Your browser doesn't support javascript.
loading
Harpagoside Inhibits RANKL-Induced Osteoclastogenesis via Syk-Btk-PLCγ2-Ca(2+) Signaling Pathway and Prevents Inflammation-Mediated Bone Loss.
Kim, Ju-Young; Park, Sun-Hyang; Baek, Jong Min; Erkhembaatar, Munkhsoyol; Kim, Min Seuk; Yoon, Kwon-Ha; Oh, Jaemin; Lee, Myeung Su.
Afiliação
  • Kim JY; Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Me
  • Park SH; Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Me
  • Baek JM; Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Me
  • Erkhembaatar M; Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Me
  • Kim MS; Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Me
  • Yoon KH; Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Me
  • Oh J; Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Me
  • Lee MS; Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Me
J Nat Prod ; 78(9): 2167-74, 2015 Sep 25.
Article em En | MEDLINE | ID: mdl-26308264
ABSTRACT
Harpagoside (HAR) is a natural compound isolated from Harpagophytum procumbens (devil's claw) that is reported to have anti-inflammatory effects; however, these effects have not been investigated in the context of bone development. The current study describes for the first time that HAR inhibits receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastogenesis in vitro and suppresses inflammation-induced bone loss in a mouse model. HAR also inhibited the formation of osteoclasts from mouse bone marrow macrophages (BMMs) in a dose-dependent manner as well as the activity of mature osteoclasts, including filamentous actin (F-actin) ring formation and bone matrix breakdown. This involved a HAR-induced decrease in extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK) phosphorylation, leading to the inhibition of Syk-Btk-PLCγ2-Ca(2+) in RANKL-dependent early signaling, as well as the activation of c-Fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1), which resulted in the down-regulation of various target genes. Consistent with these in vitro results, HAR blocked lipopolysaccharide (LPS)-induced bone loss in an inflammatory osteoporosis model. However, HAR did not prevent ovariectomy-mediated bone erosion in a postmenopausal osteoporosis model. These results suggest that HAR is a valuable agent against inflammation-related bone disorders but not osteoporosis induced by hormonal abnormalities.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteoclastos / Piranos / Transdução de Sinais / Glicosídeos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteoclastos / Piranos / Transdução de Sinais / Glicosídeos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2015 Tipo de documento: Article