Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.932
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 180(2): 311-322.e15, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31883793

RESUMO

The propagation of electrical impulses along axons is highly accelerated by the myelin sheath and produces saltating or "jumping" action potentials across internodes, from one node of Ranvier to the next. The underlying electrical circuit, as well as the existence and role of submyelin conduction in saltatory conduction remain, however, elusive. Here, we made patch-clamp and high-speed voltage-calibrated optical recordings of potentials across the nodal and internodal axolemma of myelinated neocortical pyramidal axons combined with electron microscopy and experimentally constrained cable modeling. Our results reveal a nanoscale yet conductive periaxonal space, incompletely sealed at the paranodes, which separates the potentials across the low-capacitance myelin sheath and internodal axolemma. The emerging double-cable model reproduces the recorded evolution of voltage waveforms across nodes and internodes, including rapid nodal potentials traveling in advance of attenuated waves in the internodal axolemma, revealing a mechanism for saltation across time and space.


Assuntos
Potenciais de Ação/fisiologia , Bainha de Mielina/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Nós Neurofibrosos/fisiologia , Animais , Axônios/metabolismo , Axônios/fisiologia , Masculino , Modelos Neurológicos , Fibras Nervosas Mielinizadas/metabolismo , Técnicas de Patch-Clamp/métodos , Células Piramidais/fisiologia , Ratos , Ratos Wistar
2.
Cell ; 180(1): 122-134.e10, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31866066

RESUMO

Voltage-gated sodium channel Nav1.5 generates cardiac action potentials and initiates the heartbeat. Here, we report structures of NaV1.5 at 3.2-3.5 Å resolution. NaV1.5 is distinguished from other sodium channels by a unique glycosyl moiety and loss of disulfide-bonding capability at the NaVß subunit-interaction sites. The antiarrhythmic drug flecainide specifically targets the central cavity of the pore. The voltage sensors are partially activated, and the fast-inactivation gate is partially closed. Activation of the voltage sensor of Domain III allows binding of the isoleucine-phenylalanine-methionine (IFM) motif to the inactivation-gate receptor. Asp and Ala, in the selectivity motif DEKA, line the walls of the ion-selectivity filter, whereas Glu and Lys are in positions to accept and release Na+ ions via a charge-delocalization network. Arrhythmia mutation sites undergo large translocations during gating, providing a potential mechanism for pathogenic effects. Our results provide detailed insights into Nav1.5 structure, pharmacology, activation, inactivation, ion selectivity, and arrhythmias.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/ultraestrutura , Animais , Linhagem Celular , Células HEK293 , Coração/fisiologia , Humanos , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp/métodos , Ratos , Sódio/metabolismo , Canais de Sódio/química , Relação Estrutura-Atividade , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/ultraestrutura
3.
Cell ; 180(3): 521-535.e18, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31978320

RESUMO

Cortical layer 1 (L1) interneurons have been proposed as a hub for attentional modulation of underlying cortex, but the transformations that this circuit implements are not known. We combined genetically targeted voltage imaging with optogenetic activation and silencing to study the mechanisms underlying sensory processing in mouse barrel cortex L1. Whisker stimuli evoked precisely timed single spikes in L1 interneurons, followed by strong lateral inhibition. A mild aversive stimulus activated cholinergic inputs and evoked a bimodal distribution of spiking responses in L1. A simple conductance-based model that only contained lateral inhibition within L1 recapitulated the sensory responses and the winner-takes-all cholinergic responses, and the model correctly predicted that the network would function as a spatial and temporal high-pass filter for excitatory inputs. Our results demonstrate that all-optical electrophysiology can reveal basic principles of neural circuit function in vivo and suggest an intuitive picture for how L1 transforms sensory and modulatory inputs. VIDEO ABSTRACT.


Assuntos
Eletrofisiologia/métodos , Potenciais Somatossensoriais Evocados/fisiologia , Interneurônios/fisiologia , Inibição Neural/fisiologia , Imagem Óptica/métodos , Córtex Somatossensorial/citologia , Potenciais de Ação/fisiologia , Animais , Neurônios Colinérgicos/fisiologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp/métodos , Potenciais Sinápticos/fisiologia , Vibrissas/fisiologia
4.
PLoS Comput Biol ; 20(5): e1012053, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38709828

RESUMO

Monosynaptic connectivity mapping is crucial for building circuit-level models of neural computation. Two-photon optogenetic stimulation, when combined with whole-cell recording, enables large-scale mapping of physiological circuit parameters. In this experimental setup, recorded postsynaptic currents are used to infer the presence and strength of connections. For many cell types, nearby connections are those we expect to be strongest. However, when the postsynaptic cell expresses opsin, optical excitation of nearby cells can induce direct photocurrents in the postsynaptic cell. These photocurrent artifacts contaminate synaptic currents, making it difficult or impossible to probe connectivity for nearby cells. To overcome this problem, we developed a computational tool, Photocurrent Removal with Constraints (PhoRC). Our method is based on a constrained matrix factorization model which leverages the fact that photocurrent kinetics are less variable than those of synaptic currents. We demonstrate on real and simulated data that PhoRC consistently removes photocurrents while preserving synaptic currents, despite variations in photocurrent kinetics across datasets. Our method allows the discovery of synaptic connections which would have been otherwise obscured by photocurrent artifacts, and may thus reveal a more complete picture of synaptic connectivity. PhoRC runs faster than real time and is available as open source software.


Assuntos
Artefatos , Biologia Computacional , Modelos Neurológicos , Optogenética , Optogenética/métodos , Animais , Biologia Computacional/métodos , Sinapses/fisiologia , Camundongos , Neurônios/fisiologia , Software , Simulação por Computador , Algoritmos , Técnicas de Patch-Clamp/métodos , Humanos
5.
Neural Comput ; 36(7): 1286-1331, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38776965

RESUMO

In computational neuroscience, multicompartment models are among the most biophysically realistic representations of single neurons. Constructing such models usually involves the use of the patch-clamp technique to record somatic voltage signals under different experimental conditions. The experimental data are then used to fit the many parameters of the model. While patching of the soma is currently the gold-standard approach to build multicompartment models, several studies have also evidenced a richness of dynamics in dendritic and axonal sections. Recording from the soma alone makes it hard to observe and correctly parameterize the activity of nonsomatic compartments. In order to provide a richer set of data as input to multicompartment models, we here investigate the combination of somatic patch-clamp recordings with recordings of high-density microelectrode arrays (HD-MEAs). HD-MEAs enable the observation of extracellular potentials and neural activity of neuronal compartments at subcellular resolution. In this work, we introduce a novel framework to combine patch-clamp and HD-MEA data to construct multicompartment models. We first validate our method on a ground-truth model with known parameters and show that the use of features extracted from extracellular signals, in addition to intracellular ones, yields models enabling better fits than using intracellular features alone. We also demonstrate our procedure using experimental data by constructing cell models from in vitro cell cultures. The proposed multimodal fitting procedure has the potential to augment the modeling efforts of the computational neuroscience community and provide the field with neuronal models that are more realistic and can be better validated.


Assuntos
Microeletrodos , Modelos Neurológicos , Neurônios , Técnicas de Patch-Clamp , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Técnicas de Patch-Clamp/instrumentação , Animais , Potenciais de Ação/fisiologia , Simulação por Computador
6.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33893234

RESUMO

The stratum corneum (SC), the outermost epidermal layer, consists of nonviable anuclear keratinocytes, called corneocytes, which function as a protective barrier. The exact modes of cell death executed by keratinocytes of the upper stratum granulosum (SG1 cells) remain largely unknown. Here, using intravital imaging combined with intracellular Ca2+- and pH-responsive fluorescent probes, we aimed to dissect the SG1 death process in vivo. We found that SG1 cell death was preceded by prolonged (∼60 min) Ca2+ elevation and rapid induction of intracellular acidification. Once such intracellular ionic changes were initiated, they became sustained, irreversibly committing the SG1 cells to corneocyte conversion. Time-lapse imaging of isolated murine SG1 cells revealed that intracellular acidification was essential for the degradation of keratohyalin granules and nuclear DNA, phenomena specific to SC corneocyte formation. Furthermore, intravital imaging showed that the number of SG1 cells exhibiting Ca2+ elevation and the timing of intracellular acidification were both tightly regulated by the transient receptor potential cation channel V3. The functional activity of this protein was confirmed in isolated SG1 cells using whole-cell patch-clamp analysis. These findings provide a theoretical framework for improved understanding of the unique molecular mechanisms underlying keratinocyte-specific death mode, namely corneoptosis.


