Antibacterial efficacy of silver-impregnated polyelectrolyte multilayers immobilized on a biological dressing in a murine wound infection model.
Ann Surg
; 256(2): 371-7, 2012 Aug.
Article
em En
| MEDLINE
| ID: mdl-22609841
OBJECTIVE: To investigate the antibacterial effect of augmenting a biological dressing with polymer films containing silver nanoparticles. BACKGROUND: Biological dressings, such as Biobrane, are commonly used for treating partial-thickness wounds and burn injuries. Biological dressings have several advantages over traditional wound dressings. However, as many as 19% of wounds treated with Biobrane become infected, and, once infected, the Biobrane must be removed and a traditional dressing approach should be employed. Silver is a commonly used antimicrobial in wound care products, but current technology uses cytotoxic concentrations of silver in these dressings. We have developed a novel and facile technology that allows immobilization of bioactive molecules on the surfaces of soft materials, demonstrated here by augmentation of Biobrane with nanoparticulate silver. Surfaces modified with nanometer-thick polyelectrolyte multilayers (PEMs) impregnated with silver nanoparticles have been shown previously to result in in vitro antibacterial activity against Staphylococcus epidermidis at loadings of silver that are noncytotoxic. METHODS: We demonstrated that silver-impregnated PEMs can be nondestructively immobilized onto the surface of Biobrane (Biobrane-Ag) and determined the in vitro antibacterial activity of Biobrane-Ag with Staphylococcus aureus. In this study, we used an in vivo wound infection model in mice induced by topical inoculation of S aureus onto full-thickness 6-mm diameter wounds. After 72 hours, bacterial quantification was performed. RESULTS: Wounds treated with Biobrane-Ag had significantly (P < 0.001) fewer colony-forming units than wounds treated with unmodified Biobrane (more than 4 log10 difference). CONCLUSIONS: The results of our study indicate that immobilizing silver-impregnated PEMs on the wound-contact surface of Biobrane significantly reduces bacterial bioburden in full-thickness murine skin wounds. Further research will investigate whether this construct can be considered for human use.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Curativos Biológicos
/
Materiais Revestidos Biocompatíveis
/
Engenharia Tecidual
/
Curativos Oclusivos
Limite:
Animals
Idioma:
En
Ano de publicação:
2012
Tipo de documento:
Article