RESUMO
The Crumbs homolog 1 (CRB1) gene is associated with retinal degeneration, most commonly Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP). Here, we demonstrate that murine retinas bearing the Rd8 mutation of Crb1 are characterized by the presence of intralesional bacteria. While normal CRB1 expression was enriched in the apical junctional complexes of retinal pigment epithelium and colonic enterocytes, Crb1 mutations dampened its expression at both sites. Consequent impairment of the outer blood retinal barrier and colonic intestinal epithelial barrier in Rd8 mice led to the translocation of intestinal bacteria from the lower gastrointestinal (GI) tract to the retina, resulting in secondary retinal degeneration. Either the depletion of bacteria systemically or the reintroduction of normal Crb1 expression colonically rescued Rd8-mutation-associated retinal degeneration without reversing the retinal barrier breach. Our data elucidate the pathogenesis of Crb1-mutation-associated retinal degenerations and suggest that antimicrobial agents have the potential to treat this devastating blinding disease.
Assuntos
Proteínas do Tecido Nervoso , Degeneração Retiniana , Animais , Camundongos , Translocação Bacteriana , Proteínas do Olho/genética , Amaurose Congênita de Leber/genética , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Retina/metabolismo , Degeneração Retiniana/genética , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologiaRESUMO
A mysterious feature of Crohn's disease (CD) is the extra-intestinal manifestation of "creeping fat" (CrF), defined as expansion of mesenteric adipose tissue around the inflamed and fibrotic intestine. In the current study, we explore whether microbial translocation in CD serves as a central cue for CrF development. We discovered a subset of mucosal-associated gut bacteria that consistently translocated and remained viable in CrF in CD ileal surgical resections, and identified Clostridium innocuum as a signature of this consortium with strain variation between mucosal and adipose isolates, suggesting preference for lipid-rich environments. Single-cell RNA sequencing characterized CrF as both pro-fibrotic and pro-adipogenic with a rich milieu of activated immune cells responding to microbial stimuli, which we confirm in gnotobiotic mice colonized with C. innocuum. Ex vivo validation of expression patterns suggests C. innocuum stimulates tissue remodeling via M2 macrophages, leading to an adipose tissue barrier that serves to prevent systemic dissemination of bacteria.
Assuntos
Tecido Adiposo/microbiologia , Translocação Bacteriana , Microbioma Gastrointestinal , Mesentério/microbiologia , Tecido Adiposo/patologia , Animais , Biodiversidade , Biomarcadores/metabolismo , Polaridade Celular , Células Cultivadas , Colite Ulcerativa/patologia , Doença de Crohn/microbiologia , Doença de Crohn/patologia , Microbioma Gastrointestinal/genética , Regulação da Expressão Gênica , Vida Livre de Germes , Humanos , Íleo/microbiologia , Íleo/patologia , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Metagenoma , Metagenômica , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , RNA Ribossômico 16S/genética , Células-Tronco/metabolismoRESUMO
Gut commensal bacteria with the ability to translocate across the intestinal barrier can drive the development of diverse immune-mediated diseases1-4. However, the key factors that dictate bacterial translocation remain unclear. Recent studies have revealed that gut microbiota strains can adapt and evolve throughout the lifetime of the host5-9, raising the possibility that changes in individual commensal bacteria themselves over time may affect their propensity to elicit inflammatory disease. Here we show that within-host evolution of the model gut pathobiont Enterococcus gallinarum facilitates bacterial translocation and initiation of inflammation. Using a combination of in vivo experimental evolution and comparative genomics, we found that E. gallinarum diverges into independent lineages adapted to colonize either luminal or mucosal niches in the gut. Compared with ancestral and luminal E. gallinarum, mucosally adapted strains evade detection and clearance by the immune system, exhibit increased translocation to and survival within the mesenteric lymph nodes and liver, and induce increased intestinal and hepatic inflammation. Mechanistically, these changes in bacterial behaviour are associated with non-synonymous mutations or insertion-deletions in defined regulatory genes in E. gallinarum, altered microbial gene expression programs and remodelled cell wall structures. Lactobacillus reuteri also exhibited broadly similar patterns of divergent evolution and enhanced immune evasion in a monocolonization-based model of within-host evolution. Overall, these studies define within-host evolution as a critical regulator of commensal pathogenicity that provides a unique source of stochasticity in the development and progression of microbiota-driven disease.
Assuntos
Bactérias , Translocação Bacteriana , Evolução Biológica , Microbioma Gastrointestinal , Fígado , Bactérias/genética , Bactérias/imunologia , Bactérias/patogenicidade , Translocação Bacteriana/genética , Parede Celular/genética , Enterococcus/genética , Enterococcus/imunologia , Microbioma Gastrointestinal/genética , Genômica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamação/microbiologia , Inflamação/patologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/imunologia , Fígado/microbiologia , Fígado/patologia , Linfonodos/microbiologia , Mutação , Processos Estocásticos , Simbiose/genética , Simbiose/imunologiaRESUMO
BACKGROUND & AIMS: Primary sclerosing cholangitis (PSC), often associated with inflammatory bowel disease (IBD), presents a multifactorial etiology involving genetic, immunologic, and environmental factors. Gut dysbiosis and bacterial translocation have been implicated in PSC-IBD, yet the precise mechanisms underlying their pathogenesis remain elusive. Here, we describe the role of gut pathobionts in promoting liver inflammation and fibrosis due to the release of bacterial outer membrane vesicles (OMVs). METHODS: Preclinical mouse models in addition to ductal organoids were used to acquire mechanistic data. A proof-of-concept study including serum and liver biopsies of a patient cohort of PSC (n = 22), PSC-IBD (n = 45), and control individuals (n = 27) was performed to detect OMVs in the systemic circulation and liver. RESULTS: In both preclinical model systems and in patients with PSC-IBD, the translocation of OMVs to the liver correlated with enhanced bacterial sensing and accumulation of the NLRP3 inflammasome. Using ductal organoids, we were able to precisely attribute the pro-inflammatory and pro-fibrogenic properties of OMVs to signaling pathways dependent on Toll-like receptor 4 and NLRP3-gasdermin-D. The immunostimulatory potential of OMVs could be confirmed in macrophages and hepatic stellate cells. Furthermore, when we administered gut pathobiont-derived OMVs to Mdr2-/- mice, we observed a significant enhancement in liver inflammation and fibrosis. In a translational approach, we substantiated the presence of OMVs in the systemic circulation and hepatic regions of severe fibrosis using a PSC-IBD patient cohort. CONCLUSIONS: This study demonstrates the contribution of gut pathobionts in releasing OMVs that traverse the mucosal barrier and, thus, promote liver inflammation and fibrosis in PSC-IBD. OMVs might represent a critical new environmental factor that interacts with other disease factors to cause inflammation and thus define potential new targets for fibrosis therapy.
Assuntos
Colangite Esclerosante , Modelos Animais de Doenças , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Cirrose Hepática , Fígado , Colangite Esclerosante/imunologia , Colangite Esclerosante/microbiologia , Colangite Esclerosante/patologia , Animais , Humanos , Camundongos , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Cirrose Hepática/patologia , Cirrose Hepática/microbiologia , Cirrose Hepática/imunologia , Cirrose Hepática/metabolismo , Cirrose Hepática/etiologia , Fígado/patologia , Fígado/imunologia , Translocação Bacteriana , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Disbiose , Membrana Externa Bacteriana/metabolismo , Organoides , Estudos de Casos e Controles , Estudo de Prova de Conceito , Camundongos Endogâmicos C57BL , Feminino , Transdução de Sinais , Masculino , Camundongos KnockoutRESUMO
SARS-CoV-2 infects via the respiratory tract, but COVID-19 includes an array of non-respiratory symptoms, among them gastrointestinal (GI) manifestations such as vomiting and diarrhea. Here we investigated the GI pathology of SARS-CoV-2 infections in rhesus macaques and humans. Macaques experienced mild infection with USA-WA1/2020 and shed viral RNA in the respiratory tract and stool, including subgenomic RNA indicative of replication in the GI tract. Intestinal immune cell populations were disturbed, with significantly fewer proliferating (Ki67+) jejunal B cells in SARS-CoV-2-infected macaques than uninfected ones. Modest translocation of bacteria/bacterial antigen was observed across the colonic epithelium, with a corresponding significant increase in plasma soluble CD14 (sCD14) that may be induced by LPS. Human plasma demonstrated significant decreases in interleukin (IL)-6 and sCD14 upon recovery from COVID-19, suggesting resolution of inflammation and response to translocated bacteria. sCD14 significantly positively correlated with zonulin, an indicator of gut barrier integrity, and IL-6. These results demonstrate that GI perturbations such as microbial translocation can occur in even mild SARS-CoV-2 infections and may contribute to the COVID-19 inflammatory state.IMPORTANCEThis study investigates gastrointestinal (GI) barrier disruption in SARS-CoV-2 infections and how it may contribute to disease. We observed bacteria or bacterial products crossing from the colon interior (the lumen) to the lamina propria during SARS-CoV-2 infection in macaques. Bacteria/bacterial products are tolerated in the lumen but may induce immune responses if they translocate to the lamina propria. We also observed a significant increase in soluble CD14, which is associated with an immune response to bacterial products. In addition, we observed that humans recovering from COVID-19 experienced a significant decrease in soluble CD14, as well as the inflammatory marker interleukin (IL)-6. IL-6 and sCD14 correlated significantly across macaque and human samples. These findings suggest that SARS-CoV-2 infection results in GI barrier disruption that permits microbial translocation and a corresponding immune response. These findings could aid in developing interventions to improve COVID-19 patient outcomes.
Assuntos
Translocação Bacteriana , COVID-19 , Interleucina-6 , Receptores de Lipopolissacarídeos , Macaca mulatta , SARS-CoV-2 , Animais , COVID-19/imunologia , COVID-19/virologia , COVID-19/microbiologia , Humanos , SARS-CoV-2/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Interleucina-6/metabolismo , Masculino , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/virologia , Trato Gastrointestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/virologia , Mucosa Intestinal/metabolismo , Feminino , Haptoglobinas/metabolismo , Linfócitos B/imunologia , Pessoa de Meia-Idade , Precursores de ProteínasRESUMO
The progression of cirrhosis with clinically significant portal hypertension towards decompensated cirrhosis remains clinically challenging and the evolution towards acute-on-chronic liver failure (ACLF), with one or more extrahepatic organ failures, is associated with very high mortality. In the last decade, significant progress has been made in the understanding of the mechanisms leading to decompensation and ACLF. As portal hypertension advances, bacterial translocation across an impaired gut barrier culminates in endotoxaemia, systemic inflammation and cirrhosis-associated immune dysfunction (CAID). Gut-derived systemic inflammation and CAID have become the logical targets for innovative therapies that prevent hepatic decompensation episodes and the progression to ACLF.Furthermore, classification of disease and biomarker discovery to personalise care have advanced in the field. This review discusses progress in biomarker discovery and personalisation of treatment in decompensated cirrhosis and ACLF.
Assuntos
Insuficiência Hepática Crônica Agudizada , Biomarcadores , Cirrose Hepática , Humanos , Insuficiência Hepática Crônica Agudizada/terapia , Insuficiência Hepática Crônica Agudizada/etiologia , Insuficiência Hepática Crônica Agudizada/diagnóstico , Cirrose Hepática/complicações , Biomarcadores/sangue , Progressão da Doença , Hipertensão Portal/etiologia , Hipertensão Portal/terapia , Microbioma Gastrointestinal , Translocação BacterianaRESUMO
OBJECTIVE: Targeting bacterial translocation in cirrhosis is limited to antibiotics with risk of antimicrobial resistance. This study explored the therapeutic potential of a non-absorbable, gut-restricted, engineered carbon bead adsorbent, Yaq-001 in models of cirrhosis and acute-on-chronic liver failure (ACLF) and, its safety and tolerability in a clinical trial in cirrhosis. DESIGN: Performance of Yaq-001 was evaluated in vitro. Two-rat models of cirrhosis and ACLF, (4 weeks, bile duct ligation with or without lipopolysaccharide), receiving Yaq-001 for 2 weeks; and two-mouse models of cirrhosis (6-week and 12-week carbon tetrachloride (CCl4)) receiving Yaq-001 for 6 weeks were studied. Organ and immune function, gut permeability, transcriptomics, microbiome composition and metabolomics were analysed. The effect of faecal water on gut permeability from animal models was evaluated on intestinal organoids. A multicentre, double-blind, randomised, placebo-controlled clinical trial in 28 patients with cirrhosis, administered 4 gr/day Yaq-001 for 3 months was performed. RESULTS: Yaq-001 exhibited rapid adsorption kinetics for endotoxin. In vivo, Yaq-001 reduced liver injury, progression of fibrosis, portal hypertension, renal dysfunction and mortality of ACLF animals significantly. Significant impact on severity of endotoxaemia, hyperammonaemia, liver cell death, systemic inflammation and organ transcriptomics with variable modulation of inflammation, cell death and senescence in the liver, kidneys, brain and colon was observed. Yaq-001 reduced gut permeability in the organoids and impacted positively on the microbiome composition and metabolism. Yaq-001 regulated as a device met its primary endpoint of safety and tolerability in the clinical trial. CONCLUSIONS: This study provides strong preclinical rationale and safety in patients with cirrhosis to allow clinical translation. TRIAL REGISTRATION NUMBER: NCT03202498.
Assuntos
Insuficiência Hepática Crônica Agudizada , Microbioma Gastrointestinal , Cirrose Hepática , Humanos , Animais , Cirrose Hepática/complicações , Camundongos , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Método Duplo-Cego , Ratos , Modelos Animais de Doenças , Feminino , Pessoa de Meia-Idade , Translocação Bacteriana/efeitos dos fármacos , Carbono/uso terapêutico , Carbono/farmacologiaRESUMO
BACKGROUND: The mechanism by which proton pump inhibitors (PPIs) alter gut microbiota remains to be elucidated. We aimed to learn whether PPI induced gut microbiota alterations by promoting oral microbial translocation. METHODS: Healthy adult volunteers were randomly assigned: PP group (n=8, 40 mg esomeprazole daily for seven days) and PM group (n=8, 40 mg esomeprazole along with chlorhexidine mouthwash after each meal for seven days). Fecal and saliva samples were analysed using 16S ribosomal RNA sequencing. Mouse models were introduced to confirm the findings in vivo, while the effect of pH on oral bacteria proliferation activity was investigated in vitro. RESULTS: Taxon-based analysis indicated that PPI administration increased Streptococcus abundance in gut microbiota (P<0.001), and the increased species of Streptococcus were found to be from the oral site or oral/nasal sites, in which Streptococcus anginosus was identified as the significantly changed species (P<0.004). Microbial source tracker revealed that PPI significantly increased the contribution of oral bacteria to gut microbiota (P=0.026), and no significant difference was found in PM group (P=0.467). Compared to the baseline, there was a 42-fold increase in gut abundance of Streptococcus anginosus in PP group (P=0.002), and the times decreased to 16-fold in PM group (P=0.029). Mouse models showed that combination of PPI and Streptococcus anginosus significantly increased the gut abundance of Streptococcus anginosus compared with using PPI or Streptococcus anginosus only. Furthermore, Streptococcus anginosus cannot survive in vitro at a pH lower than 5. CONCLUSIONS: PPIs altered gut microbiota by promoting oral-originated Streptococcus translocation into gut.
Assuntos
Esomeprazol , Fezes , Microbioma Gastrointestinal , Inibidores da Bomba de Prótons , Saliva , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Adulto Jovem , Translocação Bacteriana/efeitos dos fármacos , Clorexidina/farmacologia , Esomeprazol/farmacologia , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Voluntários Saudáveis , Concentração de Íons de Hidrogênio , Boca/microbiologia , Antissépticos Bucais/farmacologia , Estudos Prospectivos , Inibidores da Bomba de Prótons/farmacologia , RNA Ribossômico 16S , Saliva/microbiologia , Streptococcus anginosus/efeitos dos fármacos , Streptococcus anginosus/isolamento & purificaçãoRESUMO
BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a leading cause of end-stage liver disease associated with increased mortality and cardiovascular disease. Obesity and diabetes are the most important risk factors of MASLD. It is well-established that obesity-associated insulin resistance leads to a situation of tissue lipotoxicity characterized by an accumulation of excess fat in non-fat tissues such as the liver, promoting the development of MASLD, and its progression into metabolic dysfunction-associated steatohepatitis. METHODS: Here, we aimed to review the impact of disrupted intestinal permeability, antimicrobial proteins and bacterial endotoxin in the development and progression of MASLD. RESULTS AND CONCLUSION: Recent studies demonstrated that obesity- and obesogenic diets-associated alterations of intestinal microbiota along with the disruption of intestinal barrier integrity, the alteration in antimicrobial proteins and, in consequence, an enhanced translocation of bacterial endotoxin into bloodstream might contribute to this pathological process through to impacting liver metabolism and inflammation.
Assuntos
Endotoxinas , Microbioma Gastrointestinal , Obesidade , Animais , Humanos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Translocação Bacteriana , Endotoxinas/metabolismo , Fígado Gorduroso/metabolismo , Microbioma Gastrointestinal/fisiologia , Resistência à Insulina/fisiologia , Mucosa Intestinal/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Obesidade/complicações , Função da Barreira IntestinalRESUMO
The prevalence of bacterial infections significantly increases among patients with severe traumatic brain injury (STBI), leading to a notable rise in mortality rates. While immune dysfunctions are linked to the incidence of pneumonia, our observations indicate that endogenous pathogens manifest in the lungs post-STBI due to the migration of gut commensal bacteria. This translocation involves gut-innervating nociceptor sensory neurons, which are crucial for host defense. Following STBI, the expression of transient receptor potential vanilloid 1 (TRPV1) in dorsal root ganglion (DRG) neurons significantly decreases, despite an initial brief increase. The timing of TRPV1 defects coincides with the occurrence of pulmonary infections post-STBI. This alteration in TRPV1+ neurons diminishes their ability to signal bacterial injuries, weakens defense mechanisms against intestinal bacteria, and increases susceptibility to pulmonary infections via bacterial translocation. Experimental evidence demonstrates that pulmonary infections can be successfully replicated through the chemical ablation and gene interference of TRPV1+ nociceptors, and that these infections can be mitigated by TRPV1 activation, thereby confirming the crucial role of nociceptor neurons in controlling intestinal bacterial migration. Furthermore, TRPV1+ nociceptors regulate the immune response of microfold cells by releasing calcitonin gene-related peptide (CGRP), thereby influencing the translocation of gut bacteria to the lungs. Our study elucidates how changes in nociceptive neurons post-STBI impact intestinal pathogen defense. This new understanding of endogenous risk factors within STBI pathology offers novel insights for preventing and treating pulmonary infections.
Assuntos
Lesões Encefálicas Traumáticas , Nociceptores , Canais de Cátion TRPV , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/microbiologia , Canais de Cátion TRPV/metabolismo , Nociceptores/metabolismo , Camundongos , Masculino , Gânglios Espinais/metabolismo , Translocação Bacteriana , Intestinos/microbiologia , Camundongos Endogâmicos C57BL , Microbioma Gastrointestinal/fisiologia , Pulmão/metabolismo , Pulmão/microbiologiaRESUMO
Hypertension-associated dysbiosis is linked to several clinical complications, including inflammation and possible kidney dysfunction. Inflammation and TLR4 activation during hypertension result from gut dysbiosis-related impairment of intestinal integrity. However, the contribution of TLR4 in kidney dysfunction during hypertension-induced gut dysbiosis is unclear. We designed this study to address this knowledge gap by utilizing TLR4 normal (TLR4N) and TLR4 mutant (TLR4M) mice. These mice were infused with high doses of Angiotensin-II for four weeks to induce hypertension. Results suggest that Ang-II significantly increased renal arterial resistive index (RI), decreased renal vascularity, and renal function (GFR) in TLR4N mice compared to TLR4M. 16â¯S rRNA sequencing analysis of gut microbiome revealed that Ang-II-induced hypertension resulted in alteration of Firmicutes: Bacteroidetes ratio in the gut of both TLR4N and TLR4M mice; however, it was not comparably rather differentially. Additionally, Ang-II-hypertension decreased the expression of tight junction proteins and increased gut permeability, which were more prominent in TLR4N mice than in TLR4M mice. Concomitant with gut hyperpermeability, an increased bacterial component translocation to the kidney was observed in TLR4N mice treated with Ang-II compared to TLR4N plus saline. Interestingly, microbiota translocation was mitigated in Ang-II-hypertensive TLR4M mice. Furthermore, Ang-II altered the expression of inflammatory (IL-1ß, IL-6) and anti-inflammatory IL-10) markers, and extracellular matrix proteins, including MMP-2, -9, -14, and TIMP-2 in the kidney of TLR4N mice, which were blunted in TLR4M mice. Our data demonstrate that ablation of TLR4 attenuates hypertension-induced gut dysbiosis resulting in preventing gut hyperpermeability, bacterial translocation, mitigation of renal inflammation and alleviation of kidney dysfunction.
Assuntos
Disbiose , Microbioma Gastrointestinal , Hipertensão , Rim , Camundongos Endogâmicos C57BL , Mutação , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Masculino , Rim/metabolismo , Hipertensão/metabolismo , Hipertensão/genética , Hipertensão/microbiologia , Camundongos , Angiotensina II , Translocação BacterianaRESUMO
PURPOSE: Gut barrier dysfunction is a pivotal pathophysiological alteration in cirrhosis and end-stage liver disease, which is further aggravated during and after the operational procedures for liver transplantation (LT). In this review, we analyze the multifactorial disruption of all major levels of defense of the gut barrier (biological, mechanical, and immunological) and correlate with clinical implications. METHODS: A narrative review of the literature was performed using PubMed, PubMed Central and Google from inception until November 29th, 2023. RESULTS: Systemic translocation of indigenous bacteria through this dysfunctional barrier contributes to the early post-LT infectious complications, while endotoxin translocation, through activation of the systemic inflammatory response, is implicated in non-infectious complications including renal dysfunction and graft rejection. Bacterial infections are the main cause of early in-hospital mortality of LT patients and unraveling the pathophysiology of gut barrier failure is of outmost importance. CONCLUSION: A pathophysiology-based approach to prophylactic or therapeutic interventions may lead to enhancement of gut barrier function eliminating its detrimental consequences and leading to better outcomes for LT patients.
Assuntos
Microbioma Gastrointestinal , Transplante de Fígado , Complicações Pós-Operatórias , Humanos , Transplante de Fígado/efeitos adversos , Complicações Pós-Operatórias/fisiopatologia , Translocação BacterianaRESUMO
BACKGROUND: Currently, the mechanisms of impaired gut mucosal immunity in sepsis remain unclear. Gut immunoglobulin A (IgA) is an important defense mechanism against invasive pathogens, and CD4+ T cells regulate the IgA response. AIM: We aimed to verify the hypothesis indicating that CD4+ T pyroptosis induced by lipopolysaccharide (LPS) leads to an impaired gut IgA response and subsequent bacterial translocation and organ damage. METHODS: Cultured CD4+ T cells and mice were manipulated with LPS, and pyroptosis was improved by A438079 or adoptive CD4+ T cell transfer. The changes demonstrated in pyroptosis-related molecules, cytotoxicity and CD4+ T cells were examined to determine CD4+ T pyroptosis. The changes demonstrated in IgA+ B cells, AID (key enzyme for immunoglobulins) and IgA production and function were examined to evaluate the IgA response. Serum biomarkers, bacterial colonies and survival analysis were detected for bacterial translocation and organ damage. RESULTS: LPS attack induced CD4+ T pyroptosis, as evidenced by increased expression of P2X7, Caspase-11 and cleaved GSDMD, which elevated cytotoxicity and decreased CD4+ T cells. Decreased CD4+ T subsets (Foxp3+ T and Tfh cells) influenced the IgA response, as evidenced by lower AID expression, which decreased IgA+ B cells and IgA production and function. A438079 or cell transfer improved the IgA response but failed to reduce the translocation of gut pathogens, damage to the liver and kidney, and mortality of mice. CONCLUSION: LPS attack results in CD4+ T pyroptosis. Improvement of pyroptosis restores the mucosal IgA response but fails to ameliorate bacterial translocation and organ damage.
Assuntos
Imunoglobulina A , Lipopolissacarídeos , Camundongos , Animais , Lipopolissacarídeos/toxicidade , Piroptose , Translocação Bacteriana , Linfócitos T CD4-PositivosRESUMO
BACKGROUND: Intestinal barrier dysfunction in acute pancreatitis (AP) may progress to systemic inflammatory response syndrome (SIRS) and multi-organ failures by causing bacterial translocation. Larazotide acetate (LA) is a molecule that acts as a tight junction (TJ) regulator by blocking zonulin (Zo) receptors in the intestine. AIMS: In our study, we aimed to investigate the effects of LA on intestinal barrier dysfunction and bacterial translocation in the AP model in rats. METHODS: Thirty-two male Sprague-Dawley rats were divided into 4 groups; control, larazotide (LAR), AP, and AP + LAR. The AP model was created by administering 250 mg/100 g bm L-Arginine intraperitoneally 2 times with an hour interval. AP + LAR group received prophylactic 0.01 mg/mL LA orally for 7 days before the first dose of L-Arginine. For intestinal permeability analysis, fluorescein isothiocyanate-dextran (FITC-Dextran) was applied to rats by gavage. The positivity of any of the liver, small intestine mesentery, and spleen cultures were defined as bacterial translocation. Histopathologically damage and zonulin immunoreactivity in the intestine were investigated. RESULTS: Compared to the control group, the intestinal damage scores, anti-Zo-1 immunoreactivity H-Score, serum FITC-Dextran levels and bacterial translocation frequency (100% versus 0%) in the AP group were significantly higher (all p < 0.01). Intestinal damage scores, anti-Zo-1 immunoreactivity H-score, serum FITC-Dextran levels, and bacterial translocation frequency (50% versus 100%) were significantly lower in the AP + LAR group compared to the AP group (all p < 0.01). CONCLUSIONS: Our findings show that LA reduces the increased intestinal permeability and intestinal damage by its effect on Zo in the AP model in rats, and decreases the frequency of bacterial translocation as a result of these positive effects.
Assuntos
Dextranos , Fluoresceína-5-Isotiocianato/análogos & derivados , Enteropatias , Pancreatite , Ratos , Masculino , Animais , Pancreatite/metabolismo , Mucosa Intestinal/metabolismo , Ratos Sprague-Dawley , Função da Barreira Intestinal , Translocação Bacteriana , Doença Aguda , Oligopeptídeos/farmacologia , Enteropatias/metabolismo , Arginina , PermeabilidadeRESUMO
OBJECTIVE: Lactobacillus salivarius is a probiotic bacteria strain in human and animal diets. The administration of probiotics to weaned piglets may improve their growth by optimizing the gastrointestinal bacterial composition. To further investigate the effect of bacterial communication between the gastrointestinal tract and lungs on bodily immunity, we reared weaned piglets in a low-ammonia gas environment. L. salivarius was supplemented to explore its effects on pulmonary immunity and its potential for bacterial translocation. RESULTS: One hundred sixty weaned piglets were allocated to four groups: L. salivarius-supplemented, L. reuteri-supplemented, control, and antibiotic drug (aureomycin)-supplemented. The feeding duration was 28 d. The body weights of piglets administered a strain of Lactobacillus were better than those of the control (P < 0.01). The transcription level of immune factors interleukin 2 (IL-2), IL-4, interferon α (IFN-α), and tumor necrosis factor α (TNF-α) in cells of the ileum and lung was significantly higher (P < 0.01). Lung and ileal mucus tissues were isolated to sequence the bacterial composition, which suggested a higher richness in the lungs at the phylum level, which was not significant in the ileum. Functional bacteria were more abundant in the ileum and lungs. The proportion of the genera of Lactobacillus, Prevotella, Actinobacillus, and Prevotellaceae_ NK3B31_group increased in two tissues, and a lower ratio of Streptococcus, Escherichia-Shigella, and mycoplasma was detected. The correlation between the microbial genus composition and the levels of immune factors suggests that the abundance of Lactobacillus plays the same positive role in the lungs and ileum. Mycoplasmas play a negative role in ileal and pulmonary immunity. More Lactobacillus reuteri and anaerobic probiotic bacteria were detected in the lungs. CONCLUSION: The colonization of Lactobacillus salivarius and Lactobacillus reuteri in the membrane of the ileum optimized the ileal microbial composition, enrolled other probiotic bacteria translating to the lung, improved the abundance of pulmonary microbiota, and enhanced immunity after exposure to low concentrations of ammonia.
Assuntos
Amônia , Pulmão , Probióticos , Animais , Probióticos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Suínos , Desmame , Ligilactobacillus salivarius , Microbioma Gastrointestinal/efeitos dos fármacos , Translocação Bacteriana/efeitos dos fármacosRESUMO
The incidence of perturbed gastrointestinal integrity, as well as resulting systemic immune responses and gastrointestinal symptoms, otherwise known as exercised-induced gastrointestinal syndrome (EIGS), is common among individuals who partake in prolonged exercise. EIGS may cause the translocation of pathogenic material, including whole bacteria and bacterial endotoxins, from the lumen into circulation, which may progress into clinical consequences such as sepsis, and potentially subsequent fatality. However, further investigation is warranted to assess the possibility of food allergen and/or digestive enzyme luminal to circulatory translocation in response to exercise, and the clinical consequences. Findings from this narrative literature review demonstrate evidence that whole bacteria and bacterial endotoxins translocation from the gastrointestinal lumen to systemic circulation occurs in response to exercise stress, with a greater propensity of translocation occurring with accompanying heat exposure. It has also been demonstrated that food allergens can translocate from the lumen to systemic circulation in response to exercise stress and initiate anaphylaxis. To date, no research investigating the effect of exercise on the translocation of digestive enzymes from the lumen into systemic circulation exists. It is evident that EIGS and consequential pathogenic translocation presents life-threatening clinical implications, warranting the development and implementation of effective management strategies in at-risk populations.
Assuntos
Translocação Bacteriana , Exercício Físico , Humanos , Exercício Físico/fisiologia , Endotoxinas/metabolismo , Hipersensibilidade Alimentar/imunologia , Gastroenteropatias/fisiopatologia , Gastroenteropatias/imunologia , Estresse Fisiológico , Esforço Físico/fisiologia , Anafilaxia , Alérgenos/imunologiaRESUMO
Intestinal dysbiosis is a major contributor to colorectal cancer (CRC) development, leading to bacterial translocation into the bloodstream. This study aimed to evaluate the presence of circulated bacterial DNA (cbDNA) in CRC patients (n = 75) and healthy individuals (n = 25). DNA extracted from peripheral blood was analyzed using PCR, with specific primers targeting 16S rRNA, Escherichia coli (E. coli), and Fusobacterium nucleatum (F. nucleatum). High 16S rRNA and E. coli detections were observed in all patients and controls. Only the detection of F. nucleatum was significantly higher in metastatic non-excised CRC, compared to controls (p < 0.001), non-metastatic excised CRC (p = 0.023), and metastatic excised CRC (p = 0.023). This effect was mainly attributed to the presence of the primary tumor (p = 0.006) but not the presence of distant metastases (p = 0.217). The association of cbDNA with other clinical parameters or co-morbidities was also evaluated, revealing a higher detection of E. coli in CRC patients with diabetes (p = 0.004). These results highlighted the importance of bacterial translocation in CRC patients and the potential role of F. nucleatum as an intratumoral oncomicrobe in CRC.
Assuntos
Neoplasias Colorretais , DNA Bacteriano , Escherichia coli , Fusobacterium nucleatum , RNA Ribossômico 16S , Humanos , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/isolamento & purificação , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/sangue , Neoplasias Colorretais/patologia , Masculino , Feminino , Pessoa de Meia-Idade , DNA Bacteriano/genética , DNA Bacteriano/sangue , Idoso , Escherichia coli/genética , RNA Ribossômico 16S/genética , Disbiose/microbiologia , Adulto , Estudos de Casos e Controles , Translocação Bacteriana , Idoso de 80 Anos ou mais , Infecções por Fusobacterium/microbiologia , Infecções por Fusobacterium/sangue , Infecções por Fusobacterium/complicaçõesRESUMO
The patient was a man in his 80s who had undergone laparoscopic anterior resection for rectal cancer. Bowel obstruction occurred on the third postoperative day but improved with a decompression tube by the fifth postoperative day. A high fever (in the 38 °C range) was also observed. Blood culture tests detected two sets of the gram-negative bacilli Klebsiella aerogenes within 24 h of collection. On the seventh postoperative day, the patient subsequently went into septic shock with disseminated intravascular coagulation (DIC). On the eighth postoperative day, the fingertips and toes became black, and the palms and dorsal surfaces of both feet were dark purple due to peripheral circulatory failure. This suggested acute infectious purpura associated with sepsis (acute infectious purpura fulminans (AIPF)). Intensive care was provided; however, the necrosis of both middle fingers worsened, both middle fingers were gangrenous, and the patient died on the thirtieth postoperative day. AIPF is rarely reported, especially in early-onset cases after elective surgery. We encountered a rare complication of bacterial translocation from postoperative bowel obstruction, leading to AIPF.
Assuntos
Translocação Bacteriana , Púrpura Fulminante , Neoplasias Retais , Humanos , Masculino , Neoplasias Retais/cirurgia , Idoso de 80 Anos ou mais , Complicações Pós-Operatórias/microbiologia , Evolução Fatal , Obstrução Intestinal/etiologia , Obstrução Intestinal/cirurgia , Obstrução Intestinal/microbiologiaRESUMO
Acute kidney injury (AKI) remains a global public health problem with high incidence, high mortality rates, expensive medical costs, and limited treatment options. AKI can further progress to chronic kidney disease (CKD) and eventually end-stage renal disease (ESRD). Previous studies have shown that trauma, adverse drug reactions, surgery, and other factors are closely associated with AKI. With further in-depth exploration, the role of gut microbiota in AKI is gradually revealed. After AKI occurs, there are changes in the composition of gut microbiota, leading to disruption of the intestinal barrier, intestinal immune response, and bacterial translocation. Meanwhile, metabolites of gut microbiota can exacerbate the progression of AKI. Therefore, elucidating the specific mechanisms by which gut microbiota is involved in the occurrence and development of AKI can provide new insights from the perspective of intestinal microbiota for the prevention and treatment of AKI.
Assuntos
Injúria Renal Aguda , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , Injúria Renal Aguda/microbiologia , Injúria Renal Aguda/etiologia , Animais , Translocação Bacteriana , Insuficiência Renal Crônica/microbiologia , Progressão da DoençaRESUMO
OBJECTIVE: In acute pancreatitis (AP), bacterial translocation and subsequent infection of pancreatic necrosis are the main risk factors for severe disease and late death. Understanding how immunological host defence mechanisms fail to protect the intestinal barrier is of great importance in reducing the mortality risk of the disease. Here, we studied the role of the Treg/Th17 balance for maintaining the intestinal barrier function in a mouse model of severe AP. DESIGN: AP was induced by partial duct ligation in C57Bl/6 or DEREG mice, in which regulatory T-cells (Treg) were depleted by intraperitoneal injection of diphtheria toxin. By flow cytometry, functional suppression assays and transcriptional profiling we analysed Treg activation and characterised T-cells of the lamina propria as well as intraepithelial lymphocytes (IELs) regarding their activation and differentiation. Microbiota composition was examined in intestinal samples as well as in murine and human pancreatic necrosis by 16S rRNA gene sequencing. RESULTS: The prophylactic Treg-depletion enhanced the proinflammatory response in an experimental mouse model of AP but stabilised the intestinal immunological barrier function of Th17 cells and CD8+/γδTCR+ IELs. Treg depleted animals developed less bacterial translocation to the pancreas. Duodenal overgrowth of the facultative pathogenic taxa Escherichia/Shigella which associates with severe disease and infected necrosis was diminished in Treg depleted animals. CONCLUSION: Tregs play a crucial role in the counterbalance against systemic inflammatory response syndrome. In AP, Treg-activation disturbs the duodenal barrier function and permits translocation of commensal bacteria into pancreatic necrosis. Targeting Tregs in AP may help to ameliorate the disease course.