Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Virol ; 97(9): e0079023, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37607058

RESUMO

Bats carry genetically diverse severe acute respiratory syndrome-related coronaviruses (SARSr-CoVs). Some of them utilize human angiotensin-converting enzyme 2 (hACE2) as a receptor and cannot efficiently replicate in wild-type mice. Our previous study demonstrated that the bat SARSr-CoV rRsSHC014S induces respiratory infection and lung damage in hACE2 transgenic mice but not wild-type mice. In this study, we generated a mouse-adapted strain of rRsSHC014S, which we named SMA1901, by serial passaging of wild-type virus in BALB/c mice. SMA1901 showed increased infectivity in mouse lungs and induced interstitial lung pneumonia in both young and aged mice after intranasal inoculation. Genome sequencing revealed mutations in not only the spike protein but the whole genome, which may be responsible for the enhanced pathogenicity of SMA1901 in wild-type BALB/c mice. SMA1901 induced age-related mortality similar to that observed in SARS and COVID-19. Drug testing using antibodies and antiviral molecules indicated that this mouse-adapted virus strain can be used to test prophylactic and therapeutic drug candidates against SARSr-CoVs. IMPORTANCE The genetic diversity of SARSr-CoVs in wildlife and their potential risk of cross-species infection highlights the importance of developing a powerful animal model to evaluate the antibodies and antiviral drugs. We acquired the mouse-adapted strain of a bat-origin coronavirus named SMA1901 by natural serial passaging of rRsSHC014S in BALB/c mice. The SMA1901 infection caused interstitial pneumonia and inflammatory immune responses in both young and aged BALB/c mice after intranasal inoculation. Our model exhibited age-related mortality similar to SARS and COVID-19. Therefore, our model will be of high value for investigating the pathogenesis of bat SARSr-CoVs and could serve as a prospective test platform for prophylactic and therapeutic candidates.


Assuntos
Quirópteros , Camundongos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Camundongos/virologia , Quirópteros/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/classificação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Camundongos Endogâmicos BALB C , COVID-19/mortalidade , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Síndrome Respiratória Aguda Grave/mortalidade , Inoculações Seriadas , Antivirais/farmacologia , Antivirais/uso terapêutico , Anticorpos Antivirais/farmacologia , Anticorpos Antivirais/uso terapêutico , Zoonoses Virais/tratamento farmacológico , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/virologia , Envelhecimento , Avaliação Pré-Clínica de Medicamentos
2.
Peptides ; 142: 170570, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34000327

RESUMO

Viruses remain one of the leading causes of animal and human disease. Some animal viral infections spread sporadically to human populations, posing a serious health risk. Particularly the emerging viral zoonotic diseases such as the novel, zoonotic coronavirus represent an actual challenge for the scientific and medical community. Besides human health risks, some animal viral infections, although still not zoonotic, represent important economic loses to the livestock industry. Viral infections pose a genuine concern for which there has been an increasing interest for new antiviral molecules. Among these novel compounds, antiviral peptides have been proposed as promising therapeutic options, not only for the growing body of evidence showing hopeful results but also due to the many adverse effects of chemical-based drugs. Here we review the current progress, key targets and considerations for the development of antiviral peptides (AVPs). The review summarizes the state of the art of the AVPs tested in zoonotic (coronaviruses, Rift Valley fever viruses, Eastern Equine Encephalitis Virus, Dengue and Junín virus) and also non-zoonotic farm animal viruses (avian and cattle viruses). Their molecular target, amino acid sequence and mechanism of action are summarized and reviewed. Antiviral peptides are currently on the cutting edge since they have been reported to display anti-coronavirus activity. Particularly, the review will discuss the specific mode of action of AVPs that specifically inhibit the fusion of viral and host-cell membranes for SARS-CoV-2, showing in detail some important features of the fusion inhibiting peptides that target the spike protein of these risky viruses.


Assuntos
Peptídeos/farmacologia , Zoonoses Virais/tratamento farmacológico , Vírus/efeitos dos fármacos , Animais , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Vírus da Encefalite Equina do Leste/efeitos dos fármacos , Humanos , Vírus Junin/efeitos dos fármacos , Vírus da Febre do Vale do Rift/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA