Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 392
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Development ; 151(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38112206

RESUMO

Placental development involves coordinated expansion and differentiation of trophoblast cell lineages possessing specialized functions. Among the differentiated trophoblast cell lineages are invasive trophoblast cells, which exit the placenta and invade the uterus, where they restructure the uterine parenchyma and facilitate remodeling of uterine spiral arteries. The rat exhibits deep intrauterine trophoblast cell invasion, a feature shared with human placentation, and is also amenable to gene manipulation using genome-editing techniques. In this investigation, we generated a conditional rat model targeting the invasive trophoblast cell lineage. Prolactin family 7, subfamily b, member 1 (Prl7b1) is uniquely and abundantly expressed in the rat invasive trophoblast cell lineage. Disruption of Prl7b1 did not adversely affect placental development. We demonstrated that the Prl7b1 locus could be effectively used to drive the expression of Cre recombinase in invasive trophoblast cells. Our rat model represents a new tool for investigating candidate genes contributing to the regulation of invasive trophoblast cells and their roles in trophoblast-guided uterine spiral artery remodeling.


Assuntos
Placenta , Placentação , Gravidez , Ratos , Feminino , Animais , Humanos , Placenta/metabolismo , Placentação/genética , Trofoblastos , Útero , Linhagem da Célula/genética , Modelos Animais
2.
Proc Natl Acad Sci U S A ; 121(8): e2310502121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346193

RESUMO

The placenta establishes a maternal-fetal exchange interface to transport nutrients and gases between the mother and the fetus. Establishment of this exchange interface relies on the development of multinucleated syncytiotrophoblasts (SynT) from trophoblast progenitors, and defect in SynT development often leads to pregnancy failure and impaired embryonic development. Here, we show that mouse embryos with conditional deletion of transcription factors GATA2 and GATA3 in labyrinth trophoblast progenitors (LaTPs) have underdeveloped placenta and die by ~embryonic day 9.5. Single-cell RNA sequencing analysis revealed excessive accumulation of multipotent LaTPs upon conditional deletion of GATA factors. The GATA factor-deleted multipotent progenitors were unable to differentiate into matured SynTs. We also show that the GATA factor-mediated priming of trophoblast progenitors for SynT differentiation is a conserved event during human placentation. Loss of either GATA2 or GATA3 in cytotrophoblast-derived human trophoblast stem cells (human TSCs) drastically inhibits SynT differentiation potential. Identification of GATA2 and GATA3 target genes along with comparative bioinformatics analyses revealed that GATA factors directly regulate hundreds of common genes in human TSCs, including genes that are essential for SynT development and implicated in preeclampsia and fetal growth retardation. Thus, our study uncovers a conserved molecular mechanism, in which coordinated function of GATA2 and GATA3 promotes trophoblast progenitor-to-SynT commitment, ensuring establishment of the maternal-fetal exchange interface.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Troca Materno-Fetal , Gravidez , Feminino , Humanos , Animais , Camundongos , Placenta , Trofoblastos , Diferenciação Celular/fisiologia , Desenvolvimento Fetal , Fatores de Transcrição GATA
3.
Proc Natl Acad Sci U S A ; 121(28): e2404062121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968109

RESUMO

Nutrient sensing and adaptation in the placenta are essential for pregnancy viability and proper fetal growth. Our recent study demonstrated that the placenta adapts to nutrient insufficiency through mechanistic target of rapamycin (mTOR) inhibition-mediated trophoblast differentiation toward syncytiotrophoblasts (STBs), a highly specialized multinucleated trophoblast subtype mediating extensive maternal-fetal interactions. However, the underlying mechanism remains elusive. Here, we unravel the indispensable role of the mTORC1 downstream transcriptional factor TFEB in STB formation both in vitro and in vivo. TFEB deficiency significantly impaired STB differentiation in human trophoblasts and placenta organoids. Consistently, systemic or trophoblast-specific deletion of Tfeb compromised STB formation and placental vascular construction, leading to severe embryonic lethality. Mechanistically, TFEB conferred direct transcriptional activation of the fusogen ERVFRD-1 in human trophoblasts and thereby promoted STB formation, independent of its canonical function as a master regulator of the autophagy-lysosomal pathway. Moreover, we demonstrated that TFEB directed the trophoblast syncytialization response driven by mTOR complex 1 (mTORC1) signaling. TFEB expression positively correlated with the reinforced trophoblast syncytialization in human fetal growth-restricted placentas exhibiting suppressed mTORC1 activity. Our findings substantiate that the TFEB-fusogen axis ensures proper STB formation during placenta development and under nutrient stress, shedding light on TFEB as a mechanistic link between nutrient-sensing machinery and trophoblast differentiation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Diferenciação Celular , Alvo Mecanístico do Complexo 1 de Rapamicina , Trofoblastos , Trofoblastos/metabolismo , Humanos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Feminino , Gravidez , Camundongos , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Placenta/metabolismo , Transdução de Sinais , Autofagia/fisiologia
4.
Proc Natl Acad Sci U S A ; 121(31): e2404229121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39052836

RESUMO

The distinct human leukocyte antigen (HLA) class I expression pattern of human extravillous trophoblasts (EVT) endows them with unique tolerogenic properties that enable successful pregnancy. Nevertheless, how this process is elaborately regulated remains elusive. Previously, E74 like ETS transcription factor 3 (ELF3) was identified to govern high-level HLA-C expression in EVT. In the present study, ELF3 is found to bind to the enhancer region of two adjacent NOD-like receptor (NLR) genes, NLR family pyrin domain-containing 2 and 7 (NLRP2, NLRP7). Notably, our analysis of ELF3-deficient JEG-3 cells, a human choriocarcinoma cell line widely used to study EVT biology, suggests that ELF3 transactivates NLRP7 while suppressing the expression of NLRP2. Moreover, we find that NLRP2 and NLRP7 have opposing effects on HLA-C expression, thus implicating them in immune evasion at the maternal-fetal interface. We confirmed that NLRP2 suppresses HLA-C levels and described a unique role for NLRP7 in promoting HLA-C expression in JEG-3. These results suggest that these two NLR genes, which arose via gene duplication in primates, are fine-tuned by ELF3 yet have acquired divergent functions to enable proper expression levels of HLA-C in EVT, presumably through modulating the degradation kinetics of IkBα. Targeting the ELF3-NLRP2/NLRP7-HLA-C axis may hold therapeutic potential for managing pregnancy-related disorders, such as recurrent hydatidiform moles and fetal growth restriction, and thus improve placental development and pregnancy outcomes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Trofoblastos Extravilosos , Antígenos HLA-C , Trofoblastos , Feminino , Humanos , Gravidez , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Antígenos HLA-C/metabolismo , Antígenos HLA-C/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Trofoblastos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(12): e2318176121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483994

RESUMO

Endogenous retroviruses (ERVs) are frequently reactivated in mammalian placenta. It has been proposed that ERVs contribute to shaping the gene regulatory network of mammalian trophoblasts, dominantly acting as species- and placental-specific enhancers. However, whether and how ERVs control human trophoblast development through alternative pathways remains poorly understood. Besides the well-recognized function of human endogenous retrovirus-H (HERVH) in maintaining pluripotency of early human epiblast, here we present a unique role of HERVH on trophoblast lineage development. We found that the LTR7C/HERVH subfamily exhibits an accessible chromatin state in the human trophoblast lineage. Particularly, the LTR7C/HERVH-derived Urothelial Cancer Associated 1 (UCA1), a primate-specific long non-coding RNA (lncRNA), is transcribed in human trophoblasts and promotes the proliferation of human trophoblast stem cells (hTSCs), whereas its ectopic expression compromises human trophoblast syncytialization coinciding with increased interferon signaling pathway. Importantly, UCA1 upregulation is detectable in placental samples from early-onset preeclampsia (EO-PE) patients and the transcriptome of EO-PE placenta exhibits considerable similarities to that of the syncytiotrophoblasts differentiated from UCA1-overexpressing hTSCs, supporting up-regulated UCA1 as a potential biomarker of this disease. Altogether, our data shed light on the versatile regulatory role of HERVH in early human development and provide a unique mechanism whereby ERVs exert a function in human placentation and placental syndromes.


Assuntos
Retrovirus Endógenos , RNA Longo não Codificante , Animais , Humanos , Gravidez , Feminino , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Placenta/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Trofoblastos/metabolismo , Placentação , Primatas/genética , Mamíferos/genética
6.
PLoS Pathog ; 20(2): e1011990, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324589