Assuntos
Morte Celular/fisiologia , Células Epidérmicas/metabolismo , Queratinócitos/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Diferenciação Celular , Epiderme/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Queratinócitos/fisiologia , Camundongos , Camundongos Transgênicos , Técnicas de Patch-Clamp/métodos , Pele
7.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34504015

RESUMO

Rhythmic activity in pacemaker cells, as in the sino-atrial node in the heart, depends on the activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. As in depolarization-activated K+ channels, the fourth transmembrane segment S4 functions as the voltage sensor in hyperpolarization-activated HCN channels. But how the inward movement of S4 in HCN channels at hyperpolarized voltages couples to channel opening is not understood. Using voltage clamp fluorometry, we found here that S4 in HCN channels moves in two steps in response to hyperpolarizations and that the second S4 step correlates with gate opening. We found a mutation in sea urchin HCN channels that separate the two S4 steps in voltage dependence. The E356A mutation in S4 shifts the main S4 movement to positive voltages, but channel opening remains at negative voltages. In addition, E356A reveals a second S4 movement at negative voltages that correlates with gate opening. Cysteine accessibility and molecular models suggest that the second S4 movement opens up an intracellular crevice between S4 and S5 that would allow radial movement of the intracellular ends of S5 and S6 to open HCN channels.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Animais , Relógios Biológicos/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp/métodos , Canais de Potássio/metabolismo , Ouriços-do-Mar/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(19): 10593-10602, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32332165

RESUMO

A physiological role for long-chain acyl-CoA esters to activate ATP-sensitive K+ (KATP) channels is well established. Circulating palmitate is transported into cells and converted to palmitoyl-CoA, which is a substrate for palmitoylation. We found that palmitoyl-CoA, but not palmitic acid, activated the channel when applied acutely. We have altered the palmitoylation state by preincubating cells with micromolar concentrations of palmitic acid or by inhibiting protein thioesterases. With acyl-biotin exchange assays we found that Kir6.2, but not sulfonylurea receptor (SUR)1 or SUR2, was palmitoylated. These interventions increased the KATP channel mean patch current, increased the open time, and decreased the apparent sensitivity to ATP without affecting surface expression. Similar data were obtained in transfected cells, rat insulin-secreting INS-1 cells, and isolated cardiac myocytes. Kir6.2ΔC36, expressed without SUR, was also positively regulated by palmitoylation. Mutagenesis of Kir6.2 Cys166 prevented these effects. Clinical variants in KCNJ11 that affect Cys166 had a similar gain-of-function phenotype, but was more pronounced. Molecular modeling studies suggested that palmitoyl-C166 and selected large hydrophobic mutations make direct hydrophobic contact with Kir6.2-bound PIP2 Patch-clamp studies confirmed that palmitoylation of Kir6.2 at Cys166 enhanced the PIP2 sensitivity of the channel. Physiological relevance is suggested since palmitoylation blunted the regulation of KATP channels by α1-adrenoreceptor stimulation. The Cys166 residue is conserved in some other Kir family members (Kir6.1 and Kir3, but not Kir2), which are also subject to regulated palmitoylation, suggesting a general mechanism to control the open state of certain Kir channels.


Assuntos
Canais KATP/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Acil Coenzima A/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cisteína/metabolismo , Células HEK293 , Humanos , Canais KATP/genética , Lipoilação/fisiologia , Mutagênese/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp/métodos , Canais de Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Cultura Primária de Células , Ratos , Receptores de Sulfonilureias/genética
9.
Proc Natl Acad Sci U S A ; 117(35): 21740-21746, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817533

RESUMO

The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) anion channel is essential for epithelial salt-water balance. CFTR mutations cause cystic fibrosis, a lethal incurable disease. In cells CFTR is activated through the cAMP signaling pathway, overstimulation of which during cholera leads to CFTR-mediated intestinal salt-water loss. Channel activation is achieved by phosphorylation of its regulatory (R) domain by cAMP-dependent protein kinase catalytic subunit (PKA). Here we show using two independent approaches--an ATP analog that can drive CFTR channel gating but is unsuitable for phosphotransfer by PKA, and CFTR mutants lacking phosphorylatable serines--that PKA efficiently opens CFTR channels through simple binding, under conditions that preclude phosphorylation. Unlike when phosphorylation happens, CFTR activation by PKA binding is completely reversible. Thus, PKA binding promotes release of the unphosphorylated R domain from its inhibitory position, causing full channel activation, whereas phosphorylation serves only to maintain channel activity beyond termination of the PKA signal. The results suggest two levels of CFTR regulation in cells: irreversible through phosphorylation, and reversible through R-domain binding to PKA--and possibly also to other members of a large network of proteins known to interact with the channel.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Ânions/metabolismo , Fenômenos Biofísicos , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Ativação do Canal Iônico/fisiologia , Mutagênese Sítio-Dirigida , Nucleotídeos/metabolismo , Oócitos/metabolismo , Técnicas de Patch-Clamp/métodos , Fosforilação , Ligação Proteica/fisiologia , Serina/metabolismo , Canais de Ânion Dependentes de Voltagem/fisiologia , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
10.
J Neurosci ; 41(5): 937-946, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33431632

RESUMO

Single-cell transcriptomic approaches are revolutionizing neuroscience. Integrating this wealth of data with morphology and physiology, for the comprehensive study of neuronal biology, requires multiplexing gene expression data with complementary techniques. To meet this need, multiple groups in parallel have developed "Patch-seq," a modification of whole-cell patch-clamp protocols that enables mRNA sequencing of cell contents after electrophysiological recordings from individual neurons and morphologic reconstruction of the same cells. In this review, we first outline the critical technical developments that enabled robust Patch-seq experimental efforts and analytical solutions to interpret the rich multimodal data generated. We then review recent applications of Patch-seq that address novel and long-standing questions in neuroscience. These include the following: (1) targeted study of specific neuronal populations based on their anatomic location, functional properties, lineage, or a combination of these factors; (2) the compilation and integration of multimodal cell type atlases; and (3) the investigation of the molecular basis of morphologic and functional diversity. Finally, we highlight potential opportunities for further technical development and lines of research that may benefit from implementing the Patch-seq technique. As a multimodal approach at the intersection of molecular neurobiology and physiology, Patch-seq is uniquely positioned to directly link gene expression to brain function.


Assuntos
Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Análise de Célula Única/métodos , Transcriptoma/fisiologia , Animais , Células Cultivadas , Fenômenos Eletrofisiológicos/fisiologia , Previsões , Humanos , Técnicas de Patch-Clamp/tendências , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/tendências , Análise de Célula Única/tendências
11.
J Biol Chem ; 296: 100404, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33577799

RESUMO

Mice lacking connexin 30 (Cx30) display increased epithelial sodium channel (ENaC) activity in the distal nephron and develop salt-sensitive hypertension. This indicates a functional link between Cx30 and ENaC, which remains incompletely understood. Here, we explore the effect of Cx30 on ENaC function using the Xenopus laevis oocyte expression system. Coexpression of human Cx30 with human αßγENaC significantly reduced ENaC-mediated whole-cell currents. The size of the inhibitory effect on ENaC depended on the expression level of Cx30 and required Cx30 ion channel activity. ENaC inhibition by Cx30 was mainly due to reduced cell surface ENaC expression resulting from enhanced ENaC retrieval without discernible effects on proteolytic channel activation and single-channel properties. ENaC retrieval from the cell surface involves the interaction of the ubiquitin ligase Nedd4-2 with PPPxY-motifs in the C-termini of ENaC. Truncating the C- termini of ß- or γENaC significantly reduced the inhibitory effect of Cx30 on ENaC. In contrast, mutating the prolines belonging to the PPPxY-motif in γENaC or coexpressing a dominant-negative Xenopus Nedd4 (xNedd4-CS) did not significantly alter ENaC inhibition by Cx30. Importantly, the inhibitory effect of Cx30 on ENaC was significantly reduced by Pitstop-2, an inhibitor of clathrin-mediated endocytosis, or by mutating putative clathrin adaptor protein 2 (AP-2) recognition motifs (YxxФ) in the C termini of ß- or γ-ENaC. In conclusion, our findings suggest that Cx30 inhibits ENaC by promoting channel retrieval from the plasma membrane via clathrin-dependent endocytosis. Lack of this inhibition may contribute to increased ENaC activity and salt-sensitive hypertension in mice with Cx30 deficiency.


Assuntos
Clatrina/metabolismo , Conexina 30/farmacologia , Canais Epiteliais de Sódio/química , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Oócitos/fisiologia , Animais , Endocitose , Canais Epiteliais de Sódio/metabolismo , Humanos , Oócitos/citologia , Técnicas de Patch-Clamp/métodos , Transdução de Sinais , Xenopus laevis
12.
J Biol Chem ; 296: 100423, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33600800

RESUMO

Gain-of-function (GOF) mutations in the voltage-gated potassium channel subfamily Q member 1 (KCNQ1) can induce cardiac arrhythmia. In this study, it was tested whether any of the known human GOF disease mutations in KCNQ1 act by increasing the amount of KCNQ1 that reaches the cell surface-"supertrafficking." Seven of the 15 GOF mutants tested were seen to surface traffic more efficiently than the WT channel. Among these, we found that the levels of R231C KCNQ1 in the plasma membrane were fivefold higher than the WT channel. This was shown to arise from the combined effects of enhanced efficiency of translocon-mediated membrane integration of the S4 voltage-sensor helix and from enhanced post-translational folding/trafficking related to the energetic linkage of C231 with the V129 and F166 side chains. Whole-cell electrophysiology recordings confirmed that R231C KCNQ1 in complex with the voltage-gated potassium channel-regulatory subfamily E member 1 not only exhibited constitutive conductance but also revealed that the single-channel activity of this mutant is only 20% that of WT. The GOF phenotype associated with R231C therefore reflects the effects of supertrafficking and constitutive channel activation, which together offset reduced channel activity. These investigations show that membrane protein supertrafficking can contribute to human disease.


Assuntos
Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Animais , Células CHO , Membrana Celular/metabolismo , Cricetulus , Mutação com Ganho de Função/genética , Células HEK293 , Humanos , Síndrome do QT Longo/metabolismo , Mutação , Técnicas de Patch-Clamp/métodos , Fenótipo , Potássio/metabolismo , Canais de Potássio/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ligação Proteica
13.
J Biol Chem ; 296: 100387, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33617876

RESUMO

Like other pentameric ligand-gated channels, glycine receptors (GlyRs) contain long intracellular domains (ICDs) between transmembrane helices 3 and 4. Structurally characterized GlyRs are generally engineered to have a very short ICD. We show here that for one such construct, zebrafish GlyREM, the agonists glycine, ß-alanine, taurine, and GABA have high efficacy and produce maximum single-channel open probabilities greater than 0.9. In contrast, for full-length human α1 GlyR, taurine and GABA were clearly partial agonists, with maximum open probabilities of 0.46 and 0.09, respectively. We found that the elevated open probabilities in GlyREM are not due to the limited sequence differences between the human and zebrafish orthologs, but rather to replacement of the native ICD with a short tripeptide ICD. Consistent with this interpretation, shortening the ICD in the human GlyR increased the maximum open probability produced by taurine and GABA to 0.90 and 0.70, respectively, but further engineering it to resemble GlyREM (by introducing the zebrafish transmembrane helix 4 and C terminus) had no effect. Furthermore, reinstating the native ICD to GlyREM converted taurine and GABA to partial agonists, with maximum open probabilities of 0.66 and 0.40, respectively. Structural comparison of transmembrane helices 3 and 4 in short- and long-ICD GlyR subunits revealed that ICD shortening does not distort the orientation of these helices within each subunit. This suggests that the effects of shortening the ICD stem from removing a modulatory effect of the native ICD on GlyR gating, revealing a new role for the ICD in pentameric ligand-gated channels.


Assuntos
Glicina/farmacologia , Receptores de Glicina/agonistas , Taurina/farmacologia , beta-Alanina/farmacologia , Ácido gama-Aminobutírico/farmacologia , Sequência de Aminoácidos , Animais , Células Cultivadas , GABAérgicos/farmacologia , Glicinérgicos/farmacologia , Humanos , Técnicas de Patch-Clamp/métodos , Domínios Proteicos , Receptores de Glicina/metabolismo , Relação Estrutura-Atividade , Peixe-Zebra
14.
Pflugers Arch ; 474(2): 243-260, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34734327

RESUMO

The capacity of astrocytes to adapt their biochemical and functional features upon physiological and pathological stimuli is a fundamental property at the basis of their ability to regulate the homeostasis of the central nervous system (CNS). It is well known that in primary cultured astrocytes, the expression of plasma membrane ion channels and transporters involved in homeostatic tasks does not closely reflect the pattern observed in vivo. The individuation of culture conditions that promote the expression of the ion channel array found in vivo is crucial when aiming at investigating the mechanisms underlying their dynamics upon various physiological and pathological stimuli. A chemically defined medium containing growth factors and hormones (G5) was previously shown to induce the growth, differentiation, and maturation of primary cultured astrocytes. Here we report that under these culture conditions, rat cortical astrocytes undergo robust morphological changes acquiring a multi-branched phenotype, which develops gradually during the 2-week period of culturing. The shape changes were paralleled by variations in passive membrane properties and background conductance owing to the differential temporal development of inwardly rectifying chloride (Cl-) and potassium (K+) currents. Confocal and immunoblot analyses showed that morphologically differentiated astrocytes displayed a large increase in the expression of the inward rectifier Cl- and K+ channels ClC-2 and Kir4.1, respectively, which are relevant ion channels in vivo. Finally, they exhibited a large diminution of the intermediate filaments glial fibrillary acidic protein (GFAP) and vimentin which are upregulated in reactive astrocytes in vivo. Taken together the data indicate that long-term culturing of cortical astrocytes in this chemical-defined medium promotes a quiescent functional phenotype. This culture model could aid to address the regulation of ion channel expression involved in CNS homeostasis in response to physiological and pathological challenges.


Assuntos
Astrócitos/metabolismo , Homeostase/fisiologia , Animais , Canais de Cloro CLC-2/metabolismo , Membrana Celular/metabolismo , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiologia , Cloretos/metabolismo , Técnicas de Patch-Clamp/métodos , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ratos , Ratos Sprague-Dawley , Vimentina/metabolismo
15.
Biochem Biophys Res Commun ; 596: 49-55, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35114584

RESUMO

The T618I KCNH2-encoded hERG mutation is the most frequently observed mutation in genotyped cases of the congenital short QT syndrome (SQTS), a cardiac condition associated with ventricular fibrillation and sudden death. Most T618I hERG carriers exhibit a pronounced U wave on the electrocardiogram and appear vulnerable to ventricular, but not atrial fibrillation (AF). The basis for these effects is unclear. This study used the action potential (AP) voltage clamp technique to determine effects of the T618I mutation on hERG current (IhERG) elicited by APs from different cardiac regions. Whole-cell patch-clamp recordings were made at 37 °C of IhERG from hERG-transfected HEK-293 cells. Maximal IhERG during a ventricular AP command was increased ∼4-fold for T618I IhERG and occurred much earlier during AP repolarization. The mutation also increased peak repolarizing currents elicited by Purkinje fibre (PF) APs. Maximal wild-type (WT) IhERG current during the PF waveform was 87.2 ± 4.5% of maximal ventricular repolarizing current whilst for the T618I mutant, the comparable value was 47.7 ± 2.7%. Thus, the T618I mutation exacerbated differences in repolarizing IhERG between PF and ventricular APs; this could contribute to heterogeneity of ventricular-PF repolarization and consequently to the U waves seen in T618I carriers. The comparatively shorter duration and lack of pronounced plateau of the atrial AP led to a smaller effect of the T618I mutation during the atrial AP, which may help account for the lack of reported AF in T618I carriers. Use of a paired ventricular AP protocol revealed an alteration to protective IhERG transients that affect susceptibility to premature excitation late in AP repolarization/early in diastole. These observations may help explain altered arrhythmia susceptibility in this form of the SQTS.


Assuntos
Potenciais de Ação/genética , Arritmias Cardíacas/genética , Canal de Potássio ERG1/genética , Mutação , Técnicas de Patch-Clamp/métodos , Eletrocardiografia/métodos , Células HEK293 , Átrios do Coração/metabolismo , Ventrículos do Coração/metabolismo , Humanos , Ramos Subendocárdicos/metabolismo
16.
Biochem J ; 478(14): 2843-2869, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34195804

RESUMO

The interaction of insect-selective scorpion depressant ß-toxins (LqhIT2 and Lqh-dprIT3 from Leiurus quinquestriatus hebraeus) with the Blattella germanica sodium channel, BgNav1-1a, was investigated using site-directed mutagenesis, electrophysiological analyses, and structural modeling. Focusing on the pharmacologically defined binding site-4 of scorpion ß-toxins at the voltage-sensing domain II (VSD-II), we found that charge neutralization of D802 in VSD-II greatly enhanced the channel sensitivity to Lqh-dprIT3. This was consistent with the high sensitivity of the splice variant BgNav2-1, bearing G802, to Lqh-dprIT3, and low sensitivity of BgNav2-1 mutant, G802D, to the toxin. Further mutational and electrophysiological analyses revealed that the sensitivity of the WT = D802E < D802G < D802A < D802K channel mutants to Lqh-dprIT3 correlated with the depolarizing shifts of activation in toxin-free channels. However, the sensitivity of single mutants involving IIS4 basic residues (K4E = WT << R1E < R2E < R3E) or double mutants (D802K = K4E/D802K = R3E/D802K > R2E/D802K > R1E/D802K > WT) did not correlate with the activation shifts. Using the cryo-EM structure of the Periplaneta americana channel, NavPaS, as a template and the crystal structure of LqhIT2, we constructed structural models of LqhIT2 and Lqh-dprIT3-c in complex with BgNav1-1a. These models along with the mutational analysis suggest that depressant toxins approach the salt-bridge between R1 and D802 at VSD-II to form contacts with linkers IIS1-S2, IIS3-S4, IIIP5-P1 and IIIP2-S6. Elimination of this salt-bridge enables deeper penetration of the toxin into a VSD-II gorge to form new contacts with the channel, leading to increased channel sensitivity to Lqh-dprIT3.


Assuntos
Neópteros/metabolismo , Venenos de Escorpião/metabolismo , Escorpiões/metabolismo , Canais de Sódio/metabolismo , Animais , Sítios de Ligação/genética , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Modelos Moleculares , Mutação , Neópteros/genética , Oócitos/metabolismo , Oócitos/fisiologia , Técnicas de Patch-Clamp/métodos , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Venenos de Escorpião/química , Venenos de Escorpião/genética , Escorpiões/genética , Canais de Sódio/química , Canais de Sódio/genética , Xenopus
17.
Proc Natl Acad Sci U S A ; 116(42): 21228-21235, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31570625

RESUMO

Charge selectivity forms the basis of cellular excitation or inhibition by Cys-loop ligand-gated ion channels (LGICs), and is essential for physiological receptor function. There are no reports of naturally occurring mutations in LGICs associated with the conversion of charge selectivity. Here, we report on a CHRNA1 mutation (α1Leu251Arg) in a patient with congenital myasthenic syndrome associated with transformation of the muscle acetylcholine receptor (AChR) into an inhibitory channel. Performing patch-clamp experiments, the AChR was found to be converted into chloride conductance at positive potentials, whereas whole-cell currents at negative potentials, although markedly reduced, were still carried by sodium. Umbrella sampling molecular dynamics simulations revealed constriction of the channel pore radius to 2.4 Å as a result of the mutation, which required partial desolvation of the ions in order to permeate the pore. Ion desolvation was associated with an energetic penalty that was compensated for by the favorable electrostatic interaction of the positively charged arginines with chloride. These findings reveal a mechanism for the transformation of the muscle AChR into an inhibitory channel in a clinical context.


Assuntos
Acetilcolina/metabolismo , Cloretos/metabolismo , Músculos/metabolismo , Mutação/genética , Receptores Colinérgicos/metabolismo , Linhagem Celular , Células HEK293 , Humanos , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Síndromes Miastênicas Congênitas/metabolismo , Técnicas de Patch-Clamp/métodos , Receptores Nicotínicos/metabolismo , Sódio/metabolismo
18.
Proc Natl Acad Sci U S A ; 116(18): 9084-9093, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30975754

RESUMO

Encoding the wide range of audible sounds in the mammalian cochlea is collectively achieved by functionally diverse type I spiral ganglion neurons (SGNs) at each tonotopic position. The firing of each SGN is thought to be driven by an individual active zone (AZ) of a given inner hair cell (IHC). These AZs present distinct properties according to their position within the IHC, to some extent forming a gradient between the modiolar and the pillar IHC side. In this study, we investigated whether signaling involved in planar polarity at the apical surface can influence position-dependent AZ properties at the IHC base. Specifically, we tested the role of Gαi proteins and their binding partner LGN/Gpsm2 implicated in cytoskeleton polarization and hair cell (HC) orientation along the epithelial plane. Using high and superresolution immunofluorescence microscopy as well as patch-clamp combined with confocal Ca2+ imaging we analyzed IHCs in which Gαi signaling was blocked by Cre-induced expression of the pertussis toxin catalytic subunit (PTXa). PTXa-expressing IHCs exhibited larger CaV1.3 Ca2+-channel clusters and consequently greater Ca2+ influx at the whole-cell and single-synapse levels, which also showed a hyperpolarized shift of activation. Moreover, PTXa expression collapsed the modiolar-pillar gradients of ribbon size and maximal synaptic Ca2+ influx. Finally, genetic deletion of Gαi3 and LGN/Gpsm2 also disrupted the modiolar-pillar gradient of ribbon size. We propose a role for Gαi proteins and LGN in regulating the position-dependent AZ properties in IHCs and suggest that this signaling pathway contributes to setting up the diverse firing properties of SGNs.


Assuntos
Polaridade Celular/fisiologia , Células Ciliadas Auditivas Internas/metabolismo , Sinapses/metabolismo , Animais , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/fisiologia , Cóclea/metabolismo , Feminino , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas Internas/fisiologia , Células Ciliadas Vestibulares/metabolismo , Audição/fisiologia , Imuno-Histoquímica/instrumentação , Masculino , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp/métodos , Som , Gânglio Espiral da Cóclea/metabolismo , Sinapses/fisiologia
19.
J Mol Cell Cardiol ; 158: 153-162, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34089737

RESUMO

The profiles of ion currents during the cardiac action potential can be visualized by the action potential voltage clamp technique. To obtain multiple ion current data from the same cell, the "onion peeling" technique, based on sequential pharmacological dissection of ion currents, has to be applied. Combination of the two methods allows recording of several ion current profiles from the same myocyte under largely physiological conditions. Using this approach, we have studied the densities and integrals of the major cardiac inward (ICa, INCX, INa-late) and outward (IKr, IKs, IK1) currents in canine ventricular cells and studied the correlation between them. For this purpose, canine ventricular cardiomyocytes were chosen because their electrophysiological properties are similar to those of human ones. Significant positive correlation was observed between the density and integral of ICa and IKr, and positive correlation was found also between the integral of ICa and INCX. No further correlations were detected. The Ca2+-sensitivity of K+ currents was studied by comparing their parameters in the case of normal calcium homeostasis and following blockade of ICa. Out of the three K+ currents studied, only IKs was Ca2+-sensitive. The density and integral of IKs was significantly greater, while its time-to-peak value was shorter at normal Ca2+ cycling than following ICa blockade. No differences were detected for IKr or IK1 in this regard. Present results indicate that the positive correlation between ICa and IKr prominently contribute to the balance between inward and outward fluxes during the action potential plateau in canine myocytes. The results also suggest that the profiles of cardiac ion currents have to be studied under physiological conditions, since their behavior may strongly be influenced by the intracellular Ca2+ homeostasis and the applied membrane potential protocol.


Assuntos
Potenciais de Ação/fisiologia , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Ventrículos do Coração/metabolismo , Íons/metabolismo , Miócitos Cardíacos/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Animais , Células Cultivadas , Cães , Feminino , Homeostase/fisiologia , Masculino , Técnicas de Patch-Clamp/métodos
20.
Am J Physiol Cell Physiol ; 320(6): C966-C973, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33788632

RESUMO

Two types of voltage-dependent inward currents were evoked by depolarization in murine antral smooth muscle cells (SMCs) bathed in Ca2+-containing physiological solution: high-voltage-activated (HVA) and low-voltage-activated (LVA) inward currents. We examined whether the LVA current was due to: 1) T-type Ca2+ channels, 2) Ca2+-activated Cl-channels, 3) nonselective cation channels (NSCC), or 4) voltage-dependent K+ channels. Replacement of external Ca2+ (2 mM) with equimolar Ba2+ increased the amplitude of the HVA current but blocked the LVA current. Nicardipine blocked the HVA current, and in the presence of nicardipine, T-type Ca2+ blockers failed to block LVA current. A Cl- channel antagonist had little effect on LVA current. Cation-free external solution completely abolished both HVA and LVA currents. Addition of Ca2+ to the solution restored only HVA currents. Addition of K+ (5 mM) to otherwise cation-free solution induced LVA current that reversed at -20 mV. These data suggest that LVA current is not due to T-type Ca2+ channels, Ca2+-activated Cl- channels, or NSCC. A-type K+ (KA) currents and delayed rectifying K+ (KDR) currents can be resolved in antral SMCs dialyzed with a solution containing 140 mM K+. When cells were exposed to high K+ external solution and dialyzed with Cs+-rich solution in the presence of nicardipine, LVA current was evoked and reversed at positive potentials. LVA currents were blocked by K+ channel blockers, 4-aminopyridine, and tetraethylammonium. In conclusion, LVA inward currents can be generated by K+ influx via KA channels in murine antral SMCs when cells were dialyzed with Cs+-rich solution.


Assuntos
Potenciais da Membrana/fisiologia , Miócitos de Músculo Liso/metabolismo , Animais , Artefatos , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Células Cultivadas , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Canais de Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA