Your browser doesn't support javascript.
loading
Observational evidence for the accretion-disk origin for a radio jet in an active galaxy.
Marscher, Alan P; Jorstad, Svetlana G; Gómez, José-Luis; Aller, Margo F; Teräsranta, Harri; Lister, Matthew L; Stirling, Alastair M.
Afiliação
  • Marscher AP; Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, Massachusetts 02215, USA. marscher@bu.edu
Nature ; 417(6889): 625-7, 2002 Jun 06.
Article em En | MEDLINE | ID: mdl-12050658
ABSTRACT
Accretion of gas onto black holes is thought to power the relativistic jets of material ejected from active galactic nuclei (AGN) and the 'microquasars' located in our Galaxy. In microquasars, superluminal radio-emitting features appear and propagate along the jet shortly after sudden decreases in the X-ray fluxes. This establishes a direct observational link between the black hole and the jet the X-ray dip is probably caused by the disappearance of a section of the inner accretion disk as it falls past the event horizon, while the remainder of the disk section is ejected into the jet, creating the appearance of a superluminal bright spot. No such connection has hitherto been established for AGN, because of insufficient multi-frequency data. Here we report the results of three years of monitoring the X-ray and radio emission of the galaxy 3C120. As has been observed for microquasars, we find that dips in the X-ray emission are followed by ejections of bright superluminal knots in the radio jet. The mean time between X-ray dips appears to scale roughly with the mass of the black hole, although there are at present only a few data points.
Buscar no Google
Base de dados: MEDLINE Idioma: En Ano de publicação: 2002 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Idioma: En Ano de publicação: 2002 Tipo de documento: Article