RESUMO

BACKGROUND: Hofbauer cells (HBCs) and cytotrophoblasts (CTBs) are major cell populations in placenta. The indirect impact of maternal SARS-CoV-2 disease on these cells that are not directly infected has not been extensively studied. Herein, we profiled gene expression in HBCs and CTBs isolated from placentae of recovered pregnant subjects infected with SARS-CoV-2 during all trimesters of pregnancy, placentae from subjects with active infection, SARS-CoV-2 vaccinated subjects, and those who were unexposed to the virus. METHODS: Placentae were collected within 4 h post-delivery and membrane-free tissues were enzymatically digested for the isolation of HBCs and CTBs. RNA extracted from HBCs and CTBs were sequenced using 150bp paired-end reads. Differentially expressed genes (DEGs) were identified by DESeq2 package in R and enriched in GO Biological Processes, KEGG Pathway, Reactome Gene Sets, Hallmark Gene Sets, and Canonical Pathways. Protein-protein interactions among the DEGs were modelled using STRING and BioGrid. RESULTS: Pregnant subjects (n = 30) were recruited and categorized into six groups: infected with SARS-CoV-2 in i) the first (1T, n = 4), ii) second (2T, n = 5), iii) third (3T, n = 5) trimester, iv) tested positive at delivery (Delivery, n = 5), v) never infected (Control, n = 6), and vi) fully mRNA-vaccinated by delivery (Vaccinated, n = 5). Compared to the Control group, gene expression analysis showed that HBCs from infected subjects had significantly altered gene expression profiles, with the 2T group having the highest number of DEGs (1,696), followed by 3T and 1T groups (1,656 and 958 DEGs, respectively). These DEGs were enriched for pathways involved in immune regulation for host defense, including production of cytokines, chemokines, antimicrobial proteins, ribosomal assembly, neutrophil degranulation inflammation, morphogenesis, and cell migration/adhesion. Protein-protein interaction analysis mapped these DEGs with oxidative phosphorylation, translation, extracellular matrix organization, and type I interferon signaling. Only 95, 23, and 8 DEGs were identified in CTBs of 1T, 2T, and 3T groups, respectively. Similarly, 11 and 3 DEGs were identified in CTBs and HBCs of vaccinated subjects, respectively. Reassuringly, mRNA vaccination did not induce an inflammatory response in placental cells. CONCLUSIONS: Our studies demonstrate a significant impact of indirect SARS-CoV-2 infection on gene expression of inner mesenchymal HBCs, with limited effect on lining CTB cells isolated from pregnant subjects infected and recovered from SARS-CoV-2. The pathways associated with these DEGs identify potential targets for therapeutic intervention.


Assuntos
COVID-19 , Placenta , Gravidez , Feminino , Humanos , COVID-19/genética , COVID-19/metabolismo , SARS-CoV-2/genética , Trofoblastos/metabolismo , Transcriptoma , RNA Mensageiro/metabolismo
7.
Bioessays ; 46(8): e2300118, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38922923

RESUMO

The biology of trophoblast cell lineage development and placentation is characterized by the involvement of several known transcription factors. Central to the action of a subset of these transcriptional regulators is CBP-p300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2). CITED2 acts as a coregulator modulating transcription factor activities and affecting placental development and adaptations to physiological stressors. These actions of CITED2 on the trophoblast cell lineage and placentation are conserved across the mouse, rat, and human. Thus, aspects of CITED2 biology in hemochorial placentation can be effectively modeled in the mouse and rat. In this review, we present information on the conserved role of CITED2 in the biology of placentation and discuss the use of CITED2 as a tool to discover new insights into regulatory mechanisms controlling placental development.


Assuntos
Placentação , Proteínas Repressoras , Transativadores , Trofoblastos , Animais , Gravidez , Feminino , Humanos , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Trofoblastos/metabolismo , Trofoblastos/fisiologia , Transativadores/metabolismo , Transativadores/genética , Placenta/metabolismo , Camundongos , Ratos , Regulação da Expressão Gênica no Desenvolvimento
8.
Dev Biol ; 513: 12-30, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38761966

RESUMO

This review describes in detail the morphological, cytoskeletal and gene expression events leading to the gene regulatory network bifurcation point of trophoblast and inner cell mass cells in a variety of mammalian preimplantation embryos. The interrelated processes of compaction and polarity establishment are discussed in terms of how they affect YAP/WWTR activity and the location and fate of cells. Comparisons between mouse, human, cattle, pig and rabbit embryos suggest a conserved role for YAP/WWTR signalling in trophoblast induction in eutherian animals though the mechanisms for, and timing of, YAP/WWTR activation differs among species. Downstream targets show further differences, with the trophoblast marker GATA3 being a direct target in all examined mammals, while CDX2-positive and SOX2-negative regulation varies.


