Your browser doesn't support javascript.
loading
Changes in mRNA expression profile underlie phenotypic adaptations in creatine kinase-deficient muscles.
de Groof, A J; Smeets, B; Groot Koerkamp, M J; Mul, A N; Janssen, E E; Tabak, H F; Wieringa, B.
Afiliação
  • de Groof AJ; Department of Cell Biology, NCMLS University Medical Center, University of Nijmegen, The Netherlands.
FEBS Lett ; 506(1): 73-8, 2001 Sep 28.
Article em En | MEDLINE | ID: mdl-11591374
ABSTRACT
We have studied the mechanisms that regulate the remodeling of the glycolytic, mitochondrial and structural network of muscles of creatine kinase M (M-CK)/sarcomeric mitochondrial creatine kinase (ScCKmit) knockout mice by comparison of wild-type and mutant mRNA profiles on cDNA arrays. The magnitudes of changes in mRNA levels were most prominent in M-CK/ScCKmit (CK(-/-)) double mutants but did never exceed those of previously observed changes in protein level for any protein examined. In gastrocnemius of CK(-/-) mice we measured a 2.5-fold increase in mRNA level for mitochondrial encoded cytochrome c oxidase (COX)-III which corresponds to the increase in protein content. The level of the nuclear encoded mRNAs for COX-IV, H(+)-ATP synthase-C, adenine nucleotide translocator-1 and insulin-regulatable glucose transporter-4 showed a 1.5-fold increase, also in agreement with protein data. In contrast, no concomitant up-regulation in mRNA and protein content was detected for the mitochondrial inorganic phosphate-carrier, voltage-dependent anion channel and certain glycolytic enzymes. Our results reveal that regulation of transcript level plays an important role, but it is not the only principle involved in the remodeling of mitochondrial and cytosolic design of CK(-/-) muscles.
Assuntos
Buscar no Google
Base de dados: MEDLINE Assunto principal: RNA Mensageiro / Adaptação Fisiológica / Músculo Esquelético / Creatina Quinase / Isoenzimas Limite: Animals Idioma: En Ano de publicação: 2001 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Assunto principal: RNA Mensageiro / Adaptação Fisiológica / Músculo Esquelético / Creatina Quinase / Isoenzimas Limite: Animals Idioma: En Ano de publicação: 2001 Tipo de documento: Article