Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 595
Filtrar
1.
Mol Cell ; 74(4): 844-857.e7, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31000437

RESUMO

Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis, and glucose homeostasis. We find that levels of mitochondrial protein succinylation and malonylation are high in BAT and subject to physiological and genetic regulation. BAT-specific deletion of Sirt5, a mitochondrial desuccinylase and demalonylase, results in dramatic increases in global protein succinylation and malonylation. Mass spectrometry-based quantification of succinylation reveals that Sirt5 regulates the key thermogenic protein in BAT, UCP1. Mutation of the two succinylated lysines in UCP1 to acyl-mimetic glutamine and glutamic acid significantly decreases its stability and activity. The reduced function of UCP1 and other proteins in Sirt5KO BAT results in impaired mitochondria respiration, defective mitophagy, and metabolic inflexibility. Thus, succinylation of UCP1 and other mitochondrial proteins plays an important role in BAT and in regulation of energy homeostasis.


Assuntos
Metabolismo Energético/genética , Mitocôndrias/metabolismo , Obesidade/genética , Sirtuínas/genética , Proteína Desacopladora 1/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Animais , Regulação da Expressão Gênica , Glucose/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Obesidade/metabolismo , Obesidade/patologia , Proteômica/métodos , Ácido Succínico/metabolismo , Termogênese/genética , Proteína Desacopladora 1/metabolismo
2.
Rev Physiol Biochem Pharmacol ; 186: 135-176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35915363

RESUMO

People suffering from obesity and associated metabolic disorders including diabetes are increasing exponentially around the world. Adipose tissue (AT) distribution and alteration in their biochemical properties play a major role in the pathogenesis of these diseases. Emerging evidence suggests that AT heterogeneity and depot-specific physiological changes are vital in the development of insulin resistance in peripheral tissues like muscle and liver. Classically, AT depots are classified into white adipose tissue (WAT) and brown adipose tissue (BAT); WAT is the site of fatty acid storage, while BAT is a dedicated organ of metabolic heat production. The discovery of beige adipocyte clusters in WAT depots indicates AT heterogeneity has a more central role than hither to ascribed. Therefore, we have discussed in detail the current state of understanding on cellular and molecular origin of different AT depots and their relevance toward physiological metabolic homeostasis. A major focus is to highlight the correlation between altered WAT distribution in the body and metabolic pathogenesis in animal models and humans. We have also underscored the disparity in the molecular (including signaling) changes in various WAT tissues during diabetic pathogenesis. Exercise-mediated beneficial alteration in WAT physiology/distribution that protects against metabolic disorders is evolving. Here we have discussed the depot-specific biochemical adjustments induced by different forms of exercise. A detailed understanding of the molecular details of inter-organ crosstalk via substrate utilization/storage and signaling through chemokines provide strategies to target selected WAT depots to pharmacologically mimic the benefits of exercise countering metabolic diseases including diabetes.


Assuntos
Resistência à Insulina , Doenças Metabólicas , Animais , Humanos , Obesidade/metabolismo , Obesidade/patologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Doenças Metabólicas/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35210363

RESUMO

Cancer-associated cachexia (CAC) is a hypermetabolic syndrome characterized by unintended weight loss due to the atrophy of adipose tissue and skeletal muscle. A phenotypic switch from white to beige adipocytes, a phenomenon called browning, accelerates CAC by increasing the dissipation of energy as heat. Addressing the mechanisms of white adipose tissue (WAT) browning in CAC, we now show that cachexigenic tumors activate type 2 immunity in cachectic WAT, generating a neuroprotective environment that increases peripheral sympathetic activity. Increased sympathetic activation, in turn, results in increased neuronal catecholamine synthesis and secretion, ß-adrenergic activation of adipocytes, and induction of WAT browning. Two genetic mouse models validated this progression of events. 1) Interleukin-4 receptor deficiency impeded the alternative activation of macrophages, reduced sympathetic activity, and restrained WAT browning, and 2) reduced catecholamine synthesis in peripheral dopamine ß-hydroxylase (DBH)-deficient mice prevented cancer-induced WAT browning and adipose atrophy. Targeting the intraadipose macrophage-sympathetic neuron cross-talk represents a promising therapeutic approach to ameliorate cachexia in cancer patients.