Assuntos
Linhagem da Célula , Mamíferos , Animais , Humanos , Mamíferos/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Trofoblastos/metabolismo , Trofoblastos/citologia , Blastocisto/metabolismo , Camundongos , Transdução de Sinais , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Bovinos
9.
J Virol ; 98(4): e0193523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38451085

RESUMO

Placental infection plays a central role in the pathogenesis of congenital human cytomegalovirus (HCMV) infections and is a cause of fetal growth restriction and pregnancy loss. HCMV can replicate in some trophoblast cell types, but it remains unclear how the virus evades antiviral immunity in the placenta and how infection compromises placental development and function. Human trophoblast stem cells (TSCs) can be differentiated into extravillous trophoblasts (EVTs), syncytiotrophoblasts (STBs), and organoids, and this study assessed the utility of TSCs as a model of HCMV infection in the first-trimester placenta. HCMV was found to non-productively infect TSCs, EVTs, and STBs. Immunofluorescence assays and flow cytometry experiments further revealed that infected TSCs frequently only express immediate early viral gene products. Similarly, RNA sequencing found that viral gene expression in TSCs does not follow the kinetic patterns observed during lytic infection in fibroblasts. Canonical antiviral responses were largely not observed in HCMV-infected TSCs and TSC-derived trophoblasts. Rather, infection dysregulated factors involved in cell identity, differentiation, and Wingless/Integrated signaling. Thus, while HCMV does not replicate in TSCs, infection may perturb trophoblast differentiation in ways that could interfere with placental function. IMPORTANCE: Placental infection plays a central role in human cytomegalovirus (HCMV) pathogenesis during pregnancy, but the species specificity of HCMV and the limited availability and lifespan of primary trophoblasts have been persistent barriers to understanding how infection impacts this vital organ. Human trophoblast stem cells (TSCs) represent a new approach to modeling viral infection early in placental development. This study reveals that TSCs, like other stem cell types, restrict HCMV replication. However, infection perturbs the expression of genes involved in differentiation and cell fate determination, pointing to a mechanism by which HCMV could cause placental injury.


Assuntos
Citomegalovirus , Células-Tronco , Trofoblastos , Replicação Viral , Feminino , Humanos , Gravidez , Diferenciação Celular/genética , Linhagem da Célula/genética , Citomegalovirus/crescimento & desenvolvimento , Citomegalovirus/patogenicidade , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/patologia , Infecções por Citomegalovirus/fisiopatologia , Infecções por Citomegalovirus/virologia , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Placenta/citologia , Placenta/patologia , Placenta/fisiopatologia , Placenta/virologia , Primeiro Trimestre da Gravidez , Células-Tronco/citologia , Células-Tronco/virologia , Trofoblastos/citologia , Trofoblastos/virologia
10.
Am J Pathol ; 194(7): 1197-1217, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38537935

RESUMO

Unexplained recurrent spontaneous abortion (URSA) is a serious reproductive issue that affects women of childbearing age. Studies have shown a close association between disrupted circadian rhythm and impaired epithelial-mesenchymal transition (EMT) in trophoblasts during URSA, although the underlying mechanism is not known. The current study investigated the regulatory relationship between circadian rhythm gene cryptochrome 2 (CRY2) and ferroptosis on the migratory ability of trophoblast cells. Cell proliferation experiments, wound-healing assays, and expression of related markers were conducted to study EMT. Trophoblastic ferroptosis was confirmed by the expressions of malondialdehyde, glutathione, mitochondrial membrane potential, divalent iron ions, and related genes. The results showed significant increased expression of CRY2 and decreased expression of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) in the URSA villous tissues, accompanied by iron-dependent oxidative changes and abnormal expression of ferroptosis-related proteins. CRY2 and BMAL1 were co-localized and functioned as a feedback loop, which regulated the dynamic changes of EMT-related markers in trophoblast cells. CRY2 promoted trophoblastic ferroptosis, whereas BMAL1 had the opposite effect. Particularly, the ferroptosis inhibitor (ferrostatin-1) effectively reversed the trophoblastic ferroptosis and EMT inhibition caused by CRY2 overexpression. Collectively, these results suggest that CRY2 regulates trophoblastic ferroptosis and hinders cellular EMT and migratory ability by suppressing BMAL1 expression.


Assuntos
Criptocromos , Transição Epitelial-Mesenquimal , Ferroptose , Trofoblastos , Ferroptose/fisiologia , Humanos , Feminino , Criptocromos/metabolismo , Criptocromos/genética , Trofoblastos/metabolismo , Trofoblastos/patologia , Gravidez , Adulto , Aborto Habitual/metabolismo , Aborto Habitual/patologia , Proliferação de Células , Movimento Celular , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética
11.
Am J Pathol ; 194(7): 1162-1170, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38880601

RESUMO

The placenta plays a crucial role in pregnancy success. ΔNp63α (p63), a transcription factor from the TP53 family, is highly expressed in villous cytotrophoblasts (CTBs), the epithelial stem cells of the human placenta, and is involved in CTB maintenance and differentiation. We examined the mechanisms of action of p63 by identifying its downstream targets. Gene expression changes were evaluated following overexpression and knockdown of p63 in the JEG3 choriocarcinoma cell line, using microarray-based RNA profiling. High-temperature requirement A4 (HTRA4), a placenta-specific serine protease involved in trophoblast differentiation and altered in preeclampsia, was identified as a gene reciprocally regulated by p63, and its expression was characterized in primary human placental tissues by RNA-sequencing and in situ hybridization. Potential p63 DNA-binding motifs were identified in the HTRA4 promoter, and p63 occupancy at some of these sites was confirmed using chromatin immunoprecipitation, followed by quantitative PCR in both JEG3 and trophoblast stem cells. These data begin to identify members of the transcriptional network downstream of p63, thus laying the groundwork for probing mechanisms by which this important transcription factor regulates trophoblast stemness and differentiation.


Assuntos
Fatores de Transcrição , Trofoblastos , Humanos , Trofoblastos/metabolismo , Feminino , Gravidez , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Placenta/metabolismo , Serina Proteases/metabolismo , Serina Proteases/genética , Regiões Promotoras Genéticas/genética , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Transcrição Gênica
12.
FASEB J ; 38(13): e23706, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877842

RESUMO

The etiology of preeclampsia (PE), a complex and multifactorial condition, remains incompletely understood. DNA methylation, which is primarily regulated by three DNA methyltransferases (DNMTs), DNMT1, DNMT3A, and DNMT3B, plays a vital role in early embryonic development and trophectoderm differentiation. Yet, how DNMTs modulate trophoblast fusion and PE development remains unclear. In this study, we found that the DNMTs expression was downregulated during trophoblast cells fusion. Downregulation of DNMTs was observed during the reconstruction of the denuded syncytiotrophoblast (STB) layer of placental explants. Additionally, overexpression of DNMTs inhibited trophoblast fusion. Conversely, treatment with the DNA methylation inhibitor 5-aza-CdR decreased the expression of DNMTs and promoted trophoblast fusion. A combined analysis of DNA methylation data and gene transcriptome data obtained from the primary cytotrophoblasts (CTBs) fusion process identified 104 potential methylation-regulated differentially expressed genes (MeDEGs) with upregulated expression due to DNA demethylation, including CD59, TNFAIP3, SDC1, and CDK6. The transcription regulation region (TRR) of TNFAIP3 showed a hypomethylation with induction of 5-aza-CdR, which facilitated CREB recruitment and thereby participated in regulating trophoblast fusion. More importantly, clinical correlation analysis of PE showed that the abnormal increase in DNMTs may be involved in the development of PE. This study identified placental DNA methylation-regulated genes that may contribute to PE, offering a novel perspective on the role of epigenetics in trophoblast fusion and its implication in PE development.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , Pré-Eclâmpsia , Trofoblastos , Trofoblastos/metabolismo , Feminino , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Gravidez , Humanos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Fusão Celular , Placenta/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética
13.
FASEB J ; 38(8): e23631, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38661062

RESUMO

Recurrent miscarriage (RM) is related to the dysfunction of extravillous trophoblast cells (EVTs), but the comprehensive mechanisms remain largely unexplored. We analyzed single-cell RNA sequencing (scRNA-seq), bulk RNA sequencing and microarray datasets obtained from Gene Expression Omnibus (GEO) database to explore the hub genes in the mechanisms of RM. We identified 1724 differentially expressed genes (DEGs) in EVTs from the RM, and they were all expressed along the trajectory of EVTs. These DEGs were associated with hypoxia and glucose metabolism. Single-cell Regulatory Network Inference and Clustering (SCENIC) analysis revealed that E2F transcription factor (E2F) 8 (E2F8) was a key transcription factor for these DEGs. And the expression of ENO1 can be positively regulated by E2F8 via RNA sequencing analysis. Subsequently, we performed immunofluorescence assay (IF), plasmid transfection, western blotting, chromatin immunoprecipitation (ChIP), real-time quantitative polymerase chain reaction (qRT-PCR), and transwell assays for validation experiments. We found that the expression of alpha-Enolase 1 (ENO1) was lower in the placentas of RM. Importantly, E2F8 can transcriptionally regulate the expression of ENO1 to promote the invasion of trophoblast cells by inhibiting secreted frizzled-related protein 1/4 (SFRP1/4) to activate Wnt signaling pathway. Our results suggest that ENO1 can promote trophoblast invasion via an E2F8-dependent manner, highlighting a potential novel target for the physiological mechanisms of RM.


Assuntos
Aborto Habitual , Proteínas de Ligação a DNA , Proteínas Repressoras , Trofoblastos , Adulto , Feminino , Humanos , Gravidez , Aborto Habitual/metabolismo , Aborto Habitual/genética , Aborto Habitual/patologia , Movimento Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fosfopiruvato Hidratase/metabolismo , Fosfopiruvato Hidratase/genética , Trofoblastos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Repressoras/metabolismo
14.
FASEB J ; 38(9): e23637, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38720403

RESUMO

Vascular smooth muscle cell (VSMC) plasticity is fundamental in uterine spiral artery remodeling during placentation in Eutherian mammals. Our previous work showed that the invasion of trophoblast cells into uterine myometrium coincides with a phenotypic change of VSMCs. Here, we elucidate the mechanism by which trophoblast cells confer VSMC plasticity. Analysis of genetic markers on E13.5, E16.5, and E19.5 in the rat metrial gland, the entry point of uterine arteries, revealed that trophoblast invasion is associated with downregulation of MYOCARDIN, α-smooth muscle actin, and calponin1, and concomitant upregulation of Smemb in VSMCs. Myocardin overexpression or knockdown in VSMCs led to upregulation or downregulation of contractile markers, respectively. Co-culture of trophoblast cells with VSMCs decreased MYOCARDIN expression along with compromised expression of contractile markers in VSMCs. However, co-culture of trophoblast cells with VSMCs overexpressing MYOCARDIN inhibited their change in phenotype, whereas, overexpression of transactivation domain deleted MYOCARDIN failed to elicit this response. Furthermore, the co-culture of trophoblast cells with VSMCs led to the activation of NFκß signaling. Interestingly, despite producing IL-1ß, trophoblast cells possess only the decoy receptor, whereas, VSMCs possess the IL-1ß signaling receptor. Treatment of VSMCs with exogenous IL-1ß led to a decrease in MYOCARDIN and an increase in phosphorylation of NFκß. The effect of trophoblast cells in the downregulation of MYOCARDIN in VSMCs was reversed by blocking NFκß translocation to the nucleus. Together, these data highlight that trophoblast cells direct VSMC plasticity, and trophoblast-derived IL-1ß is a key player in downregulating MYOCARDIN via the NFκß signaling pathway.


Assuntos
Interleucina-1beta , Músculo Liso Vascular , Miócitos de Músculo Liso , NF-kappa B , Proteínas Nucleares , Transdução de Sinais , Transativadores , Trofoblastos , Animais , Trofoblastos/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Transativadores/metabolismo , Transativadores/genética , Ratos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Transdução de Sinais/fisiologia , NF-kappa B/metabolismo , Feminino , Miócitos de Músculo Liso/metabolismo , Interleucina-1beta/metabolismo , Gravidez , Técnicas de Cocultura , Ratos Sprague-Dawley , Células Cultivadas , Plasticidade Celular/fisiologia , Calponinas
15.
FASEB J ; 38(7): e23598, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581244

RESUMO

The precise molecular mechanism behind fetal growth restriction (FGR) is still unclear, although there is a strong connection between placental dysfunction, inadequate trophoblast invasion, and its etiology and pathogenesis. As a new type of non-coding RNA, circRNA has been shown to play a crucial role in the development of FGR. This investigation identified the downregulation of hsa_circ_0034533 (circTHBS1) in FGR placentas through high-sequencing analysis and confirmed this finding in 25 clinical placenta samples using qRT-PCR. Subsequent in vitro functional assays demonstrated that silencing circTHBS1 inhibited trophoblast proliferation, migration, invasion, and epithelial mesenchymal transition (EMT) progression and promoted apoptosis. Furthermore, when circTHBS1 was overexpressed, cell function experiments showed the opposite result. Analysis using fluorescence in situ hybridization revealed that circTHBS1 was primarily found in the cytoplasmic region. Through bioinformatics analysis, we anticipated the involvement of miR-136-3p and IGF2R in downstream processes, which was subsequently validated through qRT-PCR and dual-luciferase assays. Moreover, the inhibition of miR-136-3p or the overexpression of IGF2R partially reinstated proliferation, migration, and invasion abilities following the silencing of circTHBS1. In summary, the circTHBS1/miR-136-3p/IGF2R axis plays a crucial role in the progression and development of FGR, offering potential avenues for the exploration of biological indicators and treatment targets.


Assuntos
MicroRNAs , Feminino , Humanos , Gravidez , Apoptose/genética , Movimento Celular/genética , Proliferação de Células/genética , Retardo do Crescimento Fetal/metabolismo , Hibridização in Situ Fluorescente , MicroRNAs/genética , MicroRNAs/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo
16.
Exp Cell Res ; 437(1): 113990, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38462207

RESUMO

This study aims to explore the role of methyltransferase-like 3 (METTL3) modulation of ferroptosis in the pathogenesis of trophoblast-mediated preeclampsia. The expression of METTL3 and acyl-CoA synthetase long chain family member 4 (ACSL4) was measured in clinical placental tissues and trophoblasts using qPCR and Western blot techniques. The effects of METTL3 on the symptoms of preeclampsia were also validated in rat models. METTL3 and ACSL4 were upregulated in placental tissues from patients with preeclampsia and in hypoxia-induced trophoblasts. METTL3 silencing increased the migration and invasion of trophoblasts cultured under hypoxic conditions. Knockdown of METTL3 increased cell viability and suppressed ferroptosis in hypoxia-stimulated trophoblasts. Hypoxia increased the level of m6A in cells, whereas silencing METTL3 partially reversed this change. Silencing METTL3 resulted in a decrease in m6A modification of ACSL4 mRNA, which led to a reduction in ACSL4 mRNA stability. ACSL4 upregulation partially reversed the effects of METTL3 silencing on cell viability, migration, invasion, and ferroptosis in hypoxia-stimulated trophoblasts. Inhibition of METTL3 in preeclampsia rats decreased blood pressure, urine protein levels, fetal survival rate, and ACSL4-mediated ferroptosis. METTL3 elevates ferroptosis to inhibit the migration and invasion of trophoblasts and in vivo preeclampsia symptoms by catalyzing the m6A modification of ACSL4 mRNA.


Assuntos
Ferroptose , Pré-Eclâmpsia , Animais , Feminino , Humanos , Gravidez , Ratos , Ferroptose/genética , Hipóxia , Metiltransferases/genética , Placenta , Pré-Eclâmpsia/genética , RNA Mensageiro , Trofoblastos
17.
Exp Cell Res ; 437(1): 113979, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38462209

RESUMO

INTRODUCTION: To explore the potential impact of 27-hydroxycholesterol (27-HC) on trophoblast cell function in pre-eclampsia. RESULTS: The levels of 27-HC and the expression of CYP27A1 are upregulated in clinical samples of PE. Furthermore, high concentrations of 27-HC can inhibit the invasion and migration ability of trophoblast cells in vitro, and this inhibitory effect is weakened after LXR silencing. In HTR8/SVneo cells treated with 27-HC, the expression of ABCA1/ABCG1 are increased. Finally, we established a mouse model of PE using l-NAME (N-Nitro-l-Arginine Methyl Ester). We found an increase in the levels of 27-HC in the peripheral blood serum of the PE mouse model, and an upregulation of CYP27A1 and LXR expressions in the placenta of the PE mouse model. CONCLUSION: 27-HC inhibits the invasion and migration ability of trophoblast cells by activating the LXR signaling pathway, which is involved in the pathogenesis of Pre-eclampsia(PE).


Assuntos
Pré-Eclâmpsia , Gravidez , Humanos , Camundongos , Feminino , Animais , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Trofoblastos/metabolismo , Placenta/metabolismo , Transdução de Sinais/fisiologia , Regulação para Cima , Movimento Celular/fisiologia , Proliferação de Células/fisiologia
18.
Cell Mol Life Sci ; 81(1): 270, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886218

RESUMO

Early trophoblast differentiation is crucial for embryo implantation, placentation and fetal development. Dynamic changes in DNA methylation occur during preimplantation development and are critical for cell fate determination. However, the underlying regulatory mechanism remains unclear. Recently, we derived morula-like expanded potential stem cells from human preimplantation embryos (hEPSC-em), providing a valuable tool for studying early trophoblast differentiation. Data analysis on published datasets showed differential expressions of DNA methylation enzymes during early trophoblast differentiation in human embryos and hEPSC-em derived trophoblastic spheroids. We demonstrated downregulation of DNA methyltransferase 3 members (DNMT3s) and upregulation of ten-eleven translocation methylcytosine dioxygenases (TETs) during trophoblast differentiation. While DNMT inhibitor promoted trophoblast differentiation, TET inhibitor hindered the process and reduced implantation potential of trophoblastic spheroids. Further integrative analysis identified that glutamyl aminopeptidase (ENPEP), a trophectoderm progenitor marker, was hypomethylated and highly expressed in trophoblast lineages. Concordantly, progressive loss of DNA methylation in ENPEP promoter and increased ENPEP expression were detected in trophoblast differentiation. Knockout of ENPEP in hEPSC-em compromised trophoblast differentiation potency, reduced adhesion and invasion of trophoblastic spheroids, and impeded trophoblastic stem cell (TSC) derivation. Importantly, TET2 was involved in the loss of DNA methylation and activation of ENPEP expression during trophoblast differentiation. TET2-null hEPSC-em failed to produce TSC properly. Collectively, our results illustrated the crucial roles of ENPEP and TET2 in trophoblast fate commitments and the unprecedented TET2-mediated loss of DNA methylation in ENPEP promoter.


Assuntos
Diferenciação Celular , Metilação de DNA , Proteínas de Ligação a DNA , Dioxigenases , Proteínas Proto-Oncogênicas , Trofoblastos , Feminino , Humanos , Gravidez , Blastocisto/metabolismo , Blastocisto/citologia , Linhagem da Célula/genética , Dioxigenases/metabolismo , Dioxigenases/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Trofoblastos/metabolismo , Trofoblastos/citologia
19.
Cell Mol Life Sci ; 81(1): 246, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819479

RESUMO

The glycosylphosphatidylinositol (GPI) biosynthetic pathway in the endoplasmic reticulum (ER) is crucial for generating GPI-anchored proteins (GPI-APs), which are translocated to the cell surface and play a vital role in cell signaling and adhesion. This study focuses on two integral components of the GPI pathway, the PIGL and PIGF proteins, and their significance in trophoblast biology. We show that GPI pathway mutations impact on placental development impairing the differentiation of the syncytiotrophoblast (SynT), and especially the SynT-II layer, which is essential for the establishment of the definitive nutrient exchange area within the placental labyrinth. CRISPR/Cas9 knockout of Pigl and Pigf in mouse trophoblast stem cells (mTSCs) confirms the role of these GPI enzymes in syncytiotrophoblast differentiation. Mechanistically, impaired GPI-AP generation induces an excessive unfolded protein response (UPR) in the ER in mTSCs growing in stem cell conditions, akin to what is observed in human preeclampsia. Upon differentiation, the impairment of the GPI pathway hinders the induction of WNT signaling for early SynT-II development. Remarkably, the transcriptomic profile of Pigl- and Pigf-deficient cells separates human patient placental samples into preeclampsia and control groups, suggesting an involvement of Pigl and Pigf in establishing a preeclamptic gene signature. Our study unveils the pivotal role of GPI biosynthesis in early placentation and uncovers a new preeclampsia gene expression profile associated with mutations in the GPI biosynthesis pathway, providing novel molecular insights into placental development with implications for enhanced patient stratification and timely interventions.


Assuntos
Diferenciação Celular , Glicosilfosfatidilinositóis , Placentação , Trofoblastos , Trofoblastos/metabolismo , Trofoblastos/citologia , Feminino , Gravidez , Animais , Humanos , Camundongos , Placentação/genética , Glicosilfosfatidilinositóis/metabolismo , Glicosilfosfatidilinositóis/biossíntese , Placenta/metabolismo , Placenta/citologia , Via de Sinalização Wnt , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Retículo Endoplasmático/metabolismo , Vias Biossintéticas/genética , Resposta a Proteínas não Dobradas , Sistemas CRISPR-Cas
20.
Cell Mol Life Sci ; 81(1): 303, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008099

RESUMO

Vitamin C (VC) serves as a pivotal nutrient for anti-oxidation process, metabolic responses, and stem cell differentiation. However, its precise contribution to placenta development and gestation remains obscure. Here, we demonstrated that physiological levels of VC act to stabilize Hand1, a key bHLH transcription factor vital for the development trajectory of trophoblast giant cell (TGC) lineages, thereby promoting the differentiation of trophoblast stem cells into TGC. Specifically, VC administration inactivated c-Jun N-terminal kinase (JNK) signaling, which directly phosphorylates Hand1 at Ser48, triggering the proteasomal degradation of Hand1. Conversely, a loss-of-function mutation at Ser48 on Hand1 not only significantly diminished both intrinsic and VC-induced stabilization of Hand1 but also underscored the indispensability of this residue. Noteworthy, the insufficiency of VC led to severe defects in the differentiation of diverse TGC subtypes and the formation of labyrinth's vascular network in rodent placentas, resulting in failure of maintenance of pregnancy. Importantly, VC deficiency, lentiviral knockdown of JNK or overexpression of Hand1 mutants in trophectoderm substantially affected the differentiation of primary and secondary TGC in E8.5 mouse placentas. Thus, these findings uncover the significance of JNK inactivation and consequential stabilization of Hand1 as a hitherto uncharacterized mechanism controlling VC-mediated placentation and perhaps maintenance of pregnancy.


Assuntos
Ácido Ascórbico , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular , Proteínas Quinases JNK Ativadas por Mitógeno , Placentação , Trofoblastos , Animais , Feminino , Gravidez , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Placentação/genética , Camundongos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Diferenciação Celular/efeitos dos fármacos , Trofoblastos/metabolismo , Trofoblastos/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Placenta/metabolismo , Fosforilação , Humanos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA