Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
PLoS Pathog ; 19(1): e1010482, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696453

RESUMO

Post-Transcriptional Gene Silencing (PTGS) is a defense mechanism that targets invading nucleic acids of endogenous (transposons) or exogenous (pathogens, transgenes) origins. During plant infection by viruses, virus-derived primary siRNAs target viral RNAs, resulting in both destruction of single-stranded viral RNAs (execution step) and production of secondary siRNAs (amplification step), which maximizes the plant defense. As a counter-defense, viruses express proteins referred to as Viral Suppressor of RNA silencing (VSR). Some viruses express VSRs that totally inhibit PTGS, whereas other viruses express VSRs that have limited effect. Here we show that infection with the Turnip yellow mosaic virus (TYMV) is enhanced in Arabidopsis ago1, ago2 and dcl4 mutants, which are impaired in the execution of PTGS, but not in dcl2, rdr1 and rdr6 mutants, which are impaired in the amplification of PTGS. Consistently, we show that the TYMV VSR P69 localizes in siRNA-bodies, which are the site of production of secondary siRNAs, and limits PTGS amplification. Moreover, TYMV induces the production of the host enzyme RNASE THREE-LIKE 1 (RTL1) to further reduce siRNA accumulation. Infection with the Tobacco rattle virus (TRV), which also encodes a VSR limiting PTGS amplification, induces RTL1 as well to reduce siRNA accumulation and promote infection. Together, these results suggest that RTL1 could be considered as a host susceptibility gene that is induced by viruses as a strategy to further limit the plant PTGS defense when VSRs are insufficient.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Doenças das Plantas , Proteínas Repressoras , Tymovirus , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutação , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Tymovirus/genética , Tymovirus/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/virologia
2.
Virol J ; 20(1): 17, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36710353

RESUMO

Leaves of hollyhock (Alcea rosea) exhibiting vein chlorosis and yellow mosaic symptoms were collected at public sites in Lausanne and Nyon, two cities of western Switzerland. Diagnostic methods untangled in samples from both sites the mixed infections of a novel isometric virus, tentatively named "Alcea yellow mosaic virus" (AYMV) with the carlavirus Gaillardia latent virus. A new potyvirus was also identified in samples from Nyon. A combination of Illumina, Nanopore and Sanger sequencing was necessary to assemble the full-length genome of AYMV, revealing an exceptionally high cytidine content and other features typically associated with members of the genus Tymovirus. The host range of AYMV was found to be restricted to mallows, including ornamentals as well as economically important plants. Phylogenetic analyses further showed that AYMV belongs to a Tymovirus subclade that also gathers the other mallow-infecting members. The virus was readily transmitted by sap inoculation, and the weevil species Aspidapion radiolus was evidenced as a vector. Transmission assays using another weevil or other insect species did not succeed, and seed transmission was not observed.


Assuntos
Coinfecção , Malvaceae , Vírus do Mosaico , Tymovirus , Gorgulhos , Animais , Tymovirus/genética , Filogenia , Doenças das Plantas
3.
Arch Virol ; 168(10): 245, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676512

RESUMO

A new positive-sense, single-stranded RNA virus, tentatively named "Valeriana jatamansi tymovirus 1" (VaJV1, OQ730267), was isolated from Valeriana jatamansi Jones displaying symptoms of vein-clearing in Yunnan Province, China. The complete genome of VaJV1 consists of 6,215 nucleotides and contains three open reading frames (ORFs). The genome structure of VaJV1 is typical of members of the genus Tymovirus. BLASTn analysis and multiple sequence alignments showed that the complete genome and coat protein of VaJV1 shared the most sequence similarity (65.5% nucleotides and 50.5% amino acid sequence identity) with an isolate of the tymovirus okra mosaic virus (NC_009532). Phylogenetic analysis confirmed that VaJV1 clustered most closely with other tymoviruses. We propose that Valeriana jatamansi tymovirus 1 represents a new species within the genus Tymovirus.


Assuntos
Tymovirus , Valeriana , China , Filogenia , Nucleotídeos , Análise de Sequência
4.
J Biol Chem ; 295(40): 13769-13783, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32732284

RESUMO

Single-stranded, positive-sense RNA viruses assemble their replication complexes in infected cells from a multidomain replication polyprotein. This polyprotein usually contains at least one protease, the primary function of which is to process the polyprotein into mature proteins. Such proteases also may have other functions in the replication cycle. For instance, cysteine proteases (PRO) frequently double up as ubiquitin hydrolases (DUB), thus interfering with cellular processes critical for virus replication. We previously reported the crystal structures of such a PRO/DUB from Turnip yellow mosaic virus (TYMV) and of its complex with one of its PRO substrates. Here we report the crystal structure of TYMV PRO/DUB in complex with ubiquitin. We find that PRO/DUB recognizes ubiquitin in an unorthodox way: It interacts with the body of ubiquitin through a split recognition motif engaging both the major and the secondary recognition patches of ubiquitin (Ile44 patch and Ile36 patch, respectively, including Leu8, which is part of the two patches). However, the contacts are suboptimal on both sides. Introducing a single-point mutation in TYMV PRO/DUB aimed at improving ubiquitin-binding led to a much more active DUB. Comparison with other PRO/DUBs from other viral families, particularly coronaviruses, suggests that low DUB activities of viral PRO/DUBs may generally be fine-tuned features of interaction with host factors.


Assuntos
Enzimas Desubiquitinantes/química , Peptídeo Hidrolases/química , Tymovirus/enzimologia , Ubiquitina/química , Proteínas Virais/química , Cristalografia por Raios X , Enzimas Desubiquitinantes/genética , Peptídeo Hidrolases/genética , Tymovirus/genética , Ubiquitina/genética , Proteínas Virais/genética
5.
J Appl Microbiol ; 131(4): 2072-2080, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33629458

RESUMO

AIMS: To display a short peptide (GSRSHHHHHH) at the C-terminal end of turnip yellow mosaic virus coat protein (TYMVc) and to study its assembly into virus-like particles (TYMVcHis6 VLPs). METHODS AND RESULTS: In this study, recombinant TYMVcHis6 expressed in Escherichia coli self-assembled into VLPs of approximately 30-32 nm. SDS-PAGE and Western blot analysis of protein fractions from the immobilized metal affinity chromatography (IMAC) showed that TYMVcHis6 VLPs interacted strongly with nickel ligands in IMAC column, suggesting that the fusion peptide is protruding out from the surface of VLPs. These VLPs are highly stable over a wide pH range from 3·0 to 11·0 at different temperatures. At pH 11·0, specifically, the VLPs remained intact up to 75°C. Additionally, the disassembly and reassembly of TYMVcHis6 VLPs were studied in vitro. Dynamic light scattering and transmission electron microscopy analysis revealed that TYMVcHis6 VLPs were dissociated by 7 mol l-1 urea and 2 mol l-1 guanidine hydrochloride (GdnHCl) without impairing their reassembly property. CONCLUSIONS: A 10-residue peptide was successfully displayed on the surface of TYMVcHis6 VLPs. This chimera demonstrated high stability under extreme thermal conditions with varying pH and was able to dissociate and reassociate into VLPs by chemical denaturants. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first C-terminally modified TYMVc produced in E. coli. The C-terminal tail which is exposed on the surface can be exploited as a useful site to display multiple copies of functional ligands. The ability of the chimeric VLPs to self-assemble after undergo chemical denaturation indicates its potential role to serve as a nanocarrier for use in targeted drug delivery.


Assuntos
Tymovirus , Proteínas do Capsídeo/genética , Escherichia coli/genética , Microscopia Eletrônica de Transmissão , Proteínas Recombinantes
6.
Plant Cell ; 29(3): 508-525, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28223439

RESUMO

Sumoylation is a transient, reversible dynamic posttranslational modification that regulates diverse cellular processes including plant-pathogen interactions. Sumoylation of NPR1, a master regulator of basal and systemic acquired resistance to a broad spectrum of plant pathogens, activates the defense response. Here, we report that NIb, the only RNA-dependent RNA polymerase of Turnip mosaic virus (TuMV) that targets the nucleus upon translation, interacts exclusively with and is sumoylated by SUMO3 (SMALL UBIQUITIN-LIKE MODIFIER3), but not the three other Arabidopsis thaliana SUMO paralogs. TuMV infection upregulates SUMO3 expression, and the sumoylation of NIb by SUMO3 regulates the nuclear-cytoplasmic partitioning of NIb. We identified the SUMO-interacting motif in NIb that is essential for its sumoylation and found that knockout or overexpression of SUMO3 suppresses TuMV replication and attenuates viral symptoms, suggesting that SUMO3 plays dual roles as a host factor of TuMV and as an antiviral defender. Sumoylation of NIb by SUMO3 is crucial for its role in suppressing the host immune response. Taken together, our findings reveal that sumoylation of NIb promotes TuMV infection by retargeting NIb from the nucleus to the cytoplasm where viral replication takes place and by suppressing host antiviral responses through counteracting the TuMV infection-induced, SUMO3-activated, NPR1-mediated resistance pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , RNA Polimerases Dirigidas por DNA/genética , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Potyvirus/enzimologia , Potyvirus/patogenicidade , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Sumoilação , Tymovirus/enzimologia , Tymovirus/patogenicidade , Proteínas Virais/genética , Proteínas Virais/metabolismo
7.
Theor Appl Genet ; 133(2): 383-393, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31690991

RESUMO

KEY MESSAGE: Partially dominant resistance to Turnip yellows virus associated with one major QTL was identified in the natural allotetraploid oilseed rape cultivar Yudal. Turnip yellows virus (TuYV) is transmitted by the peach-potato aphid (Myzus persicae) and causes severe yield losses in commercial oilseed rape crops (Brassica napus). There is currently only one genetic resource for resistance to TuYV available in brassica, which was identified in the re-synthesised B. napus line 'R54'. In our study, 27 mostly homozygous B. napus accessions, either doubled-haploid (DH) or inbred lines, representing a diverse subset of the B. napus genepool, were screened for TuYV resistance/susceptibility. Partial resistance to TuYV was identified in the Korean spring oilseed rape, B. napus variety Yudal, whilst the dwarf French winter oilseed rape line Darmor-bzh was susceptible. QTL mapping using the established Darmor-bzh × Yudal DH mapping population (DYDH) revealed one major QTL explaining 36% and 18% of the phenotypic variation in two independent experiments. A DYDH line was crossed to Yudal, and reciprocal backcross (BC1) populations from the F1 with either the susceptible or resistant parent revealed the dominant inheritance of the TuYV resistance. The QTL on ChrA04 was verified in the segregating BC1 population. A second minor QTL on ChrC05 was identified in one of the two DYDH experiments, and it was not observed in the BC1 population. The TuYV resistance QTL in 'R54' is within the QTL interval on Chr A04 of Yudal; however, the markers co-segregating with the 'R54' resistance are not conserved in Yudal, suggesting an independent origin of the TuYV resistances. This is the first report of the QTL mapping of TuYV resistance in natural B. napus.


Assuntos
Brassica napus/genética , Brassica napus/virologia , Doenças das Plantas/genética , Doenças das Plantas/virologia , Tymovirus , Animais , Afídeos , Mapeamento Cromossômico , Resistência à Doença , Genótipo , Haploidia , Fenótipo , Locos de Características Quantitativas
8.
Mol Pharm ; 17(12): 4629-4636, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33186039

RESUMO

Nanoparticle-based prodrugs offer an effective strategy to improve the safety and delivery of small-molecule therapeutics while reducing the risk of drug resistance. Here, we conjugated a maleimide-functionalized cisplatin prodrug containing Pt(IV) to the internal and/or external surface of virus-like particles (VLPs) derived from Physalis mottle virus (PhMV) to develop a pH-sensitive drug delivery system. The internally loaded and PEGylated VLPs (Pt-PhMVCy5.5-PEG) were taken up efficiently by cancer cells where they released platinum, presumably as a reduced, DNA-reactive Pt(II) complex, rapidly under acidic conditions in vitro (>80% in 30 h). The efficacy of the VLP-based drug delivery system was demonstrated against a panel of cancer cell lines, including cell lines resistant to platinum therapy. Furthermore, Pt-PhMVCy5.5-PEG successfully inhibited the growth of xenograft MDA-MB-231 breast tumors in vivo and significantly prolonged the survival of mice compared to free cisplatin and cisplatin-maleimide. Pt-PhMVCy5.5-PEG therefore appears promising as a prodrug to overcome the limitations of conventional platinum-based drugs for cancer therapy.


Assuntos
Cisplatino/farmacocinética , Portadores de Fármacos/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Tymovirus/química , Animais , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Liberação Controlada de Fármacos , Resistencia a Medicamentos Antineoplásicos , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Neoplasias/patologia , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Nature ; 511(7509): 366-9, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24909993

RESUMO

RNA is arguably the most functionally diverse biological macromolecule. In some cases a single discrete RNA sequence performs multiple roles, and this can be conferred by a complex three-dimensional structure. Such multifunctionality can also be driven or enhanced by the ability of a given RNA to assume different conformational (and therefore functional) states. Despite its biological importance, a detailed structural understanding of the paradigm of RNA structure-driven multifunctionality is lacking. To address this gap it is useful to study examples from single-stranded positive-sense RNA viruses, a prototype being the tRNA-like structure (TLS) found at the 3' end of the turnip yellow mosaic virus (TYMV). This TLS not only acts like a tRNA to drive aminoacylation of the viral genomic (g)RNA, but also interacts with other structures in the 3' untranslated region of the gRNA, contains the promoter for negative-strand synthesis, and influences several infection-critical processes. TLS RNA can provide a glimpse into the structural basis of RNA multifunctionality and plasticity, but for decades its high-resolution structure has remained elusive. Here we present the crystal structure of the complete TYMV TLS to 2.0 Å resolution. Globally, the RNA adopts a shape that mimics tRNA, but it uses a very different set of intramolecular interactions to achieve this shape. These interactions also allow the TLS to readily switch conformations. In addition, the TLS structure is 'two faced': one face closely mimics tRNA and drives aminoacylation, the other face diverges from tRNA and enables additional functionality. The TLS is thus structured to perform several functions and interact with diverse binding partners, and we demonstrate its ability to specifically bind to ribosomes.


Assuntos
Mimetismo Molecular , Conformação de Ácido Nucleico , RNA de Transferência/química , RNA Viral/química , RNA Viral/metabolismo , Tymovirus/genética , Regiões 3' não Traduzidas , Aminoacil-tRNA Sintetases/metabolismo , Aminoacilação , Sequência de Bases , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Dobramento de RNA , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA Viral/genética , Ribossomos/química , Ribossomos/metabolismo , Pequeno RNA não Traduzido
10.
PLoS Pathog ; 13(11): e1006714, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29117247

RESUMO

The positive-strand RNA virus Turnip yellow mosaic virus (TYMV) encodes an ovarian tumor (OTU)-like protease/deubiquitinase (PRO/DUB) protein domain involved both in proteolytic processing of the viral polyprotein through its PRO activity, and in removal of ubiquitin chains from ubiquitylated substrates through its DUB activity. Here, the crystal structures of TYMV PRO/DUB mutants and molecular dynamics simulations reveal that an idiosyncratic mobile loop participates in reversibly constricting its unusual catalytic site by adopting "open", "intermediate" or "closed" conformations. The two cis-prolines of the loop form a rigid flap that in the most closed conformation zips up against the other side of the catalytic cleft. The intermediate and closed conformations also correlate with a reordering of the TYMV PRO/DUB catalytic dyad, that then assumes a classical, yet still unusually mobile, OTU DUB alignment. Further structure-based mutants designed to interfere with the loop's mobility were assessed for enzymatic activity in vitro and in vivo, and were shown to display reduced DUB activity while retaining PRO activity. This indicates that control of the switching between the dual PRO/DUB activities resides prominently within this loop next to the active site. Introduction of mutations into the viral genome revealed that the DUB activity contributes to the extent of viral RNA accumulation both in single cells and in whole plants. In addition, the conformation of the mobile flap was also found to influence symptoms severity in planta. Such mutants now provide powerful tools with which to study the specific roles of reversible ubiquitylation in viral infection.


Assuntos
Enzimas Desubiquitinantes/metabolismo , Peptídeo Hidrolases/metabolismo , Tymovirus/enzimologia , Arabidopsis/virologia , Domínio Catalítico/fisiologia , Enzimas Desubiquitinantes/química , Peptídeo Hidrolases/química , Tymovirus/química
11.
Arch Virol ; 164(7): 1753-1760, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31025116

RESUMO

The expression of several structural proteins from a wide variety of viruses in heterologous cell culture systems results in the formation of virus-like particles (VLPs). These VLPs structurally resemble the wild-type virus particles and have been used to study viral assembly process and as antigens for diagnosis and/or vaccine development. Tomato blistering mosaic virus (ToBMV) is a tymovirus that has a 6.3-kb positive-sense ssRNA genome. We have employed the baculovirus expression vector system (BEVS) for the production of tymovirus-like particles (tVLPs) in insect cells. Two recombinant baculoviruses containing the ToBMV wild-type coat protein (CP) gene or a modified short amino-terminal deletion (Δ2-24CP) variant were constructed and used to infect insect cells. Both recombinant viruses were able to express ToBMV CP and Δ2-24CP from infected insect cells that self-assembled into tVLPs. Therefore, the N-terminal residues (2-24) of the native ToBMV CP were shown not to be essential for self-assembly of tVLPs. We also constructed a third recombinant baculovirus containing a small sequence coding for the major epitope of the chikungunya virus (CHIKV) envelope protein 2 (E2) replacing the native CP N-terminal 2-24 amino acids. This recombinant virus also produced tVLPs. In summary, ToBMV VLPs can be produced in a baculovirus/insect cell heterologous expression system, and the N-terminal residues 2-24 of the CP are not essential for this assembly, allowing its potential use as a protein carrier that facilitates antigen purification and might be used for diagnosis.


Assuntos
Baculoviridae/genética , Proteínas do Capsídeo/biossíntese , Tymovirus/crescimento & desenvolvimento , Tymovirus/genética , Proteínas do Envelope Viral/biossíntese , Montagem de Vírus/genética , Animais , Proteínas do Capsídeo/genética , Linhagem Celular , Vírus Chikungunya/genética , Expressão Gênica/genética , Solanum lycopersicum/virologia , Mariposas/citologia , Proteínas do Envelope Viral/genética
12.
Plant Dis ; 103(9): 2246-2251, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31287777

RESUMO

Naranjilla (Solanum quitoense Lam.) and tamarillo (S. betaceum Cav.) are two important perennial solanaceous crops grown in Ecuador for the fresh market and juice production. Viruses infecting tamarillo and naranjilla are currently poorly studied, and no clean stock program exists in Ecuador. Here, we report a new virus, provisionally named as naranjilla mild mosaic virus (NarMMV) (genus Tymovirus, family Tymoviridae), isolated from naranjilla grown in an orchard in Pichincha Province, Ecuador. The complete genome of the virus consists of 6,348 nucleotides and encodes three open reading frames typical for members of the genus Tymovirus. Phylogenetically, Chiltepin yellow mosaic virus, Eggplant mosaic virus, and the recently characterized naranjilla chlorotic mosaic virus (NarCMV) were found to be the closest relatives of NarMMV. Unlike NarCMV, the new virus induced mild mosaic in naranjilla and more severe symptoms in tamarillo. Similar to NarCMV, NarMMV was unable to systemically infect potato. Virus surveys found NarMMV prevalent in naranjilla production areas of two provinces of Ecuador, especially where hybrid cultivars of naranjilla were cultivated. NarMMV was also found in field-grown tamarillo. The new virus cross-reacted with antibodies developed against NarCMV. Hence, this antibody will be useful for its field diagnosis using enzyme-linked immunosorbent assay or immunocapture reverse transcription polymerase chain reaction in future virus-free certification programs.


Assuntos
Solanum , Tymovirus , Equador , Genoma Viral/genética , Filogenia , Prevalência , Solanum/virologia , Tymovirus/classificação , Tymovirus/genética , Tymovirus/fisiologia
13.
PLoS Biol ; 13(12): e1002326, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26696443

RESUMO

Small RNAs play essential regulatory roles in genome stability, development, and responses to biotic and abiotic stresses in most eukaryotes. In plants, the RNaseIII enzyme DICER-LIKE1 (DCL1) produces miRNAs, whereas DCL2, DCL3, and DCL4 produce various size classes of siRNAs. Plants also encode RNASE THREE-LIKE (RTL) enzymes that lack DCL-specific domains and whose function is largely unknown. We found that virus infection induces RTL1 expression, suggesting that this enzyme could play a role in plant-virus interaction. To first investigate the biochemical activity of RTL1 independent of virus infection, small RNAs were sequenced from transgenic plants constitutively expressing RTL1. These plants lacked almost all DCL2-, DCL3-, and DCL4-dependent small RNAs, indicating that RTL1 is a general suppressor of plant siRNA pathways. In vivo and in vitro assays revealed that RTL1 prevents siRNA production by cleaving dsRNA prior to DCL2-, DCL3-, and DCL4-processing. The substrate of RTL1 cleavage is likely long-perfect (or near-perfect) dsRNA, consistent with the RTL1-insensitivity of miRNAs, which derive from DCL1-processing of short-imperfect dsRNA. Virus infection induces RTL1 mRNA accumulation, but viral proteins that suppress RNA silencing inhibit RTL1 activity, suggesting that RTL1 has evolved as an inducible antiviral defense that could target dsRNA intermediates of viral replication, but that a broad range of viruses counteract RTL1 using the same protein toolbox used to inhibit antiviral RNA silencing. Together, these results reveal yet another level of complexity in the evolutionary battle between viruses and plant defenses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/virologia , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Vírus de RNA/fisiologia , RNA de Plantas/antagonistas & inibidores , RNA Interferente Pequeno/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Substituição de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Carmovirus/fisiologia , Biologia Computacional/métodos , Cucumovirus/fisiologia , Isoenzimas/genética , Isoenzimas/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/virologia , Mutação Puntual , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Tobamovirus/fisiologia , Tymovirus/fisiologia
14.
PLoS Genet ; 11(4): e1005164, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25875739