Assuntos
Tecido Adiposo Marrom/patologia , Caquexia/patologia , Comunicação Celular , Neoplasias/complicações , Neurônios/patologia , Sistema Nervoso Simpático/patologia , Animais , Caquexia/etiologia , Caquexia/metabolismo , Expressão Gênica , Xenoenxertos , Humanos , Camundongos , Neoplasias/metabolismo , Receptores Adrenérgicos beta/metabolismo , Termogênese
4.
J Lipid Res ; 64(8): 100408, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37393952

RESUMO

Weight gain is a common harmful side effect of atypical antipsychotics used for schizophrenia treatment. Conversely, treatment with the novel phosphodiesterase-10A (PDE10A) inhibitor MK-8189 in clinical trials led to significant weight reduction, especially in patients with obesity. This study aimed to understand and describe the mechanism underlying this observation, which is essential to guide clinical decisions. We hypothesized that PDE10A inhibition causes beiging of white adipose tissue (WAT), leading to weight loss. Magnetic resonance imaging (MRI) methods were developed, validated, and applied in a diet-induced obesity mouse model treated with a PDE10A inhibitor THPP-6 or vehicle for measurement of fat content and vascularization of adipose tissue. Treated mice showed significantly lower fat fraction in white and brown adipose tissue, and increased perfusion and vascular density in WAT versus vehicle, confirming the hypothesis, and matching the effect of CL-316,243, a compound known to cause adipose tissue beiging. The in vivo findings were validated by qPCR revealing upregulation of Ucp1 and Pcg1-α genes, known markers of WAT beiging, and angiogenesis marker VegfA in the THPP-6 group. This work provides a detailed understanding of the mechanism of action of PDE10A inhibitor treatment on adipose tissue and body weight and will be valuable to guide both the use of MK-8189 in schizophrenia and the potential application of the target for weight loss indication.


Assuntos
Tecido Adiposo Branco , Inibidores de Fosfodiesterase , Camundongos , Animais , Inibidores de Fosfodiesterase/farmacologia , Obesidade/genética , Tecido Adiposo Marrom/patologia , Redução de Peso , Imageamento por Ressonância Magnética/efeitos adversos
5.
Mol Pharmacol ; 104(5): 187-194, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567782

RESUMO

Cardiovascular complications of diabetes and obesity remain a major cause for morbidity and mortality worldwide. Despite significant advances in the pharmacotherapy of metabolic disease, the available approaches do not prevent or slow the progression of complications. Moreover, a majority of patients present with significant vascular involvement at early stages of dysfunction prior to overt metabolic changes. The lack of disease-modifying therapies affects millions of patients globally, causing a massive economic burden due to these complications. Significantly, adipose tissue inflammation was implicated in the pathogenesis of metabolic syndrome, diabetes, and obesity. Specifically, perivascular adipose tissue (PVAT) and perirenal adipose tissue (PRAT) depots influence cardiovascular and renal structure and function. Accumulating evidence implicates localized PVAT/PRAT inflammation as the earliest response to metabolic impairment leading to cardiorenal dysfunction. Increased mitochondrial uncoupling protein 1 (UCP1) expression and function lead to PVAT/PRAT hypoxia and inflammation as well as vascular, cardiac, and renal dysfunction. As UCP1 function remains an undruggable target so far, modulation of the augmented UCP1-mediated PVAT/PRAT thermogenesis constitutes a lucrative target for drug development to mitigate early cardiorenal involvement. This can be achieved either by subtle targeted reduction in UCP-1 expression using innovative proteolysis activating chimeric molecules (PROTACs) or by supplementation with cyclocreatine phosphate, which augments the mitochondrial futile creatine cycling and thus decreases UCP1 activity, enhances the efficiency of oxygen use, and reduces hypoxia. Once developed, these molecules will be first-in-class therapeutic tools to directly interfere with and reverse the earliest pathology underlying cardiac, vascular, and renal dysfunction accompanying the early metabolic deterioration. SIGNIFICANCE STATEMENT: Adipose tissue dysfunction plays a major role in the pathogenesis of metabolic diseases and their complications. Although mitochondrial alterations are common in metabolic impairment, it was only recently shown that the early stages of metabolic challenge involve inflammatory changes in select adipose depots associated with increased uncoupling protein 1 thermogenesis and hypoxia. Manipulating this mode of thermogenesis can help mitigate the early inflammation and the consequent cardiorenal complications.


Assuntos
Tecido Adiposo Marrom , Nefropatias , Humanos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Obesidade/complicações , Obesidade/metabolismo , Termogênese , Inflamação/complicações , Inflamação/metabolismo , Hipóxia/metabolismo , Hipóxia/patologia , Nefropatias/tratamento farmacológico , Nefropatias/etiologia , Nefropatias/metabolismo , Proteína Desacopladora 1/metabolismo
6.
Metab Brain Dis ; 38(1): 91-107, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36322277

RESUMO

Alzheimer's disease (AD), the most common type of senile dementia, is a chronic neurodegenerative disease characterized by cognitive dysfunction and behavioral disability. The two histopathological hallmarks in this disease are the extraneuronal accumulation of amyloid-ß (Aß) and the intraneuronal deposition of neurofibrillary tangles (NFTs). Despite this, central and peripheral metabolic dysfunction, such as abnormal brain signaling, insulin resistance, inflammation, and impaired glucose utilization, have been indicated to be correlated with AD. There is solid evidence that the age-associated thermoregulatory deficit induces diverse metabolic changes associated with AD development. Brown adipose tissue (BAT) has been known as a thermoregulatory organ particularly vital during infancy. However, in recent years, BAT has been accepted as an endocrine organ, being involved in various functions that prevent AD, such as regulating energy metabolism, secreting hormones, improving insulin sensitivity, and increasing glucose utilization in adult humans. This review focuses on the mechanisms of BAT activation and the effect of aging on BAT production and signaling. Specifically, the evidence demonstrating the effect of BAT on pathological mechanisms influencing the development of AD, including insulin pathway, thermoregulation, and other hormonal pathways, are reviewed in this article.


Assuntos
Doença de Alzheimer , Resistência à Insulina , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Peptídeos beta-Amiloides/metabolismo , Glucose/metabolismo
7.
Lasers Med Sci ; 38(1): 85, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36920639

RESUMO

To evaluate the effects of Light-Emitting Diode (LED) irradiation on the expression of thermogenesis and lipogenesis-associated markers in adipose tissue and metabolic parameters of obese mice. Twenty-four male mice were divided into four groups: i) ST fed standard diet; ii) HCD fed hyperglycemic diet; iii) LED + I fed hyperglycemic diet and irradiated with LED in the interscapular region; iv) LED + A fed hyperglycemic diet and irradiated with LED in the abdominal region. The first phase of the study comprehended the induction of obesity for 12 weeks. Next, the animals were submitted to six irradiation sessions (days 1, 3, 7, 10, 14, and 21) using a 660-nm LED (5.77 J/cm2 at 48,1 mW/cm2). Anthropometric, biochemical, and histological parameters and the expression of thermogenesis and lipogenesis-associated markers were assessed in adipose tissue. There was diminished weight gain between the HCD and LED + A groups (ST: 0.37 ± 0.65; HCD: 3.10 ± 0.89; LED + I: -1.26 ± 0.83; LED + A: -2.07 ± 1.27 g; p < 0.018). There was a 33.3% and 23.8% reduction in epidydimal adipose tissue weight and a 25% and 10.7% in the visceral adiposity for the LED + I and LED + A groups, respectively, when compared with HCD. There was a decreased accumulation of fat droplets in adipose tissue in LED + A and LED + I groups. Additionally, LED irradiation was associated with increased mRNA expression of uncoupling protein 1 (UCP1) in the brown adipose tissue (ST: 2.27 ± 0.19; HCD: 1.54 ± 0.12; LED + I: 2.44 ± 0.22; p = 0.014) and decreased fatty acid synthetase (FAS) expression in epidydimal adipose tissue (ST: 0.79 ± 0.13; HCD: 1.59 ± 0.13; LED + A: 0.85 ± 0.04; p = 0.0008). LED treatment improved anthropometric parameters, possibly associated with the histological alterations, thermogenesis and lipogenesis markers in white adipose tissue, and expression modulation in brown adipose tissue.


Assuntos
Dieta Hiperlipídica , Lipogênese , Masculino , Animais , Camundongos , Lipogênese/genética , Camundongos Obesos , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Termogênese , Camundongos Endogâmicos C57BL
8.
Biol Reprod ; 107(4): 1046-1058, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35713297

RESUMO

Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disease in women, with clinical manifestations of anovulation and hyperandrogenaemia. The treatment of PCOS mainly focuses on improving clinical symptoms, such as insulin sensitivity or menstrual disorder, through drug treatment. However, due to the pathogenesis diversity of PCOS, there is still a lack of effective treatment in clinics. Metabolic disorder is the key factor in the occurrence of PCOS. Brown adipose tissue (BAT) is a special adipose tissue in the human body that can participate in metabolic balance by improving heat production. BAT has been demonstrated to be an important substance involved in the metabolic disorder of PCOS. Although increasing evidence indicates that BAT transplantation can improve the symptoms of PCOS, it is difficult to achieve BAT transplantation at present due to technical limitations. Stimulation of BAT activation by exogenous substances may be an effective alternative therapy for PCOS. In this study, we investigated the effects of Irisin on dehydroepiandrosterone (DHEA)-induced PCOS in mice and evaluated the effect of Irisin on serum hormone levels and changes in body temperature, body weight, and ovarian morphology. In our study, we found that Irisin can enhance the thermogenesis and insulin sensitivity of PCOS mice by activating the function of BAT. In addition, Irisin treatment can correct the menstrual cycle of PCOS mice, improve the serum steroid hormone disorder status, and reduce the formation of ovarian cystic follicles. In conclusion, our results showed that Irisin treatment significantly improved the metabolic disorder of PCOS and may provide a new and alternative therapy for the treatment of this pathology.


Assuntos
Resistência à Insulina , Síndrome do Ovário Policístico , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Animais , Desidroepiandrosterona , Feminino , Fibronectinas , Humanos , Camundongos , Fenótipo , Síndrome do Ovário Policístico/metabolismo
9.
NMR Biomed ; 35(6): e4676, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35043481

RESUMO

In the current study, we propose a single-voxel (SV) magnetic resonance spectroscopy (MRS) pulse sequence, based on intermolecular double-quantum coherence (iDQC), for in vivo specific assessment of brown adipose tissue (BAT) at 3 T. The multilocular adipocyte, present in BAT, typically contains a large number of small lipid droplets surrounded by abundant intracellular water, while the monolocular adipocyte, present in white adipose tissue (WAT), accommodates only a single large lipid droplet with much less water content. The SV-iDQC sequence probes the spatial correlation between water and fat spins at a distance of about the size of an adipocyte, thus can be used for assessment of BAT, even when mixed with WAT and/or muscle tissues. This sequence for measurement of water-to-fat (water-fat) iDQC signals was tested on phantoms and mouse BAT and WAT tissues. It was then used to differentiate adipose tissues in the supraclavicular and subcutaneous regions of healthy youth human volunteers (n = 6). Phantom results with water-fat emulsions demonstrated enhanced water-fat iDQC signal with increased voxel size, increased energy level of emulsification, or increased distribution balance of water and fat spins. The animal tissue experiments resulted in obvious water-fat iDQC signal in mouse BAT, while this signal was almost absent in the WAT spectrum. The optimal choice of the dipolar coupling distance for the observation was approximately 100 µm, as tested on both emulsion phantom and animal tissue. The water-fat iDQC signals observed in the supraclavicular adipose tissues were higher than in the subcutaneous adipose tissues in healthy young volunteers (0.43 ± 0.36 vs. 0.10 ± 0.06, p = 0.06). It was concluded that the iDQC-based sequence has potential for assessment of mouse and human BAT at 3 T, which is of interest for clinical research and the diagnosis of obesity and associated diseases.


Assuntos
Tecido Adiposo Marrom , Tecido Adiposo Branco , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/diagnóstico por imagem , Adolescente , Animais , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Água
10.
FASEB J ; 35(7): e21687, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34089273

RESUMO

Apart from its role in inflammation and immunity, chemerin is also involved in white adipocyte biology. To study the role of chemerin in adipocyte metabolism, we examined the function of chemerin in brown adipose tissue. Brown and white adipocyte precursors were differentiated into adipocytes in the presence of Chemerin siRNA. Chemerin-deficient (Chem-/- ) mice were compared to wild-type mice when fed a high-fat diet. Chemerin is expressed during brown adipocyte differentiation and knock down of chemerin mRNA results in decreased brown adipocyte differentiation with reduced fatty acid uptake in brown adipocytes. Chem-/- mice are leaner than wild-type mice but gain more weight when challenged with high-fat diet feeding, resulting in a larger increase in fat deposition. Chem-/- mice develop insulin resistance when on a high-fat diet or due to age. Brown adipose depots in Chem-/- mice weigh more than in wild-type mice, but with decreased mitochondrial content and function. Compared to wild-type mice, male Chem-/- mice have decreased oxygen consumption, CO2 production, energy expenditure, and a lower respiratory exchange ratio. Additionally, body temperature of Chem-/- mice is lower than that of wild-type mice. These results revealed that chemerin is expressed during brown adipocyte differentiation and has a pivotal role in energy metabolism through brown adipose tissue thermogenesis.


Assuntos
Tecido Adiposo Marrom/patologia , Envelhecimento/patologia , Quimiocinas/fisiologia , Dieta Hiperlipídica , Metabolismo Energético , Hiperinsulinismo/patologia , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Tecido Adiposo Marrom/metabolismo , Animais , Feminino , Hiperinsulinismo/etiologia , Hiperinsulinismo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Consumo de Oxigênio , Termogênese
11.
FASEB J ; 35(6): e21592, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33960028

RESUMO

Brown adipose tissue (BAT) dysfunction in aging and obesity has been related to chronic unresolved inflammation, which could be mediated by an impaired production of specialized proresolving lipid mediators (SPMs), such as Lipoxins-LXs, Resolvins-Rvs, Protectins-PDs, and Maresins-MaRs. Our aim was to characterize the changes in BAT SPMs signatures and their association with BAT dysfunction during aging, especially under obesogenic conditions, and their modulation by a docosahexaenoic acid (DHA)-rich diet. Lipidomic, functional, and molecular studies were performed in BAT of 2- and 18-month-old lean (CT) female mice and in 18-month-old diet-induced obese (DIO) mice fed with a high-fat diet (HFD), or a DHA-enriched HFD. Aging downregulated Prdm16 and UCP1 levels, especially in DIO mice, while DHA partially restored them. Arachidonic acid (AA)-derived LXs and DHA-derived MaRs and PDs were the most abundant SPMs in BAT of young CT mice. Interestingly, the sum of LXs and of PDs were significantly lower in aged DIO mice compared to young CT mice. Some of the SPMs most significantly reduced in obese-aged mice included LXB4 , MaR2, 4S,14S-diHDHA, 10S,17S-diHDHA (a.k.a. PDX), and RvD6. In contrast, DHA increased DHA-derived SPMs, without modifying LXs. However, MicroPET studies showed that DHA was not able to counteract the impaired cold exposure response in BAT of obese-aged mice. Our data suggest that a defective SPMs production could underlie the decrease of BAT activity observed in obese-aged mice, and highlight the relevance to further characterize the physiological role and therapeutic potential of specific SPMs on BAT development and function.


Assuntos
Tecido Adiposo Marrom/metabolismo , Envelhecimento/patologia , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Lipídeos/análise , Obesidade/fisiopatologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/patologia , Animais , Dieta Hiperlipídica , Feminino , Metabolismo dos Lipídeos , Lipidômica , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Arterioscler Thromb Vasc Biol ; 41(2): 714-730, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33327751

RESUMO

OBJECTIVE: Infiltrated macrophages actively promote perivascular adipose tissue remodeling and represent a dominant population in the perivascular adipose tissue microenvironment of hypertensive mice. However, the role of macrophages in initiating metabolic inflammation remains uncertain. SIRT3 (sirtuin-3), a NAD-dependent deacetylase, is sensitive to metabolic status and mediates adaptation responses. In this study, we investigated the role of SIRT3-mediated metabolic shift in regulating NLRP3 (Nod-like receptor family pyrin domain-containing 3) inflammasome activation. Approach and Results: Here, we report that Ang II (angiotensin II) accelerates perivascular adipose tissue inflammation and fibrosis, accompanied by NLRP3 inflammasome activation and IL (interleukin)-1ß secretion in myeloid SIRT3 knockout (SIRT3-/-) mice. This effect is associated with adipose tissue mitochondrial dysfunction. In vitro studies indicate that the deletion of SIRT3 in bone marrow-derived macrophages induces IL-1ß production by shifting the metabolic phenotype from oxidative phosphorylation to glycolysis. Mechanistically, SIRT3 deacetylates and activates PDHA1 (pyruvate dehydrogenase E1 alpha) at lysine 83, and the loss of SIRT3 leads to PDH activity decrease and lactate accumulation. Knocking down LDHA (lactate dehydrogenase A) or using carnosine, a buffer against lactic acid, attenuates IL-1ß secretion. Furthermore, the blockade of IL-1ß from macrophages into brown adipocytes restores thermogenic markers and mitochondrial oxygen consumption. Moreover, NLRP3 knockout (NLRP3-/-) mice exhibited reduced IL-1ß production while rescuing the mitochondrial function of brown adipocytes and alleviating perivascular adipose tissue fibrosis. CONCLUSIONS: SIRT3 represents a potential therapeutic target to attenuate NLRP3-related inflammation. Pharmacological targeting of glycolytic metabolism may represent an effective therapeutic approach.


Assuntos
Tecido Adiposo Marrom/metabolismo , Plasticidade Celular , Metabolismo Energético , Hipertensão/enzimologia , Macrófagos/enzimologia , Paniculite/enzimologia , Sirtuína 3/metabolismo , Acetilação , Tecido Adiposo Marrom/patologia , Angiotensina II , Animais , Modelos Animais de Doenças , Fibrose , Células HEK293 , Humanos , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/patologia , Inflamassomos/genética , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Ácido Láctico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Paniculite/induzido quimicamente , Paniculite/genética , Paniculite/patologia , Fenótipo , Piruvato Desidrogenase (Lipoamida)/metabolismo , Transdução de Sinais , Sirtuína 3/genética
13.
Cell Mol Life Sci ; 78(23): 7663-7679, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34698882

