females and hermaphrodites are intensively studied, but little is known about sex-specific gene expression in plastids. We have compared plastid transcriptomes between females and hermaphrodites in two haplotypes of a gynodioecious species Silene vulgaris with known CMS candidate genes. RESULTS: We generated complete plastid genome sequences from five haplotypes S. vulgaris including the haplotypes KRA and KOV, for which complete mitochondrial genome sequences were already published. We constructed a phylogenetic tree based on plastid sequences of S. vulgaris. Whereas lowland S. vulgaris haplotypes including KRA and KOV clustered together, the accessions from high European mountains diverged early in the phylogram. S. vulgaris belongs among Silene species with slowly evolving plastid genomes, but we still detected 212 substitutions and 112 indels between two accessions of this species. We estimated elevated Ka/Ks in the ndhF gene, which may reflect the adaptation of S. vulgaris to high altitudes, or relaxed selection. We compared depth of coverage and editing rates between female and hermaphrodite plastid transcriptomes and found no significant differences between the two sexes. We identified 51 unique C to U editing sites in the plastid genomes of S. vulgaris, 38 of them in protein coding regions, 2 in introns, and 11 in intergenic regions. The editing site in the psbZ gene was edited only in one of two plastid genomes under study. CONCLUSIONS: We revealed no significant differences between the sexes in plastid transcriptomes of two haplotypes of S. vulgaris. It suggests that gene expression of plastid genes is not affected by CMS in flower buds of S. vulgaris, although both sexes may still differ in plastid gene expression in specific tissues. We revealed the difference between the plastid transcriptomes of two S. vulgaris haplotypes in editing rate and in the coverage of several antisense transcripts. Our results document the variation in plastid genomes and transcriptomes in S. vulgaris.


Assuntos
Genomas de Plastídeos/genética , Silene/genética , Transcriptoma/genética , Silene/metabolismo
6.
BMC Plant Biol ; 19(1): 496, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31726989

RESUMO

BACKGROUND: Anthocyanins are the primary source of colour in flowers and also accumulate in vegetative tissues, where they have multiple protective roles traditionally attributed to early compounds of the metabolic pathway (flavonols, flavones, etc.). Petal-specific loss of anthocyanins in petals allows plants to escape from the negative pleiotropic effects of flavonoid and anthocyanins loss in vegetative organs, where they perform a plethora of essential functions. Herein, we investigate the degree of pleiotropy at the biochemical scale in a pink-white flower colour polymorphism in the shore campion, Silene littorea. We report the frequencies of pink and white individuals across 21 populations and underlying biochemical profiles of three flower colour variants: anthocyanins present in all tissues (pink petals), petal-specific loss of anthocyanins (white petals), and loss of anthocyanins in all tissues (white petals). RESULTS: Individuals lacking anthocyanins only in petals represent a stable polymorphism in two populations at the northern edge of the species range (mean frequency 8-21%). Whereas, individuals lacking anthocyanins in the whole plant were found across the species range, yet always at very low frequencies (< 1%). Biochemically, the flavonoids detected were anthocyanins and flavones; in pigmented individuals, concentrations of flavones were 14-56× higher than anthocyanins across tissues with differences of > 100× detected in leaves. Loss of anthocyanin pigmentation, either in petals or in the whole plant, does not influence the ability of these phenotypes to synthesize flavones, and this pattern was congruent among all sampled populations. CONCLUSIONS: We found that all colour variants showed similar flavone profiles, either in petals or in the whole plant, and only the flower colour variant with anthocyanins in photosynthetic tissues persists as a stable flower colour polymorphism. These findings suggest that anthocyanins in photosynthetic tissues, not flavonoid intermediates, are the targets of non-pollinator mediated selection.


Assuntos
Antocianinas/genética , Flores/genética , Silene/genética , Antocianinas/metabolismo , Cromatografia Líquida de Alta Pressão , Flavonoides/metabolismo , Flores/metabolismo , Genes de Plantas , Pleiotropia Genética , Fenótipo , Pigmentação/genética , Polimorfismo Genético , Silene/metabolismo , Espectrometria de Massas por Ionização por Electrospray
7.
BMC Genomics ; 19(1): 540, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012097

RESUMO

BACKGROUND: S. latifolia is a model organism for the study of sex chromosome evolution in plants. Its sex chromosomes include large regions in which recombination became gradually suppressed. The regions tend to expand over time resulting in the formation of evolutionary strata. Non-recombination and later accumulation of repetitive sequences is a putative cause of the size increase in the Y chromosome. Gene decay and accumulation of repetitive DNA are identified as key evolutionary events. Transposons in the X and Y chromosomes are distributed differently and there is a regulation of transposon insertion by DNA methylation of the target sequences, this points to an important role of DNA methylation during sex chromosome evolution in Silene latifolia. The aim of this study was to elucidate whether the reduced expression of the Y allele in S. latifolia is caused by genetic degeneration or if the cause is methylation triggered by transposons and repetitive sequences. RESULTS: Gene expression analysis in S. latifolia males has shown expression bias in both X and Y alleles. To determine whether these differences are caused by genetic degeneration or methylation spread by transposons and repetitive sequences, we selected several sex-linked genes with varying degrees of degeneration and from different evolutionary strata. Immunoprecipitation of methylated DNA (MeDIP) from promoter, exon and intron regions was used and validated through bisulfite sequencing. We found DNA methylation in males, and only in the promoter of genes of stratum I (older). The Y alleles in genes of stratum I were methylation enriched compared to X alleles. There was also abundant and high percentage methylation in the CHH context in most sequences, indicating de novo methylation through the RdDM pathway. CONCLUSIONS: We speculate that TE accumulation and not gene decay is the cause of DNA methylation in the S. latifolia Y sex chromosome with influence on the process of heterochromatinization.


Assuntos
Cromossomos de Plantas , Metilação de DNA , Evolução Molecular , Silene/genética , DNA de Plantas/química , Expressão Gênica , Folhas de Planta/metabolismo , Homologia de Sequência do Ácido Nucleico , Silene/metabolismo
8.
Plant Cell Physiol ; 58(2): 320-328, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011871

RESUMO

Mechanisms of suppression of pistil primordia in male flowers and of stamen primordia in female flowers differ in diclinous plants. In this study, we investigated how cell death and cell cycle arrest are related to flower organ formation in Silene latifolia. Using in situ hybridization and a TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay, we detected both cell cycle arrest and cell death in suppressed stamens of female flowers and suppressed pistils of male flowers in S. latifolia. In female flowers infected with Microbotryum lychnidis-dioicae, developmental suppression of stamens is released, and cell cycle arrest and cell death do not occur. Smut spores are formed in S. latifolia anthers infected with M. lychnidis-dioicae, followed by cell death in the endothelium, middle layer, tapetal cells and pollen mother cells. Cell death is difficult to detect using a fluorescein isothiocyanate-labeled TUNEL assay due to strong autofluorescence in the anther. We therefore combined a TUNEL assay in an infrared region with transmission electron microscopy to detect cell death in anthers. We show that following infection by M. lychnidis-dioicae, a TUNEL signal was not detected in the endothelium, middle layer or pollen mother cells, and cell death with outflow of cell contents, including the nucleoplast, was observed in tapetal cells.


Assuntos
Basidiomycota/fisiologia , Flores/metabolismo , Silene/metabolismo , Silene/microbiologia , Pontos de Checagem do Ciclo Celular/fisiologia , Morte Celular/fisiologia , Flores/microbiologia , Pólen/metabolismo , Pólen/microbiologia
9.
New Phytol ; 215(3): 1102-1114, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28620999

RESUMO

Silene vulgaris is a metallophyte of calamine, cupriferous and serpentine soils all over Europe. Its metallicolous populations are hypertolerant to zinc (Zn), cadmium (Cd), copper (Cu) or nickel (Ni), compared with conspecific nonmetallicolous populations. These hypertolerances are metal-specific, but the underlying mechanisms are poorly understood. We investigated the role of HMA5 copper transporters in Cu-hypertolerance of a S. vulgaris copper mine population. Cu-hypertolerance in Silene is correlated and genetically linked with enhanced expression of two HMA5 paralogs, SvHMA5I and SvHMA5II, each of which increases Cu tolerance when expressed in Arabidopsis thaliana. Most Spermatophytes, except Brassicaceae, possess homologs of SvHMA5I and SvHMA5II, which originate from an ancient duplication predating the appearance of spermatophytes. SvHMA5II and the A. thaliana homolog AtHMA5 localize in the endoplasmic reticulum and upon Cu exposure move to the plasma membrane, from where they are internalized and degraded in the vacuole. This resembles trafficking of mammalian homologs and is apparently an extremely ancient mechanism. SvHMA5I, instead, neofunctionalized and always resides on the tonoplast, likely sequestering Cu in the vacuole. Adaption of Silene to a Cu-polluted soil is at least in part due to upregulation of two distinct HMA5 transporters, which contribute to Cu hypertolerance by distinct mechanisms.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Arabidopsis/genética , Cobre/metabolismo , Cobre/toxicidade , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Silene/metabolismo , Sequência de Aminoácidos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Endocitose , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana Transportadoras/química , Filogenia , Proteínas de Plantas/química , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteólise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Silene/efeitos dos fármacos , Silene/genética , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Vacúolos/metabolismo
10.
Ecotoxicol Environ Saf ; 144: 283-290, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28645029

RESUMO

Understanding the metal behavior at the soil-root interface is of utmost significance for a successful implementation of phytoremediation. In this study, we investigated the differences in chromium (Cr) uptake, chemical changes in soil solution and the shifts in rhizosphere bacterial communities of two genotypes of Silene vulgaris (SV21, SV38) with different tolerance to Cr. A greenhouse experiment was performed in two soils that differed on pH and organic matter (OM) content. An industrial sludge with high content in Cr was used as pollution source. The soil solution in the rhizosphere was sample by Rhizon Soil Moisture Samplers. The total concentration of Cr reached the highest values in soil solution samplers from calcareous soils with poor contents in OM. Plants grown in this soil also increased the Cr uptake in roots of both genotypes, but the concentration was higher in genotype SV-38 than in SV21. The clustering analysis of denaturing gradient gel electrophoresis (DGGE) of 16S rRNA fragments revealed major differences in bacterial community structure related to Cr pollution, followed by soil type and finally, plant genotype. Diversity indices based on DGGE profiles were the highest in alkaline soil, and between genotypes, values were significantly greater in SV38. Canonical correspondence analysis (CCA) showed that changes in bacterial community structure of rhizosphere were highly correlated with total Cr concentration and soil solution pH. The isolation and identification of S. vulgaris bacterial rhizosphere revealed a different composition according to soil type and plant genotype. Results suggested the potential role of Pseudomonas fluorescens on Cr mobilization and therefore, on enhanced metal bioavailability and may provide a starting point for further studies aimed at the combined use of tolerant plants and selected metal mobilizing rhizobacteria, in the microbial-assisted phytoremediation of Cr-polluted soils.


Assuntos
Cromo/metabolismo , Rizosfera , Silene/genética , Microbiologia do Solo , Poluentes do Solo/metabolismo , Solo/química , Biodegradação Ambiental , Eletroforese em Gel de Gradiente Desnaturante , Genótipo , Raízes de Plantas/metabolismo , Pseudomonas fluorescens/isolamento & purificação , RNA Ribossômico 16S/genética , Silene/metabolismo
11.
PLoS Comput Biol ; 11(5): e1004145, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25950739

RESUMO

How organisms determine particular organ numbers is a fundamental key to the development of precise body structures; however, the developmental mechanisms underlying organ-number determination are unclear. In many eudicot plants, the primordia of sepals and petals (the floral organs) first arise sequentially at the edge of a circular, undifferentiated region called the floral meristem, and later transition into a concentric arrangement called a whorl, which includes four or five organs. The properties controlling the transition to whorls comprising particular numbers of organs is little explored. We propose a development-based model of floral organ-number determination, improving upon earlier models of plant phyllotaxis that assumed two developmental processes: the sequential initiation of primordia in the least crowded space around the meristem and the constant growth of the tip of the stem. By introducing mutual repulsion among primordia into the growth process, we numerically and analytically show that the whorled arrangement emerges spontaneously from the sequential initiation of primordia. Moreover, by allowing the strength of the inhibition exerted by each primordium to decrease as the primordium ages, we show that pentamerous whorls, in which the angular and radial positions of the primordia are consistent with those observed in sepal and petal primordia in Silene coeli-rosa, Caryophyllaceae, become the dominant arrangement. The organ number within the outmost whorl, corresponding to the sepals, takes a value of four or five in a much wider parameter space than that in which it takes a value of six or seven. These results suggest that mutual repulsion among primordia during growth and a temporal decrease in the strength of the inhibition during initiation are required for the development of the tetramerous and pentamerous whorls common in eudicots.


Assuntos
Flores/crescimento & desenvolvimento , Modelos Biológicos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Padronização Corporal , Biologia Computacional , Simulação por Computador , Flores/anatomia & histologia , Flores/metabolismo , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Meristema/anatomia & histologia , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Mutação , Reguladores de Crescimento de Plantas/biossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Silene/genética , Silene/crescimento & desenvolvimento , Silene/metabolismo
12.
J Environ Manage ; 166: 330-40, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26520040

RESUMO

Extensive green roofs are used to increase the surface area covered by vegetation in big cities, thereby reducing the urban heat-island effect, promoting CO2 sequestration, and increasing biodiversity and urban-wildlife habitats. In Mediterranean semi-arid regions, the deficiency of water necessitates the use in these roofs of overall native plants which are more adapted to drought than other species. However, such endemic plants have been used scarcely in green roofs. For this purpose, we tested two different substrates with two depths (5 and 10 cm), in order to study their suitability with regard to adequate plant development under Mediterranean conditions. A compost-soil-bricks (CSB) (1:1:3; v:v:v) mixture and another made up of compost and bricks (CB) (1:4; v:v) were arranged in two depths (5 and 10 cm), in cultivation tables. Silene vulgaris (Moench) Garcke and Lagurus ovatus L. seeds were sown in each substrate. These experimental units were subjected, on the one hand, to irrigation at 40% of the registered evapotranspiration values (ET0) and, on the other, to drought conditions, during a nine-month trial. Physichochemical and microbiological substrate characteristics were studied, along with the physiological and nutritional status of the plants. We obtained significantly greater plant coverage in CSB at 10 cm, especially for L. ovatus (80-90%), as well as a better physiological status, especially in S. vulgaris (SPAD values of 50-60), under irrigation, whereas neither species could grow in the absence of water. The carbon and nitrogen fixation by the substrate and the aboveground biomass were also higher in CSB at 10 cm, especially under L. ovatus - in which 1.32 kg C m(-2) and 209 g N m(-2) were fixed throughout the experiment. Besides, the enzymatic and biochemical parameters assayed showed that microbial activity and nutrient cycling, which fulfill a key role for plant development, were higher in CSB. Therefore, irrigation of 40% can maintain an adequate plant cover of both endemic species, particularly in a deeper and soil-containing substrate.


Assuntos
Carbono/metabolismo , Nitrogênio/metabolismo , Poaceae/crescimento & desenvolvimento , Silene/crescimento & desenvolvimento , Solo/química , Biodiversidade , Biomassa , Cidades , Conservação dos Recursos Naturais , Secas , Poaceae/metabolismo , Silene/metabolismo
13.
Ontogenez ; 47(6): 386-94, 2016.
Artigo em Russo | MEDLINE | ID: mdl-30272908

RESUMO

The features of the formation of microshoots in in vitro culture of Silene cretacea­endangered species with narrow ecological amplitude, which is a promising source of medicinal raw materials­were studied. It was demonstrated that, at the micropropagation step, basic Woody Plant Medium containing vitamins according to Murashige and Skoog and supplemented with 0.2 mg/L 6-benzylaminopurine, 1.0 mg/L kinetin, 1.0 mg/L gibberellic acid, and 0.5 mg/L indole-3-acetic acid is the most effective. The combination and concentration of these growth regulators, selected using mathematical combinatorial analysis, activated axillary buds and provided a high multiplication factor (9.3 ± 1.3 microshoots per explant). Morpho-histological analysis revealed the main stages of the formation of microshoots and proved the absence of callus formation during the whole time of the cultivation of explants. The features of the dynamics of the culture during the year of continuous cultivation are presented.


Assuntos
Células Vegetais/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Técnicas de Embriogênese Somática de Plantas , Silene , Silene/citologia , Silene/metabolismo
14.
Am J Bot ; 101(8): 1388-92, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25156986

RESUMO

UNLABELLED: • PREMISE OF THE STUDY: Flower color is one of the most important traits for pollinator attraction. However, natural plant populations often harbor rare flower color variants resulting from mutations in biochemical pathways for floral pigment production. It is unclear how such mutations can persist because they can affect not only pollinator visitation but also plant fertility and performance.• METHODS: We collected rare white-flowered (anthocyanin-deficient) and common pink-flowered morphs of Silene dioica from natural populations in Switzerland. First- and second-generation hybrids between pink and white morphs, as well as backcrosses toward white morphs were produced, and the proportion of white-flowered offspring was determined. We compared seed siring ability and seed production between morphs using hand pollination experiments. Moreover, we scored the transfer of pollen analogues (fluorescent dyes) in a 50:50 array of the two morphs.• KEY RESULTS: The proportions of white-flowered plants in the offspring of our crosses were consistent with more than one recessive mutation as the cause of floral anthocyanin deficiency and further suggested a role of maternal effects for flower color. Seed siring ability and seed set did not differ significantly between pink and white morphs. Pollen transfer occurred preferentially within morphs.• CONCLUSIONS: Overall, our results imply that the white morph of S. dioica likely is caused by recessive mutations that do not impair reproduction. However, as this flower color polymorphism led to assortative mating in our experiment, it may represent standing genetic variation with the potential to contribute to evolutionary divergence.


Assuntos
Antocianinas/genética , Flores/metabolismo , Mutação , Pigmentação/genética , Polinização , Polimorfismo Genético , Silene/genética , Antocianinas/metabolismo , Evolução Biológica , Caryophyllaceae , Cor , Cruzamentos Genéticos , Hibridização Genética , Fenótipo , Pólen , Reprodução/genética , Sementes , Silene/metabolismo , Suíça
15.
Environ Sci Technol ; 48(19): 11479-86, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25188746

RESUMO

Phytomanagement could be a viable alternative in areas polluted with wastes from chromium-using industries. This study investigated the ability of Silene vulgaris to take up Cr(III) and Cr(VI) with special attention on the mechanism used by this species to tolerate high doses of Cr(VI). Plants were grown semihydroponically with different concentrations of either Cr(III) or Cr(VI). A combination of synchrotron X-ray spectroscopic techniques, scanning electron and light microscopy and infrared spectroscopy were used to determine the distribution and speciation of Cr. S. vulgaris accumulated more Cr when grown with Cr(VI) resulting in an overall reduction in biomass. Starch accumulation in leaves may be attributed to an impartment between carbon utilization and assimilation resulted from stunted plant growth but not the complete inhibition of photosynthesis indicating that S. vulgaris possess tolerance mechanisms that allows it to survive in Cr(VI) rich environments. These primary tolerance mechanisms are (a) the total reduction of Cr(VI) to Cr(III) in the rhizosphere or just after uptake in the fine lateral root tips and (b) chelation of Cr(III) to the cell wall both of which reduce metal interference with critical cell functions. These mechanisms make S. vulgaris suitable for in situ remediation of Cr polluted soils.


Assuntos
Cromo/metabolismo , Inativação Metabólica , Silene/metabolismo , Biodegradação Ambiental , Biomassa , Fenótipo , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Caules de Planta/metabolismo , Silene/crescimento & desenvolvimento , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Síncrotrons
16.
Biochemistry (Mosc) ; 78(3): 290-4, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23586723

RESUMO

Activities of polygalacturonase and 1,3-ß-glucanase increased in campion (Silene vulgaris) callus cells during co-cultivation with the fungus Trichoderma harzianum. This was associated with a decrease in galacturonic acid residues in the pectic polysaccharide of campion silenan and also in the production of pectin by the callus. Co-cultivation of the callus and the fungus resulted in an increase in contents of arabinose residues in the intracellular arabinogalactan and in contents of galactose residues in the extracellular arabinogalactan.


Assuntos
Glucana 1,3-beta-Glucosidase/metabolismo , Pectinas/química , Proteínas de Plantas/metabolismo , Poligalacturonase/metabolismo , Silene/enzimologia , Silene/microbiologia , Trichoderma/fisiologia , Pectinas/metabolismo , Silene/crescimento & desenvolvimento , Silene/metabolismo
17.
Environ Sci Technol ; 46(18): 9972-9, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22891730

RESUMO

Stable Zn isotope signatures offer a potential tool for tracing Zn uptake and transfer mechanisms within plant-soil systems. Zinc isotopic compositions were determined in the Zn hyperaccumulator Noccaea caerulescens collected at a Zn-contaminated site (Viviez), a serpentine site (Vosges), and a noncontaminated site (Sainte Eulalie) in France. Meanwhile, a Zn-tolerant plant ( Silene vulgaris ) was also collected at Viviez for comparison. While δ(66)Zn was substantially differentiated among N. caerulescens from the three localities, they all exhibited an enrichment in heavy Zn isotopes of 0.40-0.72‰ from soil to root, followed by a depletion in heavy Zn from root to shoot (-0.10 to -0.50‰). The enrichment of heavy Zn in roots is ascribed to the transport systems responsible for Zn absorption into root symplast and root-to-shoot translocation, while the depletion in heavy Zn in shoots is likely to be mediated by a diffusive process and an efficient translocation driven by energy-required transporters (e.g., NcHMA4). The mass balance yielded a bulk Zn isotopic composition between plant and soil (Δ(66)Zn(plant-soil)) of -0.01‰ to 0.63‰ in N. caerulescens , indicative of high- and/or low-affinity transport systems operating in the three ecotypes. In S. vulgaris , however, there was no significant isotope fractionation between whole plant and rhizosphere soil and between root and shoot, suggesting that this species appears to have a particular Zn homeostasis. We confirm that quantifying stable Zn isotopes is useful for understanding Zn accumulation mechanisms in plants.


Assuntos
Brassicaceae/metabolismo , Raízes de Plantas/metabolismo , Silene/metabolismo , Isótopos de Zinco/metabolismo , Zinco/metabolismo , Zinco/análise , Isótopos de Zinco/análise
18.
J Environ Manage ; 95 Suppl: S233-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20708330

RESUMO

Mercury is a highly toxic pollutant with expensive clean up, because of its accumulative and persistent character in the biota. The objective of this work was to evaluate the effectiveness of Silene vulgaris, facultative metallophyte which have populations on both non-contaminated and metalliferous soils, to uptake Hg from artificially polluted soils. A pot experiment was carried out in a rain shelter for a full growth period. Two soils (C pH = 8.55 O.M. 0.63% and A pH = 7.07 O.M. 0.16%) were used, previously contaminated with Hg as HgCl(2) (0.6 and 5.5 mg Hg kg(-1) soil). Plants grew healthy and showed good appearance throughout the study without significantly decreasing biomass production. Mercury uptake by plants increased with the mercury concentration found in both soils. Differences were statistically significant between high dosage and untreated soil. The fact that S. vulgaris retains more mercury in root than in shoot and also, the well known effectiveness of these plants in the recovering of contaminated soils makes S. vulgaris a good candidate to phytostabilization technologies.


Assuntos
Mercúrio/farmacocinética , Silene/crescimento & desenvolvimento , Silene/metabolismo , Poluentes do Solo/farmacocinética , Biodegradação Ambiental , Biomassa , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Solo/química
19.
Prikl Biokhim Mikrobiol ; 47(1): 90-4, 2011.
Artigo em Russo | MEDLINE | ID: mdl-21442925

RESUMO

Pectin-protein fraction SVC was isolated from the callus culture of the bladder campion (Silene vulgaris). The main components in it were residues of D-galacturonic acid, galactose, arabinose, rhamnose, and protein. Using ion-exchange chromatography, ultrafiltration, and acid and enzymatic hydrolysis, it was shown that SVC contained a mixture of molecules of linear pectin, branched pectin polysaccharide, and pectin-protein polymer. A fragment of the linear chain of galacturonan amounted to more than half of the entire carbohydrate silenan chain. The branched area of the macromolecule is represented by rhamnogalacturonan I. The pectin-protein polymer consisted mainly of protein and weakly branched pectin fragments with molecular mass of more than 300 kDa.


Assuntos
Arabinose/isolamento & purificação , Galactose/isolamento & purificação , Ácidos Hexurônicos/isolamento & purificação , Proteínas/isolamento & purificação , Ramnose/isolamento & purificação , Silene/química , Arabinose/química , Técnicas de Cultura de Células , Cromatografia por Troca Iônica , Galactanos/química , Galactanos/isolamento & purificação , Galactose/química , Ácidos Hexurônicos/química , Hidrólise , Pectinas/química , Pectinas/isolamento & purificação , Extratos Vegetais , Proteínas/química , Ramnose/química , Silene/metabolismo , Ultrafiltração
20.
J Tradit Chin Med ; 41(3): 349-354, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34114390

RESUMO

OBJECTIVE: To examine the efficacy of Silene arenosa extract on acetylcholinesterase (AChE) of krait (Bungarus Sindanus) snake venom. METHODS: The present project designed to evaluate the inhibition of AChE by following standard procedures. RESULTS: Statistical analysis of the results showed that Silene arenosa exerted 73% inhibition against the krait venom acetylcholinesterase at fixed substrate acetylcholine (ACh) concentration (0.5 mM). Kinetic analysis using the Lineweaver Burk plot revealed that Silene arenosa caused a competitive type of inhibition i.e. Km values increased from 26.6 to 93.3 mM (26.6% to 93.3%) and Vmax remained constant in a concentration-dependent manner. Silene arenosa competes with the substrate to bind at the active site of the enzyme. The Kmapp of venom AChE for Silene arenosa increased from 60% to 81.6% and the Vmaxapp remains constant. Ki (inhibition constant was estimated to be 48 µg for snake venom; while the Km (Michaelis-Menten constant of AChE- substrate into AChE and product) was estimated to be 0.5 mM. The IC50 of AchE calculated for Silene arenosa was 67 µg. CONCLUSION: The present results suggest that Silene arenosa extract can be considered as an inhibitor of snake venom AChE.


Assuntos
Acetilcolinesterase , Silene , Acetilcolinesterase/metabolismo , Animais , Bungarus/metabolismo , Inibidores da Colinesterase/farmacologia , Humanos , Cinética , Extratos Vegetais , Silene/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA