Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 667
Filtrar
1.
Am J Physiol Cell Physiol ; 326(4): C1106-C1119, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38344766

RESUMO

Intrauterine infection during pregnancy can enhance uterine contractions. A two-pore K+ channel TREK1 is crucial for maintaining uterine quiescence and reducing contractility, with its properties regulated by pH changes in cell microenvironment. Meanwhile, the sodium hydrogen exchanger 1 (NHE1) plays a pivotal role in modulating cellular pH homeostasis, and its activation increases smooth muscle tension. By establishing an infected mouse model of Escherichia coli (E. coli) and lipopolysaccharide (LPS), we used Western blotting, real-time quantitative polymerase chain reaction, and immunofluorescence to detect changes of TREK1 and NHE1 expression in the myometrium, and isometric recording measured the uterus contraction. The NHE1 inhibitor cariporide was used to explore the effect of NHE1 on TREK1. Finally, cell contraction assay and siRNA transfection were performed to clarify the relationship between NHE1 and TREK1 in vitro. We found that the uterine contraction was notably enhanced in infected mice with E. coli and LPS administration. Meanwhile, TREK1 expression was reduced, whereas NHE1 expression was upregulated in infected mice. Cariporide alleviated the increased uterine contraction and promoted myometrium TREK1 expression in LPS-injected mice. Furthermore, suppression of NHE1 with siRNA transfection inhibited the contractility of uterine smooth muscle cells and activated the TREK1. Altogether, our findings indicate that infection increases the uterine contraction by downregulating myometrium TREK1 in mice, and the inhibition of TREK1 is attributed to the activation of NHE1.NEW & NOTEWORTHY Present work found that infection during pregnancy will increase myometrium contraction. Infection downregulated NHE1 and followed TREK1 expression and activation decrease in myometrium, resulting in increased myometrium contraction.


Assuntos
Guanidinas , Lipopolissacarídeos , Miométrio , Canais de Potássio de Domínios Poros em Tandem , Trocador 1 de Sódio-Hidrogênio , Sulfonas , Animais , Feminino , Camundongos , Gravidez , Escherichia coli , Lipopolissacarídeos/toxicidade , Miométrio/metabolismo , RNA Interferente Pequeno/metabolismo , Contração Uterina/fisiologia , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Trocador 1 de Sódio-Hidrogênio/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 327(4): L439-L451, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39104320

RESUMO

In pulmonary hypertension (PHTN), a metabolic shift to aerobic glycolysis promotes a hyperproliferative, apoptosis-resistant phenotype in pulmonary arterial smooth muscle cells (PASMCs). Enhanced glycolysis induces extracellular acidosis, which can activate proton-sensing membrane receptors and ion channels. We previously reported that activation of the proton-gated cation channel acid-sensing ion channel 1a (ASIC1a) contributes to the development of hypoxic PHTN. Therefore, we hypothesize that enhanced glycolysis and subsequent acidification of the PASMC extracellular microenvironment activate ASIC1a in hypoxic PHTN. We observed decreased oxygen consumption rate and increased extracellular acidification rate in PASMCs from chronic hypoxia (CH)-induced PHTN rats, indicating a shift to aerobic glycolysis. In addition, we found that intracellular alkalization and extracellular acidification occur in PASMCs following CH and in vitro hypoxia, which were prevented by the inhibition of glycolysis with 2-deoxy-d-glucose (2-DG). Inhibiting H+ transport/secretion through carbonic anhydrases, Na+/H+ exchanger 1, or vacuolar-type H+-ATPase did not prevent this pH shift following hypoxia. Although the putative monocarboxylate transporter 1 (MCT1) and -4 (MCT4) inhibitor syrosingopine prevented the pH shift, the specific MCT1 inhibitor AZD3965 and/or the MCT4 inhibitor VB124 were without effect, suggesting that syrosingopine targets the glycolytic pathway independent of H+ export. Furthermore, 2-DG and syrosingopine prevented enhanced ASIC1a-mediated store-operated Ca2+ entry in PASMCs from CH rats. These data suggest that multiple H+ transport mechanisms contribute to extracellular acidosis and that inhibiting glycolysis-rather than specific H+ transporters-more effectively prevents extracellular acidification and ASIC1a activation. Together, these data reveal a novel pathological relationship between glycolysis and ASIC1a activation in hypoxic PHTN.NEW & NOTEWORTHY In pulmonary hypertension, a metabolic shift to aerobic glycolysis drives a hyperproliferative, apoptosis-resistant phenotype in pulmonary arterial smooth muscle cells. We demonstrate that this enhanced glycolysis induces extracellular acidosis and activates the proton-gated ion channel, acid-sensing ion channel 1a (ASIC1a). Although multiple H+ transport/secretion mechanisms are upregulated in PHTN and likely contribute to extracellular acidosis, inhibiting glycolysis with 2-deoxy-d-glucose or syrosingopine effectively prevents extracellular acidification and ASIC1a activation, revealing a promising therapeutic avenue.


Assuntos
Canais Iônicos Sensíveis a Ácido , Glicólise , Hipertensão Pulmonar , Hipóxia , Miócitos de Músculo Liso , Artéria Pulmonar , Animais , Canais Iônicos Sensíveis a Ácido/metabolismo , Glicólise/efeitos dos fármacos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipóxia/metabolismo , Ratos , Masculino , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Trocador 1 de Sódio-Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Ratos Sprague-Dawley , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Acidose/metabolismo , Acidose/patologia , Simportadores
3.
Rev Physiol Biochem Pharmacol ; 182: 85-110, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32776252

RESUMO

Prostate cancer is the fourth most commonly diagnosed cancer, and although it is often a slow-growing malignancy, it is the second leading cause of cancer-associated deaths in men and the first in Europe and North America. In many forms of cancer, when the disease is a solid tumor confined to one organ, it is often readily treated. However, when the cancer becomes an invasive metastatic carcinoma, it is more often fatal. It is therefore of great interest to identify mechanisms that contribute to the invasion of cells to identify possible targets for therapy. During prostate cancer progression, the epithelial cells undergo epithelial-mesenchymal transition that is characterized by morphological changes, a loss of cell-cell adhesion, and invasiveness. Dysregulation of pH has emerged as a hallmark of cancer with a reversed pH gradient and with a constitutively increased intracellular pH that is elevated above the extracellular pH. This phenomenon has been referred to as "a perfect storm" for cancer progression. Acid-extruding ion transporters include the Na+/H+ exchanger NHE1 (SLC9A1), the Na+HCO3- cotransporter NBCn1 (SLC4A7), anion exchangers, vacuolar-type adenosine triphosphatases, and the lactate-H+ cotransporters of the monocarboxylate family (MCT1 and MCT4 (SLC16A1 and 3)). Additionally, carbonic anhydrases contribute to acid transport. Of these, several have been shown to be upregulated in different human cancers including the NBCn1, MCTs, and NHE1. Here the role and contribution of acid-extruding transporters in prostate cancer growth and metastasis were examined. These proteins make significant contributions to prostate cancer progression.


Assuntos
Carcinoma , Neoplasias da Próstata , Carcinoma/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Masculino , Simportadores de Sódio-Bicarbonato/metabolismo , Trocador 1 de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo
4.
J Neuroinflammation ; 21(1): 69, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509618

RESUMO

Microglial Na/H exchanger-1 (NHE1) protein, encoded by Slc9a1, plays a role in white matter demyelination of ischemic stroke brains. To explore underlying mechanisms, we conducted single cell RNA-seq transcriptome analysis in conditional Slc9a1 knockout (cKO) and wild-type (WT) mouse white matter tissues at 3 days post-stroke. Compared to WT, Nhe1 cKO brains expanded a microglial subgroup with elevated transcription of white matter myelination genes including Spp1, Lgals3, Gpnmb, and Fabp5. This subgroup also exhibited more acidic pHi and significantly upregulated CREB signaling detected by ingenuity pathway analysis and flow cytometry. Moreover, the Nhe1 cKO white matter tissues showed enrichment of a corresponding oligodendrocyte subgroup, with pro-phagocytosis and lactate shuffling gene expression, where activated CREB signaling is a likely upstream regulator. These findings demonstrate that attenuation of NHE1-mediated H+ extrusion acidifies microglia/macrophage and may underlie the stimulation of CREB1 signaling, giving rise to restorative microglia-oligodendrocyte interactions for remyelination.


Assuntos
Encéfalo , Microglia , Trocador 1 de Sódio-Hidrogênio , Animais , Camundongos , Encéfalo/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Oligodendroglia/metabolismo , Transdução de Sinais/genética , Trocador 1 de Sódio-Hidrogênio/metabolismo
5.
Basic Res Cardiol ; 119(5): 751-772, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39046464

RESUMO

Sodium glucose cotransporter 2 inhibitors (SGLT2i) constitute the only medication class that consistently prevents or attenuates human heart failure (HF) independent of ejection fraction. We have suggested earlier that the protective mechanisms of the SGLT2i Empagliflozin (EMPA) are mediated through reductions in the sodium hydrogen exchanger 1 (NHE1)-nitric oxide (NO) pathway, independent of SGLT2. Here, we examined the role of SGLT2, NHE1 and NO in a murine TAC/DOCA model of HF. SGLT2 knockout mice only showed attenuated systolic dysfunction without having an effect on other signs of HF. EMPA protected against systolic and diastolic dysfunction, hypertrophy, fibrosis, increased Nppa/Nppb mRNA expression and lung/liver edema. In addition, EMPA prevented increases in oxidative stress, sodium calcium exchanger expression and calcium/calmodulin-dependent protein kinase II activation to an equal degree in WT and SGLT2 KO animals. In particular, while NHE1 activity was increased in isolated cardiomyocytes from untreated HF, EMPA treatment prevented this. Since SGLT2 is not required for the protective effects of EMPA, the pathway between NHE1 and NO was further explored in SGLT2 KO animals. In vivo treatment with the specific NHE1-inhibitor Cariporide mimicked the protection by EMPA, without additional protection by EMPA. On the other hand, in vivo inhibition of NOS with L-NAME deteriorated HF and prevented protection by EMPA. In conclusion, the data support that the beneficial effects of EMPA are mediated through the NHE1-NO pathway in TAC/DOCA-induced heart failure and not through SGLT2 inhibition.