RESUMO

Endothelial cells (ECs) within the microvasculature of brown adipose tissue (BAT) are important in regulating the plasticity of adipocytes in response to increased metabolic demand by modulating the angiogenic response. However, the mechanism of EC-adipocyte crosstalk during this process is not completely understood. We used RNA sequencing to profile microRNAs derived from BAT ECs of obese mice and identified an anti-angiogenic microRNA, miR-409-3p. MiR-409-3p overexpression inhibited EC angiogenic properties; whereas, its inhibition had the opposite effects. Mechanistic studies revealed that miR-409-3p targets ZEB1 and MAP4K3. Knockdown of ZEB1/MAP4K3 phenocopied the angiogenic effects of miR-409-3p. Adipocytes co-cultured with conditioned media from ECs deficient in miR-409-3p showed increased expression of BAT markers, UCP1 and CIDEA. We identified a pro-angiogenic growth factor, placental growth factor (PLGF), released from ECs in response to miR-409-3p inhibition. Deficiency of ZEB1 or MAP4K3 blocked the release of PLGF from ECs and PLGF stimulation of 3T3-L1 adipocytes increased UCP1 expression in a miR-409-3p dependent manner. MiR-409-3p neutralization improved BAT angiogenesis, glucose and insulin tolerance, and energy expenditure in mice with diet-induced obesity. These findings establish miR-409-3p as a critical regulator of EC-BAT crosstalk by modulating a ZEB1-MAP4K3-PLGF signaling axis, providing new insights for therapeutic intervention in obesity.


Assuntos
Tecido Adiposo Marrom/patologia , Resistência à Insulina , MicroRNAs/genética , Neovascularização Patológica/patologia , Fator de Crescimento Placentário/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/metabolismo , Fator de Crescimento Placentário/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
14.
Endocr J ; 69(1): 55-65, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-34408100

RESUMO

Obesity, closely related to systematic metabolic disorders, has become a major public health problem in recent decades. Here, we aimed to study the function of Parathyroid hormone-related protein (PTHrP) on high fat diet (HFD) induced murine obesity. Male C57BL/6J mice were transduced with adeno-associated virus vector encoding PTHrP (AAV-PTHrP) or adeno-associated virus control vector (AAV-Vehicle), following with HFD for 8 weeks. In addition, mice without transduction were fed on normal diet or HFD, respectively. Histological, metabolic and biochemical changes were detected. At the endpoint of experiment, body weight of mice treated with AAV-PTHrP did not increase as much as mice with AAV-Vehicle, but similar as mice with normal diet. Food efficiency ratio and weight of interscapular brown adipose tissue and epididymal white adipose tissue in mice overexpressed PTHrP were also lower than mice transducted with AAV-Vehicle. Besides, administration of AAV-PTHrP inhibited HFD-induced adipocyte hypertrophy. Protein level of PKA signaling pathway and thermogenic gene in adipose tissue exhibited a significant raise in HFD + AAV-PTHrP group, whereas transcription of inflammatory gene were decreased. Additionally, PTHrP overexpression ameliorated HFD-induced dyslipidemia, hepatic steatosis and insulin sensitivity. In HFD-induced murine obesity model, PTHrP is crucial to maintain metabolic homeostasis. PTHrP drives white adipose tissue browning and inhibits whitening of brown adipose tissue. Most importantly, PTHrP prevented HFD-induced obesity, hepatic steatosis and insulin resistance.


Assuntos
Dieta Hiperlipídica , Resistência à Insulina , Tecido Adiposo Marrom/patologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/prevenção & controle , Proteína Relacionada ao Hormônio Paratireóideo/genética , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo
15.
Skeletal Radiol ; 51(6): 1325-1330, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34779887

RESUMO

Hibernomas are rare lipomatous tumors composed of brown adipocytes. The relative paucity of reported cases involving the bones accounts for the poor understanding of this entity, which is known to affect almost exclusively the axial skeleton. We present a case of intraosseous hibernoma of the humerus, which was found incidentally in a 52-year-old woman and initially misinterpreted as a cartilaginous tumor on magnetic resonance imaging (MRI). The lesion was unchanged in size and morphology at short interval follow-up but increased in size during follow-up over 6 years with an 11 mm increase in the largest diameter. Given the patient's concerns and lesion growth, curettage was performed. Pathology analysis revealed brown fat in keeping with the diagnosis of intraosseous hibernoma. Radiological and pathological findings and pitfalls are herein highlighted to enforce knowledge on this lesion rarely affecting the long bones. Radiologists should think of intraosseous hibernoma if they come across a sclerotic lesion on X-ray or computed tomography, which contains macroscopic fat and shows enhancement on contrast-enhanced MRI. In addition, an intraosseous hibernoma may be picked up incidentally on positron emission tomography-computed tomography due to high fluorodeoxyglucose avidity.


Assuntos
Lipoma , Tecido Adiposo Marrom/patologia , Diagnóstico Diferencial , Feminino , Fluordesoxiglucose F18 , Humanos , Úmero , Lipoma/diagnóstico por imagem , Lipoma/patologia , Pessoa de Meia-Idade
16.
Am J Physiol Endocrinol Metab ; 320(2): E333-E345, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33252252

RESUMO

We studied the metabolic phenotype of a novel Ucp1-LUC-iRFP713 knock-in reporter gene mouse model originally generated to monitor endogenous Ucp1 gene expression. Both reporter mice and reporter cells reliably reflected Ucp1 gene expression in vivo and in vitro. We here report an unexpected reduction in UCP1 content in homozygous knock-in (KI) reporter mice. As a result, the thermogenic capacity of KI mice stimulated by norepinephrine was largely blunted, making them more sensitive to an acute cold exposure. In return, these reporter mice with reduced UCP1 expression enabled us to investigate the physiological role of UCP1 in the prevention of weight gain. We observed no substantial differences in body mass across the three genotypes, irrespective of the type of diet or the ambient temperature, possibly due to the insufficient UCP1 activation. Indeed, activation of UCP1 by daily injection of the selective ß3-adrenergic receptor agonist CL316,243 resulted in significantly greater reduction of body weight in wild-type mice than in KI mice. Taken together, we conclude that the intact expression of UCP1 is essential for cold-induced thermogenesis but the presence of UCP1 per se does not protect mice from diet-induced obesity.NEW & NOTEWORTHY To study the functional role of UCP1-dependent brown adipose tissue thermogenesis for energy balance, new animal models are needed. By metabolic phenotyping of a novel mouse model with low UCP1 levels in brown fat, we demonstrate that the susceptibility to diet-induced obesity is not increased despite impaired cold-induced thermogenic capacity. Brown fat requires pharmacological activation to promote negative energy balance in diet-induced obese mice.


Assuntos
Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/patologia , Dieta Hiperlipídica , Obesidade/patologia , Proteína Desacopladora 1/fisiologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Metabolismo Energético , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/etiologia , Obesidade/metabolismo , Termogênese , Aumento de Peso
17.
Am J Physiol Heart Circ Physiol ; 321(1): H228-H241, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34018851

RESUMO

Adipose tissue homeostasis plays a central role in cardiovascular physiology, and the presence of thermogenically active brown adipose tissue (BAT) has recently been associated with cardiometabolic health. We have previously shown that adipose tissue-specific deletion of HuR (Adipo-HuR-/-) reduces BAT-mediated adaptive thermogenesis, and the goal of this work was to identify the cardiovascular impacts of Adipo-HuR-/-. We found that Adipo-HuR-/- mice exhibit a hypercontractile phenotype that is accompanied by increased left ventricle wall thickness and hypertrophic gene expression. Furthermore, hearts from Adipo-HuR-/- mice display increased fibrosis via picrosirius red staining and periostin expression. To identify underlying mechanisms, we applied both RNA-seq and weighted gene coexpression network analysis (WGCNA) across both cardiac and adipose tissue to define HuR-dependent changes in gene expression as well as significant relationships between adipose tissue gene expression and cardiac fibrosis. RNA-seq results demonstrated a significant increase in proinflammatory gene expression in both cardiac and subcutaneous white adipose tissue (scWAT) from Adipo-HuR-/- mice that is accompanied by an increase in serum levels of both TNF-α and IL-6. In addition to inflammation-related genes, WGCNA identified a significant enrichment in extracellular vesicle-mediated transport and exosome-associated genes in scWAT, whose expression most significantly associated with the degree of cardiac fibrosis observed in Adipo-HuR-/- mice, implicating these processes as a likely adipose-to-cardiac paracrine mechanism. These results are significant in that they demonstrate the spontaneous onset of cardiovascular pathology in an adipose tissue-specific gene deletion model and contribute to our understanding of how disruptions in adipose tissue homeostasis may mediate cardiovascular disease.NEW & NOTEWORTHY The presence of functional brown adipose tissue in humans is known to be associated with cardiovascular health. Here, we show that adipocyte-specific deletion of the RNA binding protein HuR, which we have previously shown to reduce BAT-mediated thermogenesis, is sufficient to mediate a spontaneous development of cardiac hypertrophy and fibrosis. These results may have implications on the mechanisms by which BAT function and adipose tissue homeostasis directly mediate cardiovascular disease.


Assuntos
Adipócitos/metabolismo , Cardiomegalia/genética , Proteína Semelhante a ELAV 1/genética , Miocárdio/metabolismo , Adipócitos/patologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Proteína Semelhante a ELAV 1/metabolismo , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Camundongos , Camundongos Knockout , Miocárdio/patologia
18.
Biochem Biophys Res Commun ; 547: 29-35, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33592376

RESUMO

Brown adipose tissue (BAT) and stimulating adaptive thermogenesis have been implicated as anti-obese and anti-diabetic tissues due to their ability to dissipate energy as heat by the expression of UCP1. We have recently demonstrated that TRB3 impairs differentiation of brown preadipocytes via inhibiting insulin signaling. However, the roles of the protein in BAT function and thermogenesis in vivo have not yet been established. For this study we tested the hypothesis that TRB3 mediates obesity- and diabetes-induced impairments in BAT differentiation and function, and that inhibition of TRB3 improves BAT function. TRB3 expression was increased in BAT from high-fat fed mice and ob/ob mice, which was associated with decreased UCP1 expression. Incubation of brown adipocytes with palmitate increased TRB3 expression and decreased UCP1. Knockout of TRB3 in mice displayed higher UCP1 expression in BAT and cold resistance. Incubation of brown adipocytes with ER stressors increased TRB3 but decreased UCP1 and ER stress markers were elevated in BAT from high-fat fed mice and ob/ob mice. Finally, high-fat feeding in TRB3KO mice were protected from obesity-induced glucose intolerance and displayed cold resistance and higher expression of BAT-specific markers. These data demonstrate that high-fat feeding and obesity increase TRB3 in BAT, resulting in impaired tissue function.


Assuntos
Tecido Adiposo Marrom/metabolismo , Proteínas de Ciclo Celular/metabolismo , Obesidade/metabolismo , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Marrom/patologia , Tecido Adiposo Marrom/fisiologia , Animais , Células Cultivadas , Dieta Hiperlipídica , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/patologia , Transdução de Sinais , Termogênese
19.
FASEB J ; 34(7): 9755-9770, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32510702

RESUMO

Regulatory T cells (Tregs) play essential roles in obesity and diabetes. Here, we report a role of Tregs in enhancing ß3-adrenergic receptor agonist CL316243 (CL)-stimulated thermogenic program in subcutaneous adipose tissue (SAT), but not in visceral fat. CL treatment for 7 days increased SAT adipocyte beiging and thermogenic gene expression in male or female mice. Adoptive transfer of Tregs enhanced this CL activity. Such Treg activity lost in male epididymal white adipose tissue (eWAT) and female gonadal gWAT. Adipocyte culture yielded the same conclusion. Tregs enhanced the expression of CL-induced thermogenic genes in SAT from male and female mice. This activity of Tregs reduced or disappeared in adipocytes from eWAT or gWAT. Both CL and Tregs induced much higher UCP-1 (uncoupling protein-1) expression in SAT from females than that from males. A mechanistic study demonstrated a role of Tregs in suppressing the expression of M1 macrophage markers (Tnfa, Il6, iNos, Ip10) and promoting the expression of M2 macrophage markers (Mrc1, Arg1, Il10) in bone-marrow-derived macrophages or in SAT from male or female mice. In female mice with pre-established obesity, Treg adoptive transfer reduced the gWAT weight in 2 weeks. Together with CL treatment, Treg adoptive transfer reduced the SAT weight and further improved CL-induced glucose metabolism and insulin sensitivity in female obese mice, but did not affect CL-induced body weight loss in male or female obese mice. This study revealed a predominant role of Tregs in female mice in promoting adipocyte beiging and thermogenesis in SAT, in part by slanting M2 macrophage polarization.


Assuntos
Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/patologia , Obesidade/etiologia , Gordura Subcutânea/patologia , Linfócitos T Reguladores/imunologia , Termogênese , Tecido Adiposo Marrom/imunologia , Tecido Adiposo Branco/imunologia , Animais , Metabolismo Energético , Feminino , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/patologia , Gordura Subcutânea/imunologia , Linfócitos T Reguladores/patologia
20.
FASEB J ; 34(11): 15146-15163, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32946628

RESUMO

The physiological role played by uncoupling protein 3 (UCP3) in brown adipose tissue (BAT) has not been fully elucidated so far. In the present study, we evaluated the impact of the absence of UCP3 on BAT mitochondrial functionality and morphology. To this purpose, wild type (WT) and UCP3 Knockout (KO) female mice were housed at thermoneutrality (30°C), a condition in which BAT contributes to energy homeostasis independently of its cold-induced thermogenic function. BAT mitochondria from UCP3 KO mice presented a lower ability to oxidize the fatty acids and glycerol-3-phosphate, and an enhanced oxidative stress as revealed by enhanced mitochondrial electron leak, lipid hydroperoxide levels, and induction of antioxidant mitochondrial enzymatic capacity. The absence of UCP3 also influenced the mitochondrial super-molecular protein aggregation, an important feature for fatty acid oxidation rate as well as for adequate cristae organization and mitochondrial shape. Indeed, electron microscopy revealed alterations in mitochondrial morphology in brown adipocytes from KO mice. In the whole, data here reported show that the absence of UCP3 results in a significant alteration of BAT mitochondrial physiology and morphology. These observations could also help to clarify some aspects of the association between metabolic disorders associated with low UCP3 levels, as previously reported in human studies.


Assuntos
Tecido Adiposo Marrom/patologia , Ácidos Graxos/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo , Termogênese , Proteína Desacopladora 3/fisiologia , Tecido Adiposo Marrom/metabolismo , Animais , Metabolismo Energético , Feminino , Homeostase , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA