Your browser doesn't support javascript.
loading
Liposomal Hsp90 cDNA induces neovascularization via nitric oxide in chronic ischemia.
Pfosser, Achim; Thalgott, Mark; Büttner, Kerstin; Brouet, Agnès; Feron, Olivier; Boekstegers, Peter; Kupatt, Christian.
Afiliação
  • Pfosser A; Internal Medicine I, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377 Munich, Germany.
Cardiovasc Res ; 65(3): 728-36, 2005 Feb 15.
Article em En | MEDLINE | ID: mdl-15664400
OBJECTIVE: Induction of angiogenesis has been reported subsequent to eNOS overexpression or activation, the latter involving Hsp90 as a chaperone protein. Here, we investigated the potential of regional Hsp90 overexpression to induce therapeutic neovascularization in vivo in a chronic rabbit hindlimb ischemia model. METHODS: In rabbits (n=7 per group), the external femoral artery was excised at day 0 (d0). At d7, liposomes containing eGFP (control group) or Hsp90 were retroinfused into the anterior tibial vein. At day 7 and day 35, angiographies were obtained and analyzed for collateral formation and perfusion velocity (frame count score) (% of d7 values). Capillary/muscle fiber (C/MF) ratio was calculated from five muscle areas of the ischemic limb. L-NAME and Geldanamycin were co-applied, where indicated. RESULTS: Compared to mock-treated controls, Hsp90 transfected increased C/MF ratio at day 35 (1.78+/-0.15 vs. 1.19+/-0.13, p<0.05), an effect blunted by L-NAME (1.39+/-0.11). Hsp90 transfection increased collateral formation (157+/-11% vs. 110+/-13%) and frame count score (174+/-18% vs. 117+/-10%), both sensitive to inhibition by L-NAME coapplication (135+/-17% and 134+/-14%, respectively). Of note, C/MF ratio was found elevated 3 days after Hsp90 transfection (1.61+/-0.16 at d10), at a time point when collateral formation was unchanged (106+/-6%), and tended to remain elevated in the presence of L-NAME applied thereafter (1.64+/-0.35 at d35), though L-NAME blocked subsequent changes in collateral growth or increase in perfusion at d35. CONCLUSIONS: We conclude that Hsp90 is capable of inducing angiogenesis and arteriogenesis via nitric oxide (NO) in a rabbit model of chronic ischemia. Our findings describe the capillary level as an initial site of Hsp90-cDNA-induced neovascularization, followed by growth of larger conductance vessels, resulting in an improved hindlimb perfusion.
Assuntos
Buscar no Google
Base de dados: MEDLINE Assunto principal: Terapia Genética / Proteínas de Choque Térmico HSP90 / Neovascularização Fisiológica / Isquemia / Óxido Nítrico Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2005 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Assunto principal: Terapia Genética / Proteínas de Choque Térmico HSP90 / Neovascularização Fisiológica / Isquemia / Óxido Nítrico Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2005 Tipo de documento: Article