RESUMO

The unfolded protein response (UPR) signaling network encompasses two pathways in plants, one mediated by inositol-requiring protein-1 (IRE1)-bZIP60 mRNA and the other by site-1/site-2 proteases (S1P/S2P)-bZIP17/bZIP28. As the major sensor of UPR in eukaryotes, IRE1, in response to endoplasmic reticulum (ER) stress, catalyzes the unconventional splicing of HAC1 in yeast, bZIP60 in plants and XBP1 in metazoans. Recent studies suggest that IRE1p and HAC1 mRNA, the only UPR pathway found in yeast, evolves as a cognate system responsible for the robust UPR induction. However, the functional connectivity of IRE1 and its splicing target in multicellular eukaryotes as well as the degree of conservation of IRE1 downstream signaling effectors across eukaryotes remains to be established. Here, we report that IRE1 and its substrate bZIP60 function as a strictly cognate enzyme-substrate pair to control viral pathogenesis in plants. Moreover, we show that the S1P/S2P-bZIP17/bZIP28 pathway, the other known branch of UPR in plants, does not play a detectable role in virus infection, demonstrating the distinct function of the IRE1-bZIP60 pathway in plants. Furthermore, we provide evidence that bZIP60 and HAC1, products of the enzyme-substrate duet, rather than IRE1, are functionally replaceable to cope with ER stress in yeast. Taken together, we conclude that the downstream signaling of the IRE1-mediated splicing is evolutionarily conserved in yeast and plants, and that the IRE1-bZIP60 UPR pathway not only confers overlapping functions with the other UPR branch in fundamental biology but also may exert a unique role in certain biological processes such as virus-plant interactions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Interações Hospedeiro-Patógeno , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Tymovirus/patogenicidade , Resposta a Proteínas não Dobradas , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/virologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arseniato Redutases/genética , Arseniato Redutases/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/genética , Dados de Sequência Molecular , Proteínas Quinases/química , Proteínas Quinases/genética , Splicing de RNA , Saccharomyces cerevisiae/genética , Transdução de Sinais
15.
Plant Dis ; 102(5): 911-918, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-30673388

RESUMO

Naranjilla ("little orange"), also known as lulo (Solanum quitoense Lam.), is a perennial shrub species cultivated in the Andes for fresh fruit and juice production. In 2015, a naranjilla plant exhibiting stunting, mosaic, and chlorotic spots was sampled in the Pastaza province of Ecuador and maintained under greenhouse conditions. An infectious agent was mechanically transmitted to indicator plants and was subjected to biological and molecular characterization. Spherical particles approximately 30 nm in diameter, composed of a single 20-kDa capsid protein, were observed under an electron microscope in infected naranjilla plants. High-throughput sequencing conducted on inoculated Nicotiana benthamiana plants produced a single sequence contig sharing the closest relationship with several tymoviruses. The entire 6,245-nucleotide genome of a new tymovirus was amplified using reverse-transcription polymerase chain reaction and resequenced with the Sanger methodology. The genome had three open reading frames typical of tymoviruses, and displayed a whole-genome nucleotide identity level with the closest tymovirus, Eggplant mosaic virus, at 71% (90% coverage). This tymovirus from naranjilla was able to systemically infect eggplant, tamarillo, N. benthamiana, and naranjilla. In naranjilla, it produced mosaic, chlorotic spots, and stunting, similar to the symptoms observed in the original plant. The virus was unable to infect potato and tobacco and unable to systemically infect pepper plants, replicating only in inoculated leaves. We concluded that this virus represented a new tymovirus infecting naranjilla, and proposed the tentative name Naranjilla chlorotic mosaic virus (NarCMV).


Assuntos
Doenças das Plantas/virologia , Folhas de Planta/virologia , Solanum/virologia , Tymovirus/genética , Genoma Viral , Filogenia
16.
Mol Plant Microbe Interact ; 30(6): 435-443, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28296575

RESUMO

Viral infection triggers a range of plant responses such as the activation of the RNA interference (RNAi) pathway. The double-stranded RNA binding (DRB) proteins DRB3 and DRB4 are part of this pathway and aid in defending against DNA and RNA viruses, respectively. Using live cell imaging, we show that DRB2, DRB3, and DRB5 relocate from their uniform cytoplasmic distribution to concentrated accumulation in nascent viral replication complexes (VRC) that develop following cell invasion by viral RNA. Inactivation of the DRB3 gene in Arabidopsis by T-DNA insertion rendered these plants less able to repress RNA viral replication. We propose a model for the early stages of virus defense in which DRB2, DRB3, and DRB5 are invasion sensors that relocate to nascent VRC, where they bind to viral RNA and inhibit virus replication.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Luminescentes/metabolismo , Proteínas de Ligação a RNA/metabolismo , Arabidopsis/citologia , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Cucumovirus/fisiologia , Interações Hospedeiro-Patógeno , Proteínas Luminescentes/genética , Microscopia Confocal , Vírus de Plantas/classificação , Vírus de Plantas/fisiologia , Plantas Geneticamente Modificadas , Proteínas de Ligação a RNA/genética , Imagem com Lapso de Tempo/métodos , Tospovirus/fisiologia , Tymovirus/fisiologia
17.
PLoS Pathog ; 11(3): e1004755, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25806948

RESUMO

In eukaryotes, ARGONAUTE proteins (AGOs) associate with microRNAs (miRNAs), short interfering RNAs (siRNAs), and other classes of small RNAs to regulate target RNA or target loci. Viral infection in plants induces a potent and highly specific antiviral RNA silencing response characterized by the formation of virus-derived siRNAs. Arabidopsis thaliana has ten AGO genes of which AGO1, AGO2, and AGO7 have been shown to play roles in antiviral defense. A genetic analysis was used to identify and characterize the roles of AGO proteins in antiviral defense against Turnip mosaic virus (TuMV) in Arabidopsis. AGO1, AGO2 and AGO10 promoted anti-TuMV defense in a modular way in various organs, with AGO2 providing a prominent antiviral role in leaves. AGO5, AGO7 and AGO10 had minor effects in leaves. AGO1 and AGO10 had overlapping antiviral functions in inflorescence tissues after systemic movement of the virus, although the roles of AGO1 and AGO10 accounted for only a minor amount of the overall antiviral activity. By combining AGO protein immunoprecipitation with high-throughput sequencing of associated small RNAs, AGO2, AGO10, and to a lesser extent AGO1 were shown to associate with siRNAs derived from silencing suppressor (HC-Pro)-deficient TuMV-AS9, but not with siRNAs derived from wild-type TuMV. Co-immunoprecipitation and small RNA sequencing revealed that viral siRNAs broadly associated with wild-type HC-Pro during TuMV infection. These results support the hypothesis that suppression of antiviral silencing during TuMV infection, at least in part, occurs through sequestration of virus-derived siRNAs away from antiviral AGO proteins by HC-Pro. These findings indicate that distinct AGO proteins function as antiviral modules, and provide a molecular explanation for the silencing suppressor activity of HC-Pro.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas Argonautas/metabolismo , Doenças das Plantas/virologia , Tymovirus/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Argonautas/genética , Doenças das Plantas/genética , Tymovirus/genética
18.
Biomacromolecules ; 18(12): 4141-4153, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29144726

RESUMO

Platform technologies based on plant virus nanoparticles (VNPs) and virus-like particles (VLPs) are attracting the attention of researchers and clinicians because the particles are biocompatible, biodegradable, noninfectious in mammals, and can readily be chemically and genetically engineered to carry imaging agents and drugs. When the Physalis mottle virus (PhMV) coat protein is expressed in Escherichia coli, the resulting VLPs are nearly identical to the viruses formed in vivo. Here, we isolated PhMV-derived VLPs from ClearColi cells and carried out external and internal surface modification with fluorophores using reactive lysine-N-hydroxysuccinimide ester and cysteine-maleimide chemistries, respectively. The uptake of dye-labeled particles was tested in a range of cancer cells and monitored by confocal microscopy and flow cytometry. VLPs labeled internally on cysteine residues were taken up with high efficiency by several cancer cell lines and were colocalized with the endolysosomal marker LAMP-1 within 6 h, whereas VLPs labeled externally on lysine residues were taken up with lower efficiency, probably reflecting differences in surface charge and the propensity to bind to the cell surface. The infusion of dye and drug molecules into the cavity of the VLPs revealed that the photosensitizer (PS), Zn-EpPor, and the drugs crystal violet, mitoxantrone (MTX), and doxorubicin (DOX) associated stably with the carrier via noncovalent interactions. We confirmed the cytotoxicity of the PS-PhMV and DOX-PhMV particles against prostate cancer, ovarian and breast cancer cell lines, respectively. Our results show that PhMV-derived VLPs provide a new platform technology for the delivery of imaging agents and drugs, with preferential uptake into cancer cells. These particles could therefore be developed as multifunctional tools for cancer diagnosis and therapy.


Assuntos
Portadores de Fármacos/química , Indicadores e Reagentes/química , Nanopartículas/química , Preparações Farmacêuticas/química , Tymovirus/química , Animais , Linhagem Celular , Linhagem Celular Tumoral , Doxorrubicina/química , Células HeLa , Humanos , Lisina/química , Maleimidas/química , Camundongos , Mitoxantrona/química , Neoplasias/diagnóstico , Neoplasias/diagnóstico por imagem , Fármacos Fotossensibilizantes/química , Células RAW 264.7
19.
EMBO J ; 31(3): 741-53, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22117220

RESUMO

Selective protein degradation via the ubiquitin-proteasome system (UPS) plays an essential role in many major cellular processes, including host-pathogen interactions. We previously reported that the tightly regulated viral RNA-dependent RNA polymerase (RdRp) of the positive-strand RNA virus Turnip yellow mosaic virus (TYMV) is degraded by the UPS in infected cells, a process that affects viral infectivity. Here, we show that the TYMV 98K replication protein can counteract this degradation process thanks to its proteinase domain. In-vitro assays revealed that the recombinant proteinase domain is a functional ovarian tumour (OTU)-like deubiquitylating enzyme (DUB), as is the 98K produced during viral infection. We also demonstrate that 98K mediates in-vivo deubiquitylation of TYMV RdRp protein--its binding partner within replication complexes--leading to its stabilization. Finally, we show that this DUB activity contributes to viral infectivity in plant cells. The identification of viral RdRp as a specific substrate of the viral DUB enzyme thus reveals the intricate interplay between ubiquitylation, deubiquitylation and the interaction between viral proteins in controlling levels of RdRp and viral infectivity.


Assuntos
RNA Viral/genética , RNA Polimerase Dependente de RNA/metabolismo , Tymovirus/enzimologia , Ubiquitina/metabolismo , Virulência , Sequência de Aminoácidos , Biocatálise , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , RNA Polimerase Dependente de RNA/química , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Tymovirus/genética , Tymovirus/patogenicidade
20.
J Virol ; 89(24): 12441-56, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26423955

RESUMO

UNLABELLED: Positive-strand RNA [(+) RNA] viruses remodel cellular membranes to facilitate virus replication and assembly. In the case of turnip mosaic virus (TuMV), the viral membrane protein 6K2 plays an essential role in endomembrane alterations. Although 6K2-induced membrane dynamics have been widely studied by confocal microscopy, the ultrastructure of this remodeling has not been extensively examined. In this study, we investigated the formation of TuMV-induced membrane changes by chemical fixation and high-pressure freezing/freeze substitution (HPF/FS) for transmission electron microscopy at different times of infection. We observed the formation of convoluted membranes connected to rough endoplasmic reticulum (rER) early in the infection process, followed by the production of single-membrane vesicle-like (SMVL) structures at the midstage of infection. Both SMVL and double-membrane vesicle-like structures with electron-dense cores, as well as electron-dense bodies, were found late in the infection process. Immunogold labeling results showed that the vesicle-like structures were 6K2 tagged and suggested that only the SMVL structures were viral RNA replication sites. Electron tomography (ET) was used to regenerate a three-dimensional model of these vesicle-like structures, which showed that they were, in fact, tubules. Late in infection, we observed filamentous particle bundles associated with electron-dense bodies, which suggests that these are sites for viral particle assembly. In addition, TuMV particles were observed to accumulate in the central vacuole as membrane-associated linear arrays. Our work thus unravels the sequential appearance of distinct TuMV-induced membrane structures for viral RNA replication, viral particle assembly, and accumulation. IMPORTANCE: Positive-strand RNA viruses remodel cellular membranes for different stages of the infection process, such as protein translation and processing, viral RNA synthesis, particle assembly, and virus transmission. The ultrastructure of turnip mosaic virus (TuMV)-induced membrane remodeling was investigated over several days of infection. The first change that was observed involved endoplasmic reticulum-connected convoluted membrane accumulation. This was followed by the formation of single-membrane tubules, which were shown to be viral RNA replication sites. Later in the infection process, double-membrane tubular structures were observed and were associated with viral particle bundles. In addition, TuMV particles were observed to accumulate in the central vacuole as membrane-associated linear arrays. This work thus unravels the sequential appearance of distinct TuMV-induced membrane structures for viral RNA replication, viral particle assembly, and accumulation.


Assuntos
Retículo Endoplasmático , Membranas Intracelulares , Nicotiana , Tymovirus , Vacúolos , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Retículo Endoplasmático/virologia , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Membranas Intracelulares/virologia , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virologia , Tymovirus/genética , Tymovirus/metabolismo , Tymovirus/ultraestrutura , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Vacúolos/ultraestrutura , Vacúolos/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA