Your browser doesn't support javascript.
loading
The N-terminal alpha-helix of pancreatic phospholipase A2 determines productive-mode orientation of the enzyme at the membrane surface.
Qin, Shan; Pande, Abhay H; Nemec, Kathleen N; Tatulian, Suren A.
Afiliação
  • Qin S; Biomolecular Science Center, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA.
J Mol Biol ; 344(1): 71-89, 2004 Nov 12.
Article em En | MEDLINE | ID: mdl-15504403
ABSTRACT
Phospholipase A(2) (PLA(2)) hydrolyzes glycerophospholipids to free fatty acid and lyso-phospholipid, which serve as precursors for the biosynthesis of eicosanoids and other lipid-derived mediators of inflammation and allergy. PLA(2) activity strongly increases upon binding to the surface of aggregated phospholipid. The N-terminal approximately ten residue alpha-helix of certain PLA(2) isoforms plays important roles in the interfacial activation of the enzyme by providing residues for membrane binding of PLA(2) and by contributing to the formation of the substrate-binding pocket. However, the relative contributions of the N-terminal alpha-helix and the rest of the protein in membrane binding of PLA(2) and its productive-mode orientation at the membrane surface are not well understood. Here we use a variety of biophysical approaches to determine the role of the N-terminal helix in membrane binding strength, orientation, and activity of human pancreatic PLA(2). While the full-length PLA(2) binds to membranes with a defined orientation, an engineered PLA(2) fragment DeltaN10 that lacks the N-terminal ten residues binds to membranes with weaker affinity and at random orientation, and exhibits approximately 100-fold lower enzymatic activity compared to the full-length PLA(2), indicating the key role of the N terminus in PLA(2) function. The results of polarized infrared spectroscopic experiments permit determination of the orientation of membrane-bound PLA(2) and identification of its interfacial binding surface. Moreover, the full-length PLA(2) demonstrates increased conformational flexibility in solution and is stabilized upon membrane binding, while the DeltaN10 fragment is more rigid than the full-length PLA(2) both in free and membrane-bound states. Our results suggest that the N-terminal alpha-helix supports the activation of PLA(2) by (a) enhancing the membrane binding strength, (b) facilitating a productive-mode orientation of PLA(2) at the membrane surface, and (c) conferring conformational integrity and plasticity to the enzyme.
Assuntos
Buscar no Google
Base de dados: MEDLINE Assunto principal: Fosfolipases A Limite: Humans Idioma: En Ano de publicação: 2004 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Assunto principal: Fosfolipases A Limite: Humans Idioma: En Ano de publicação: 2004 Tipo de documento: Article