Your browser doesn't support javascript.
loading
Cross-talk between PKA-Cß and p65 mediates synergistic induction of PDE4B by roflumilast and NTHi.
Susuki-Miyata, Seiko; Miyata, Masanori; Lee, Byung-Cheol; Xu, Haidong; Kai, Hirofumi; Yan, Chen; Li, Jian-Dong.
Afiliação
  • Susuki-Miyata S; Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302;
  • Miyata M; Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302;
  • Lee BC; Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302;
  • Xu H; Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302;
  • Kai H; Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan; and.
  • Yan C; Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY 14642 jdli@gsu.edu chen_yan@urmc.rochester.edu.
  • Li JD; Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302; jdli@gsu.edu chen_yan@urmc.rochester.edu.
Proc Natl Acad Sci U S A ; 112(14): E1800-9, 2015 Apr 07.
Article em En | MEDLINE | ID: mdl-25831493
Phosphodiesterase 4B (PDE4B) plays a key role in regulating inflammation. Roflumilast, a phosphodiesterase (PDE)4-selective inhibitor, has recently been approved for treating severe chronic obstructive pulmonary disease (COPD) patients with exacerbation. However, there is also clinical evidence suggesting the development of tachyphylaxis or tolerance on repeated dosing of roflumilast and the possible contribution of PDE4B up-regulation, which could be counterproductive for suppressing inflammation. Thus, understanding how PDE4B is up-regulated in the context of the complex pathogenesis and medications of COPD may help improve the efficacy and possibly ameliorate the tolerance of roflumilast. Here we show that roflumilast synergizes with nontypeable Haemophilus influenzae (NTHi), a major bacterial cause of COPD exacerbation, to up-regulate PDE4B2 expression in human airway epithelial cells in vitro and in vivo. Up-regulated PDE4B2 contributes to the induction of certain important chemokines in both enzymatic activity-dependent and activity-independent manners. We also found that protein kinase A catalytic subunit ß (PKA-Cß) and nuclear factor-κB (NF-κB) p65 subunit were required for the synergistic induction of PDE4B2. PKA-Cß phosphorylates p65 in a cAMP-dependent manner. Moreover, Ser276 of p65 is critical for mediating the PKA-Cß-induced p65 phosphorylation and the synergistic induction of PDE4B2. Collectively, our data unveil a previously unidentified mechanism underlying synergistic up-regulation of PDE4B2 via a cross-talk between PKA-Cß and p65 and may help develop new therapeutic strategies to improve the efficacy of PDE4 inhibitor.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Benzamidas / Doença Pulmonar Obstrutiva Crônica / Fator de Transcrição RelA / Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 / Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico / Aminopiridinas Limite: Animals / Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Benzamidas / Doença Pulmonar Obstrutiva Crônica / Fator de Transcrição RelA / Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 / Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico / Aminopiridinas Limite: Animals / Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article