Assuntos
Compostos Benzidrílicos , Glucosídeos , Insuficiência Cardíaca , Camundongos Knockout , Óxido Nítrico , Transdução de Sinais , Inibidores do Transportador 2 de Sódio-Glicose , Transportador 2 de Glucose-Sódio , Trocador 1 de Sódio-Hidrogênio , Animais , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/prevenção & controle , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/patologia , Trocador 1 de Sódio-Hidrogênio/metabolismo , Trocador 1 de Sódio-Hidrogênio/genética , Glucosídeos/farmacologia , Compostos Benzidrílicos/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Óxido Nítrico/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/genética , Transdução de Sinais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Trocadores de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
6.
Exp Dermatol ; 33(1): e14983, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009253

RESUMO

Tumour cell detachment from the primary tumour is an early and crucial step of the metastatic cascade. At the single cell level, it was already shown that migrating melanoma cells establish both intra- and extracellular pH gradients and that the Na+ /H+ exchanger NHE1 accumulates at the leading edges to strengthen cell-matrix interactions. However, less is known about the role of NHE1 in collective cell migration and the specific pH microenvironment at tumour cell-cell contacts. We used MV3 melanoma cells transfected with a NHE1-expressing vector or a control vector. NHE1 localization at cell-cell contacts was assessed via immunofluorescence imaging. Collective migration was analysed by live-cell imaging. The NHE1 activity and the perimembranous pH were measured both intra- and extracellularly by ratiometric fluorescence microscopy. NHE1 clearly localizes at cell-cell contacts. Its overexpression further increases migratory speed and translocation in multidirectional pathway analyses. NHE1 overexpressing MV3 cells also move further away from their neighbouring cells during wound closure assays. pH measurements revealed that the NHE1 is highly active at cell-cell contacts of melanoma cells. NHE1-mediated pH dynamics at such contact sites are more prominent in NHE1-overexpressing melanoma cells. Our findings highlight the contribution of the NHE1 towards modulation and plasticity of melanoma cell-cell contacts. We propose that its localization and functional activity at cell-cell contacts promotes evasion of single melanoma cells from the primary tumour.


Assuntos
Melanoma , Humanos , Trocador 1 de Sódio-Hidrogênio/metabolismo , Melanoma/metabolismo , Linhagem Celular Tumoral , Trocadores de Sódio-Hidrogênio/metabolismo , Comunicação Celular , Concentração de Íons de Hidrogênio , Microambiente Tumoral
7.
Cell Commun Signal ; 22(1): 393, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118129

RESUMO

BACKGROUND: Disruptions in intracellular pH (pHi) homeostasis, causing deviations from the physiological range, can damage renal epithelial cells. However, the existence of an adaptive mechanism to restore pHi to normalcy remains unclear. Early research identified H+ as a critical mediator of ischemic preconditioning (IPC), leading to the concept of acidic preconditioning (AP). This concept proposes that short-term, repetitive acidic stimulation can enhance a cell's capacity to withstand subsequent adverse stress. While AP has demonstrated protective effects in various ischemia-reperfusion (I/R) injury models, its application in kidney injury remains largely unexplored. METHODS: An AP model was established in human kidney (HK2) cells by treating them with an acidic medium for 12 h, followed by a recovery period with a normal medium for 6 h. To induce hypoxia/reoxygenation (H/R) injury, HK2 cells were subjected to hypoxia for 24 h and reoxygenation for 1 h. In vivo, a mouse model of IPC was established by clamping the bilateral renal pedicles for 15 min, followed by reperfusion for 4 days. Conversely, the I/R model involved clamping the bilateral renal pedicles for 35 min and reperfusion for 24 h. Western blotting was employed to evaluate the expression levels of cleaved caspase 3, cleaved caspase 9, NHE1, KIM1, FAK, and NOX4. A pH-sensitive fluorescent probe was used to measure pHi, while a Hemin/CNF microelectrode monitored kidney tissue pH. Immunofluorescence staining was performed to visualize the localization of NHE1, NOX4, and FAK, along with the actin cytoskeleton structure in HK2 cells. Cell adhesion and scratch assays were conducted to assess cell motility. RESULTS: Our findings demonstrated that AP could effectively mitigate H/R injury in HK2 cells. This protective effect and the maintenance of pHi homeostasis by AP involved the upregulation of Na+/H+ exchanger 1 (NHE1) expression and activity. The activity of NHE1 was regulated by dynamic changes in pHi-dependent phosphorylation of Focal Adhesion Kinase (FAK) at Y397. This process was associated with NOX4-mediated reactive oxygen species (ROS) production. Furthermore, AP induced the co-localization of FAK, NOX4, and NHE1 in focal adhesions, promoting cytoskeletal remodeling and enhancing cell adhesion and migration capabilities. CONCLUSIONS: This study provides compelling evidence that AP maintains pHi homeostasis and promotes cytoskeletal remodeling through FAK/NOX4/NHE1 signaling. This signaling pathway ultimately contributes to alleviated H/R injury in HK2 cells.


Assuntos
Traumatismo por Reperfusão , Trocador 1 de Sódio-Hidrogênio , Animais , Humanos , Masculino , Camundongos , Ácidos/metabolismo , Linhagem Celular , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Concentração de Íons de Hidrogênio , Precondicionamento Isquêmico , Rim/metabolismo , Rim/patologia , Camundongos Endogâmicos C57BL , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/genética , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Trocador 1 de Sódio-Hidrogênio/metabolismo , Trocador 1 de Sódio-Hidrogênio/genética
8.
Scand J Med Sci Sports ; 34(7): e14688, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38973702

RESUMO

AIM: To assess the impact of endurance training on skeletal muscle release of H+ and K+. METHODS: Nine participants performed one-legged knee extension endurance training at moderate and high intensities (70%-85% of Wpeak), three to four sessions·week-1 for 6 weeks. Post-training, the trained and untrained (control) leg performed two-legged knee extension at low, moderate, and high intensities (40%, 62%, and 83% of Wpeak) in normoxia and hypoxia (~4000 m). The legs were exercised simultaneously to ensure identical arterial inflow concentrations of ions and metabolites, and identical power output was controlled by visual feedback. Leg blood flow was measured (ultrasound Doppler), and acid-base variables, lactate- and K+ concentrations were assessed in arterial and femoral venous blood to study K+ and H+ release. Ion transporter abundances were assessed in muscle biopsies. RESULTS: Lactate-dependent H+ release was similar in hypoxia to normoxia (p = 0.168) and was lower in the trained than the control leg at low-moderate intensities (p = 0.060-0.006) but similar during high-intensity exercise. Lactate-independent and total H+ releases were higher in hypoxia (p < 0.05) and increased more with power output in the trained leg (leg-by-power output interactions: p = 0.02). K+ release was similar at low intensity but lower in the trained leg during high-intensity exercise in normoxia (p = 0.024) and hypoxia (p = 0.007). The trained leg had higher abundances of Na+/H+ exchanger 1 (p = 0.047) and Na+/K+ pump subunit α (p = 0.036). CONCLUSION: Moderate- to high-intensity endurance training increases lactate-independent H+ release and reduces K+ release during high-intensity exercise, coinciding with increased Na+/H+ exchanger 1 and Na+/K+ pump subunit α muscle abundances.


Assuntos
Treino Aeróbico , Hipóxia , Ácido Láctico , Perna (Membro) , Músculo Esquelético , Potássio , Humanos , Potássio/metabolismo , Potássio/sangue , Hipóxia/metabolismo , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/irrigação sanguínea , Perna (Membro)/irrigação sanguínea , Adulto , Ácido Láctico/sangue , Adulto Jovem , Prótons , Fluxo Sanguíneo Regional , ATPase Trocadora de Sódio-Potássio/metabolismo , Exercício Físico/fisiologia , Trocador 1 de Sódio-Hidrogênio/metabolismo
9.
Nephrol Dial Transplant ; 38(3): 586-598, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35921220

RESUMO

BACKGROUND: The kidney is the main organ in the pathophysiology of essential hypertension. Although most bicarbonate reabsorption occurs in the proximal tubule, the medullary thick ascending limb (mTAL) of the nephron also maintains acid-base balance by contributing to 25% of bicarbonate reabsorption. A crucial element in this regulation is the sodium-hydrogen exchanger 1 (NHE1), a ubiquitous membrane protein controlling intracellular pH, where proton extrusion is driven by the inward sodium flux. MicroRNA (miRNA) expression of hypertensive patients significantly differs from that of normotensive subjects. The aim of this study was to determine the functional role of miRNA alterations at the mTAL level. METHODS: By miRNA microarray analysis, we identified miRNA expression profiles in isolated mTALs from high sodium intake-induced hypertensive rats (HSD) versus their normotensive counterparts (NSD). In vitro validation was carried out in rat mTAL cells. RESULTS: Five miRNAs involved in the onset of salt-sensitive hypertension were identified, including miR-23a, which was bioinformatically predicted to target NHE1 mRNA. Data demonstrated that miRNA-23a is downregulated in the mTAL of HSD rats while NHE1 is upregulated. Consistently, transfection of an miRNA-23a mimic in an mTAL cell line, using a viral vector, resulted in NHE1 downregulation. CONCLUSION: NHE1, a protein involved in sodium reabsorption at the mTAL level and blood pressure regulation, is upregulated in our model. This was due to a downregulation of miRNA-23a. Expression levels of this miRNA are influenced by high sodium intake in the mTALs of rats. The downregulation of miRNA-23a in humans affected by essential hypertension corroborate our data and point to the potential role of miRNA-23a in the regulation of mTAL function following high salt intake.


