Theory and applications of ray chaos to underwater acoustics.
Phys Rev E Stat Nonlin Soft Matter Phys
; 64(3 Pt 2): 036221, 2001 Sep.
Article
em En
| MEDLINE
| ID: mdl-11580436
Chaotic ray dynamics in deep sea propagation models is considered using the approaches developed in the theory of dynamical chaos. It has been demonstrated that the mechanism of emergence of ray chaos due to overlapping of nonlinear ray-medium resonances should play an important role in long range sound propagation. Analytical estimations, supported by numerical simulations, show that for realistic values of spatial periods and sound speed fluctuation amplitudes associated with internal-wave-induced perturbations, the resonance overlapping causes stochastic instability of ray paths. The influence of the form of the smooth unperturbed sound speed profile on ray sensitivity to the perturbation is studied. Stability analysis has been conducted by constructing the Poincaré maps and examining depth differences of ray trajectories with close take-off angles. The properties of ray travel times, including fractal properties of the time front fine structures, under condition of ray chaos have been investigated. It has been shown that the coexistence of chaotic and regular rays, typical for dynamical chaos, leads to the appearance of gaps in ray travel time distributions, which are absent in unperturbed waveguides. This phenomenon has a prototype in theory of dynamical chaos called the stochastic particle acceleration. It has been shown that mesoscale inhomogeneities with greater spatial scales than that of internal waves, create irregular local waveguide channels in the vicinity of the axis (i.e., sound speed minimum) of the unperturbed waveguide. Near-axial rays propagating at small grazing angles, "jump" irregularly between these microchannels. This mechanism determines chaotic behavior of the near-axial rays.
Buscar no Google
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2001
Tipo de documento:
Article