Your browser doesn't support javascript.
loading
Construction of gene regulatory networks using biclustering and Bayesian networks.
Alakwaa, Fadhl M; Solouma, Nahed H; Kadah, Yasser M.
Afiliação
  • Alakwaa FM; University of Science and Technology, Sana'a, Yemen. fadlwork@gmail.com
Theor Biol Med Model ; 8: 39, 2011 Oct 22.
Article em En | MEDLINE | ID: mdl-22018164
BACKGROUND: Understanding gene interactions in complex living systems can be seen as the ultimate goal of the systems biology revolution. Hence, to elucidate disease ontology fully and to reduce the cost of drug development, gene regulatory networks (GRNs) have to be constructed. During the last decade, many GRN inference algorithms based on genome-wide data have been developed to unravel the complexity of gene regulation. Time series transcriptomic data measured by genome-wide DNA microarrays are traditionally used for GRN modelling. One of the major problems with microarrays is that a dataset consists of relatively few time points with respect to the large number of genes. Dimensionality is one of the interesting problems in GRN modelling. RESULTS: In this paper, we develop a biclustering function enrichment analysis toolbox (BicAT-plus) to study the effect of biclustering in reducing data dimensions. The network generated from our system was validated via available interaction databases and was compared with previous methods. The results revealed the performance of our proposed method. CONCLUSIONS: Because of the sparse nature of GRNs, the results of biclustering techniques differ significantly from those of previous methods.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Redes Reguladoras de Genes Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2011 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Redes Reguladoras de Genes Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2011 Tipo de documento: Article