Assuntos
Hipertensão , MicroRNAs , Animais , Humanos , Ratos , Bicarbonatos , Hipertensão Essencial/metabolismo , Hipertensão/metabolismo , Medula Renal , MicroRNAs/metabolismo , Sódio/metabolismo , Cloreto de Sódio na Dieta , Trocador 1 de Sódio-Hidrogênio/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo
10.
Exp Cell Res ; 412(1): 113006, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34979106

RESUMO

Breast cancer metastasis is the leading cause of cancer-related deaths. Hypoxia in the tumor mass is believed to trigger cell migration, which is involved in a crucial process of breast cancer metastasis. However, the molecular mechanisms underlying aggressive behavior under hypoxic conditions have not been fully elucidated. Here, we demonstrate the significant motility of MDA-MB-231 cells cultured under hypoxic conditions compared to that of cells cultured under normoxic conditions. MDA-MB-231 cells under hypoxic conditions showed a significant increase in Na+/H+ exchanger isoform 1 (NHE1) expression level, which was observed to co-locate in lamellipodia formation. Inhibition of NHE1 significantly suppressed the intracellular pH and the expression of mesenchymal markers, thereby blocking the high migration activity in hypoxia. Moreover, treatment with ciglitazone, a potent and selective peroxisome proliferator-activated receptor γ (PPARγ) agonist, modulated hypoxia-enhanced motion in cells via the repression of NHE1. These findings highlight that NHE1 is required for migratory activity through the enhancement of epithelial-mesenchymal transition (EMT) in MDA-MB-231 cells under hypoxic conditions, and we propose new drug repurposing strategies targeting hypoxia based on NHE1 suppression by effective usage of PPARγ agonists.


Assuntos
Neoplasias da Mama/metabolismo , Trocador 1 de Sódio-Hidrogênio/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Humanos , Modelos Biológicos , PPAR gama/agonistas , Transdução de Sinais/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Hipóxia Tumoral/fisiologia , Microambiente Tumoral/fisiologia
11.
Proc Natl Acad Sci U S A ; 117(4): 2108-2112, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31964810

RESUMO

Avian leukosis virus subgroup J (ALV-J) is an important concern for the poultry industry. Replication of ALV-J depends on a functional cellular receptor, the chicken Na+/H+ exchanger type 1 (chNHE1). Tryptophan residue number 38 of chNHE1 (W38) in the extracellular portion of this molecule is a critical amino acid for virus entry. We describe a CRISPR/Cas9-mediated deletion of W38 in chicken primordial germ cells and the successful production of the gene-edited birds. The resistance to ALV-J was examined both in vitro and in vivo, and the ΔW38 homozygous chickens tested ALV-J-resistant, in contrast to ΔW38 heterozygotes and wild-type birds, which were ALV-J-susceptible. Deletion of W38 did not manifest any visible side effect. Our data clearly demonstrate the antiviral resistance conferred by precise CRISPR/Cas9 gene editing in the chicken. Furthermore, our highly efficient CRISPR/Cas9 gene editing in primordial germ cells represents a substantial addition to genotechnology in the chicken, an important food source and research model.


Assuntos
Vírus da Leucose Aviária/genética , Leucose Aviária/imunologia , Proteínas Aviárias/genética , Doenças das Aves Domésticas/imunologia , Trocador 1 de Sódio-Hidrogênio/genética , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/imunologia , Animais Geneticamente Modificados/virologia , Leucose Aviária/genética , Leucose Aviária/virologia , Vírus da Leucose Aviária/classificação , Vírus da Leucose Aviária/fisiologia , Proteínas Aviárias/imunologia , Sistemas CRISPR-Cas , Galinhas , Resistência à Doença , Feminino , Edição de Genes , Masculino , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/virologia , Trocador 1 de Sódio-Hidrogênio/imunologia
12.
Int J Mol Sci ; 24(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37686096

RESUMO

To date, recanalization interventions are the only available treatments for ischemic stroke patients; however, there are no effective therapies for reducing stroke-induced neuroinflammation. We recently reported that H+ extrusion protein Na+/H+ exchanger-1 (NHE1) plays an important role in stroke-induced inflammation and white matter injury. In this study, we tested the efficacy of two potent NHE1 inhibitors, HOE642 and Rimeporide, with a delayed administration regimen starting at 24 h post-stroke in adult C57BL/6J mice. Post-stroke HOE642 and Rimeporide treatments accelerated motor and cognitive function recovery without affecting the initial ischemic infarct, neuronal damage, or reactive astrogliosis. However, the delayed administration of NHE1 blockers after ischemic stroke significantly reduced microglial inflammatory activation while enhanced oligodendrogenesis and white matter myelination, with an increased proliferation and decreased apoptosis of the oligodendrocytes. Our findings suggest that NHE1 protein plays an important role in microglia-mediated inflammation and white matter damage. The pharmacological blockade of NHE1 protein activity reduced microglia inflammatory responses and enhanced oligodendrogenesis and white matter repair, leading to motor and cognitive function recovery after stroke. Our study reveals the potential of targeting NHE1 protein as a therapeutic strategy for ischemic stroke therapy.


Assuntos
AVC Isquêmico , Trocador 1 de Sódio-Hidrogênio , Acidente Vascular Cerebral , Substância Branca , Animais , Camundongos , Antiarrítmicos , Inflamação , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/tratamento farmacológico , Trocador 1 de Sódio-Hidrogênio/antagonistas & inibidores
13.
Biochem Biophys Res Commun ; 588: 1-7, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34933181

RESUMO

The v-raf murine sarcoma viral oncogene homolog B1 (BRAF) activating mutation V600E (BRAFV600E) is involved in glioblastoma multiforme (GBM). Na/H exchanger 1 (NHE1), a main pH regulator affecting cell microenvironment, is hyper-expressed in GBM. However, the relationship between BRAFV600E signal pathway and NHE1 in GMB cells remains unclear. This study found that NHE1 was a downstream target of BRAFV600E and an upstream factor of extracellular signal-regulated kinase (ERK). In addition, there was a positive feedback loop between NHE1-ERK phosphorylation under regulation of BRAFV600E mutation contributing to the proliferation and invasion of GBM cells. Moreover, the proliferation and invasion abilities of BRAFV600E-mutant and BRAF wild type GBM cells were all suppressed by the NHE1 inhibitor, BRAFV600E inhibitor and combination of them. The inhibitory effect of combination of the two inhibitors was better than each single drug both in vitro and in vivo. Combination of BRAFV600E and NHE1 inhibitors could be considered as a new therapeutic regimen for GBM, especially for GBM with BRAFV600E.


Assuntos
Carcinogênese/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Retroalimentação Fisiológica , Glioblastoma/genética , Mutação/genética , Proteínas Proto-Oncogênicas B-raf/genética , Trocador 1 de Sódio-Hidrogênio/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Glioblastoma/patologia , Humanos , Camundongos Nus , Invasividade Neoplásica , Fosforilação , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Trocador 1 de Sódio-Hidrogênio/antagonistas & inibidores
14.
Heart Fail Rev ; 27(6): 1973-1990, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35179683

RESUMO

This review summarizes and describes the current evidence addressing how sodium-glucose cotransporter 2 (SGLT2) inhibitors alter the function of sodium-hydrogen exchanger 1 (NHE-1), in association with their protective effects against adverse cardiovascular events. In the heart, SGLT2 inhibitors modulate the function of NHE-1 (either by direct inhibition or indirect attenuation of protein expression), which promotes cardiac contraction and an enhanced energy supply, in association with improved mitochondrial function, reduced inflammation/oxidative/endoplasmic reticulum stress, and attenuated fibrosis and apoptotic/autophagic cell death. The vasodilating effect of SGLT2 inhibitors has also been proposed due to NHE-1 inhibition. Moreover, platelet-expressed NHE-1 might serve as a target for SGLT2 inhibitors, since these drugs and selective NHE-1 inhibitors produce comparable activity against adenosine diphosphate-stimulated platelet activation. Overall, it is promising that the modulation of the functions of NHE-1 on the heart, blood vessels, and platelets may act as a contributing pathway for the cardiovascular benefits of SGLT2 inhibitors in diabetes and heart failure.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Difosfato de Adenosina , Compostos Benzidrílicos/farmacologia , Diabetes Mellitus Tipo 2/complicações , Glucose , Glucosídeos/farmacologia , Humanos , Sódio/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Trocador 1 de Sódio-Hidrogênio
15.
Mol Cell Biochem ; 477(4): 1207-1216, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35084672

RESUMO

In breast cancer, it is the resulting metastasis that is the primary cause of fatality. pH regulatory proteins and the tumor microenvironment play an important role in metastasis of cancer cells and acid-extruding proteins are critical in this process. There are several types of breast cancer and triple-negative breast cancer tends to be more metastatic and invasive and is itself is composed of several types. MDA-MB-468 are a triple-negative breast cancer cell line and are classified as basal-like and basal tumors account for up to 15% of breast cancers. Here we examined the effect of removal of the acid-extruding protein, the Na+/H+ exchanger isoform one, from MDA-MB-468 cells. NHE1 was deleted from these cells using the CRISPR/Cas9 system. Western blotting and measurement of activity confirmed the absence of the protein. In wounding/cell migration experiments, deletion of NHE1 reduced the rate of cell migration in the presence of low- or high-serum concentrations. Anchorage-dependent colony formation was also greatly reduced by deletion of the NHE1 protein. Cell proliferation was not affected by knockout of NHE1. The results demonstrate that NHE1 has an important role in migration and invasion of basal-like triple-negative breast cancer cells.


Assuntos
Movimento Celular , Proteínas de Neoplasias/metabolismo , Trocador 1 de Sódio-Hidrogênio/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Feminino , Humanos , Células MCF-7 , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Trocador 1 de Sódio-Hidrogênio/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
16.
J Biochem Mol Toxicol ; 36(3): e22971, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34813134

RESUMO

The medical usage of Doxorubicin (DOX) as a chemotherapeutic agent is restricted owing to its cardiotoxic properties. This study was designed to explore the effect and underlying mechanisms of Citronellal (CT) on DOX-related cardiotoxicity in rats. Rats were divided into six groups: control, DOX, CT, Lithium chloride (LiCl) (a Na+/H+exchanger-1 [NHE1] activator), DOX + CT, and DOX + CT + LiCl. To induce cardiotoxicity, a cumulative dose of 15 mg/kg DOX was intraperitoneally injected into rats. CT (150 mg/kg) and LiCl (1 mg/kg) were given daily by oral gavage for 6 weeks. CT improved cardiac functional parameters and attenuated the cardiac pathological changes induced by DOX. Further study indicated that CT administration regulated the levels of oxidative stress and apoptosis-related factors and in myocardial tissues, reducing cell per-oxidative damage and apoptosis. Besides this, CT attenuated DOX-induced NHE1 upregulation, and the preventive effects of CT against DOX-induced cardiotoxicity were abrogated by the concurrent administration of LiCl. These results demonstrate that CT could ameliorate DOX-induced cardiotoxicity by inhibiting the NHE1-mediated oxidative stress, apoptosis in rats.


Assuntos
Monoterpenos Acíclicos/farmacologia , Aldeídos/farmacologia , Apoptose/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Cardiopatias/tratamento farmacológico , Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Trocador 1 de Sódio-Hidrogênio/metabolismo , Animais , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Doxorrubicina/farmacologia , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
17.
Kidney Blood Press Res ; 47(6): 399-409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35339998

RESUMO

BACKGROUND/AIMS: Vasopressin is a powerful stimulator of vascular calcification, augmenting osteogenic signaling in vascular smooth muscle cells (VSMCs) including upregulation of transcription factors such as core-binding factor α-1 (CBFA1), msh homeobox 2 (MSX2), and SRY-Box 9 (SOX9), as well as of tissue-nonspecific alkaline phosphatase (ALPL). Vasopressin-induced osteogenic signaling and calcification require the serum- and glucocorticoid-inducible kinase 1 (SGK1). Known effects of SGK1 include upregulation of Na+/H+ exchanger 1 (NHE1). NHE1 further participates in the regulation of reactive oxygen species (ROS). NHE1 has been shown to participate in the orchestration of bone mineralization. The present study, thus, explored whether vasopressin modifies NHE1 expression and ROS generation, as well as whether pharmacological inhibition of NHE1 disrupts vasopressin-induced osteogenic signaling and calcification in VSMCs. METHODS: Human aortic smooth muscle cells (HAoSMCs) were treated with vasopressin in the absence or presence of SGK1 silencing, SGK1 inhibitor GSK-650394, and NHE1 blocker cariporide. Transcript levels were determined by using quantitative real-time polymerase chain reaction, protein abundance by Western blotting, ROS generation with 2',7'-dichlorofluorescein diacetate fluorescence, and ALP activity and calcium content by using colorimetric assays. RESULTS: Vasopressin significantly enhanced the NHE1 transcript and protein levels in HAoSMCs, effects significantly blunted by SGK1 inhibition with GSK-650394 or SGK1 silencing. Vasopressin increased ROS accumulation, an effect significantly blocked by the NHE1 inhibitor cariporide. Vasopressin further significantly increased osteogenic markers CBFA1, MSX2, SOX9, and ALPL transcript levels, as well as ALP activity and calcium content in HAoSMCs, all effects significantly blunted by SGK1 silencing or in the presence of GSK-650394 or cariporide. CONCLUSION: Vasopressin stimulates NHE1 expression and ROS generation, an effect dependent on SGK1 and required for vasopressin-induced stimulation of osteogenic signaling and calcification of VSMCs.


Assuntos
Calcificação Fisiológica , Calcificação Vascular , Cálcio/metabolismo , Células Cultivadas , Humanos , Miócitos de Músculo Liso , Espécies Reativas de Oxigênio/metabolismo , Trocador 1 de Sódio-Hidrogênio , Calcificação Vascular/metabolismo , Vasopressinas/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-34626804

RESUMO

Aquatic hypoxia is both a naturally-occurring and anthropogenically-generated event. Fish species have evolved different adaptations to cope with hypoxic environments, including gill modifications and air breathing. However, little is known about the molecular mechanisms involved in the respiration of embryonic and larval fishes during critical windows of development. We assessed expression of the genes hif-1α, fih-1, nhe1, epo, gr and il8 using the developing tropical gar as a piscine model during three developmental periods (fertilization to hatch, 1 to 6 days post hatch (dph) and 7 to 12 dph) when exposed to normoxia (~7.43 mg/L DO), hypoxia (~2.5 mg/L DO) or hyperoxia (~9.15 mg/L DO). All genes had higher expression when fish were exposed to either hypoxia or hyperoxia during the first two developmental periods. However, fish continuously exposed to hypoxia had increased expression of the six genes by hatching and 6 dph, and by 12 dph only hif-1α still had increased expression. The middle developmental period was the most hypoxia-sensitive, coinciding with several changes in physiology and morphology. The oldest larvae were the most resilient to gene expression change, with little variation in expression of the six genes compared. This study is the first to relate the molecular response of an air-breathing fish to oxygen availability to developmental critical windows and contributes to our understanding of some molecular responses of developing fish to changes in oxygen availability.


Assuntos
Doenças dos Peixes/genética , Peixes/genética , Hiperóxia/veterinária , Hipóxia/veterinária , Animais , Aquicultura , Eritropoetina/genética , Feminino , Doenças dos Peixes/fisiopatologia , Proteínas de Peixes/genética , Peixes/crescimento & desenvolvimento , Peixes/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Hiperóxia/genética , Hiperóxia/fisiopatologia , Hipóxia/genética , Hipóxia/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Interleucina-8/genética , Masculino , Receptores de Glucocorticoides/genética , Fenômenos Fisiológicos Respiratórios , Trocador 1 de Sódio-Hidrogênio/genética
19.
Am J Physiol Cell Physiol ; 321(1): C147-C157, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34038242

RESUMO

Many cancer cells, regardless of their tissue origin or genetic landscape, have increased expression or activity of the plasma membrane Na-H exchanger NHE1 and a higher intracellular pH (pHi) compared with untransformed cells. A current perspective that remains to be validated is that increased NHE1 activity and pHi enable a Warburg-like metabolic reprogramming of increased glycolysis and decreased mitochondrial oxidative phosphorylation. We tested this perspective and find it is not accurate for clonal pancreatic and breast cancer cells. Using the pharmacological reagent ethyl isopropyl amiloride (EIPA) to inhibit NHE1 activity and decrease pHi, we observe no change in glycolysis, as indicated by secreted lactate and intracellular pyruvate, despite confirming increased activity of the glycolytic enzyme phosphofructokinase-1 at higher pH. Also, in contrast to predictions, we find a significant decrease in oxidative phosphorylation with EIPA, as indicated by oxygen consumption rate (OCR). Decreased OCR with EIPA is not associated with changes in pathways that fuel oxidative phosphorylation or with mitochondrial membrane potential but occurs with a change in mitochondrial dynamics that includes a significant increase in elongated mitochondrial networks, suggesting increased fusion. These findings conflict with current paradigms on increased pHi inhibiting oxidative phosphorylation and increased oxidative phosphorylation being associated with mitochondrial fusion. Moreover, these findings raise questions on the suggested use of EIPA-like compounds to limit metabolic reprogramming in cancer cells.


Assuntos
Amilorida/análogos & derivados , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Dinâmica Mitocondrial/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Trocador 1 de Sódio-Hidrogênio/genética , Amilorida/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Células Clonais , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Expressão Gênica , Glicólise/genética , Humanos , Concentração de Íons de Hidrogênio , Ácido Láctico/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo , Ácido Pirúvico/metabolismo , Trocador 1 de Sódio-Hidrogênio/antagonistas & inibidores , Trocador 1 de Sódio-Hidrogênio/metabolismo
20.
Am J Physiol Cell Physiol ; 320(4): C619-C634, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33406028

RESUMO

Hyperglycemia exacerbates edema formation and worsens neurological outcome in ischemic stroke. Edema formation in the early hours of stroke involves transport of ions and water across an intact blood-brain barrier (BBB), and swelling of astrocytes. We showed previously that high glucose (HG) exposures of 24 hours to 7 days increase abundance and activity of BBB Na+-K+-2Cl- cotransport (NKCC) and Na+/H+ exchange 1 (NHE1). Further, bumetanide and HOE-642 inhibition of these transporters significantly reduces edema and infarct following middle cerebral artery occlusion in hyperglycemic rats, suggesting that NKCC and NHE1 are effective therapeutic targets for reducing edema in hyperglycemic stroke. The mechanisms underlying hyperglycemia effects on BBB NKCC and NHE1 are not known. In the present study we investigated whether serum-glucocorticoid regulated kinase 1 (SGK1) and protein kinase C beta II (PKCßII) are involved in HG effects on BBB NKCC and NHE1. We found transient increases in phosphorylated SGK1 and PKCßII within the first hour of HG exposure, after 5-60 min for SGK1 and 5 min for PKCßII. However, no changes were observed in cerebral microvascular endothelial cell SGK1 or PKCßII abundance or phosphorylation (activity) after 24 or 48 h HG exposures. Further, we found that HG-induced increases in NKCC and NHE1 abundance were abolished by inhibition of SGK1 but not PKCßII, whereas the increases in NKCC and NHE activity were abolished by inhibition of either kinase. Finally, we found evidence that STE20/SPS1-related proline/alanine-rich kinase and oxidative stress-responsive kinase-1 (SPAK/OSR1) participate in the HG-induced effects on BBB NKCC.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Glucose/toxicidade , Proteínas Imediatamente Precoces/metabolismo , Proteína Quinase C beta/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Trocador 1 de Sódio-Hidrogênio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Animais , Barreira Hematoencefálica/enzimologia , Barreira Hematoencefálica/patologia , Bovinos , Células Cultivadas , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Ativação Enzimática , Humanos , Fosforilação , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA