Your browser doesn't support javascript.
loading
Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning.
Hong, Weizhe; Kennedy, Ann; Burgos-Artizzu, Xavier P; Zelikowsky, Moriel; Navonne, Santiago G; Perona, Pietro; Anderson, David J.
Afiliação
  • Hong W; Division of Biology and Biological Engineering 156-29, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125; whong@caltech.edu perona@caltech.edu wuwei@caltech.edu.
  • Kennedy A; Division of Biology and Biological Engineering 156-29, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125;
  • Burgos-Artizzu XP; Division of Engineering and Applied Sciences 136-93, California Institute of Technology, Pasadena, CA 91125.
  • Zelikowsky M; Division of Biology and Biological Engineering 156-29, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125;
  • Navonne SG; Division of Engineering and Applied Sciences 136-93, California Institute of Technology, Pasadena, CA 91125.
  • Perona P; Division of Engineering and Applied Sciences 136-93, California Institute of Technology, Pasadena, CA 91125 whong@caltech.edu perona@caltech.edu wuwei@caltech.edu.
  • Anderson DJ; Division of Biology and Biological Engineering 156-29, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125; whong@caltech.edu perona@caltech.edu wuwei@caltech.edu.
Proc Natl Acad Sci U S A ; 112(38): E5351-60, 2015 Sep 22.
Article em En | MEDLINE | ID: mdl-26354123
A lack of automated, quantitative, and accurate assessment of social behaviors in mammalian animal models has limited progress toward understanding mechanisms underlying social interactions and their disorders such as autism. Here we present a new integrated hardware and software system that combines video tracking, depth sensing, and machine learning for automatic detection and quantification of social behaviors involving close and dynamic interactions between two mice of different coat colors in their home cage. We designed a hardware setup that integrates traditional video cameras with a depth camera, developed computer vision tools to extract the body "pose" of individual animals in a social context, and used a supervised learning algorithm to classify several well-described social behaviors. We validated the robustness of the automated classifiers in various experimental settings and used them to examine how genetic background, such as that of Black and Tan Brachyury (BTBR) mice (a previously reported autism model), influences social behavior. Our integrated approach allows for rapid, automated measurement of social behaviors across diverse experimental designs and also affords the ability to develop new, objective behavioral metrics.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Comportamento Social / Gravação em Vídeo / Comportamento Animal / Processamento de Imagem Assistida por Computador / Aprendizado de Máquina Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Comportamento Social / Gravação em Vídeo / Comportamento Animal / Processamento de Imagem Assistida por Computador / Aprendizado de Máquina Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2015 Tipo de documento: Article